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Coherency stresses in multilayers  
 

G. Saada-  
LEM CNRS ONERA- France 

Abstract 

 
The determination of the elastic state of coherently matched layers is of importance in a wide 
range of domains: epitaxial films on a substrate with different crystal structures, deformation 
of a lamella welded on a substrate, lamellar crystals.  
It is shown that the elastic state of coherently matched multilayers depends on two coupled 
field quantities: the stress (or equivalently the elastic strain), and the curvature. A general 
method, is derived to determine these fields, and the contribution of curvature on stress 
relaxation is emphasized. Detailed applications are given for the case of stress-free dilatation, 
and pure shear. 
 

1. Introduction 
Consider two parallel slices of crystals S, and F, (figure 1a) and let (as, bs) and (af, bf) be the 
two-dimensional lattice vectors defining the orientation of the free-standing substrate and of 
the free standing film respectively (figure 1b). Coherent match is achieved by imposing an 
adequate elastic strain on both slices. In the case of a multilayer (figure 1c), one must impose 
an elastic strain on each slice.  
The elastic state of such a coherent multilayer depends on two coupled field quantities: the 
stress (or equivalently the elastic strain) and the curvature, depending themselves on the 
geometric relation between the crystal lattices of the layers, and of their elastic modulii. 
Explicit calculations have been made in the particular case where the geometric relation 
between the crystal lattices of the layers is a pure dilatation [1-3]. The purpose of this paper is 
to give a unified solution to the problem whatever this geometric relation: dilatation, shear, or 
combined shear and dilatation. 
As shown by Eshelby [4], and Kröner [5], the elastic state is completely determined, for a 
given geometry, by the knowledge of the stress-free strain, or equivalently the transformation 
strain relating the various crystal lattices before matching, and by the usual elasticity 
equations and boundary conditions. A rigorous definiton of the stress-free strain relevant to 
our problem is given in section 2. The corresponding procedures allowing the elastic state of a 
coherent multilayer to be determined from the knowledge of the stress-free strain are 
described in section 3. 
Taking elastic anisotropy into account is possible at the price of standard but heavy 
calculations that blur the physical meaning of the results. Useful equations are therefore given 
in the appendix, but they will not be discussed. The general explicit expressions of the elastic 
strain, the stress, and the curvature, in elastically isotropic materials are developped in section 
4. In section 5, these expressions are applied to two-phases multilayers whose geometries are 
represented figure 2. Section 6 investigates the case where the stress-free strain is a pure 
shear, in relation with lamellar TiAl. We conclude in section 7. 
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2. Geometry: stress-free strain and stress-free distortion  
 

2.1. Bilayers 
 
Consider a substrate S and a film F, with thicknesses wsand wf, respectively (figure 1a). In 
what follows quantities related to S (resp F) will be denoted by the subscript, or superscript, s
(resp f). Let w be the total thickness of the plate, and f the volume fraction of the film: 
 

w =ws+ wf (1a) 
wf = fw (1b) 

 
Let δa, δb, be defined by (figure 1b): 
 

δa ≡ as - af = Bs af (2a) 
 δb ≡ bs - bf = Bs bf (2b) 
 
The homogeneous second-order tensor Bs, is the stress-free distortion tensor. Itdefines the 
geometrical transformation of the stress-free film lattice, into the stress-free substrate lattice. 
The stress-free strain Es is the symmetric part of Bs. By construction Bf and Ef are nil. 
With the axis Ox1 chosen normal to the interface (figure 1a), the non-zero components of Bs

are derived by solving equations (2) : 
 

B22
s B23

s

B32
s B33

s









=

b3
fδa2 − a3

fδb2 a2
fδb2 −b2

fδa2

b3
fδa3 − a3

fδb3 a2
fδb3 −b2

fδa3











a2
f b3

f − a3
f b2

f (3) 

 
It is useful to have in mind the correspondence between the stress-free distortion tensor and 
the geometrical transformation in some particular cases: 
 
Pure dilatation: B23

s = B32
s = B22

s − B33
s = 0

Pure shear parallel to the axis Ox2: B22
s = B33

s = B32
s = 0

Pure shear parallel to the axis Ox3: B22
s = B33

s = B23
s = 0

2.2. Multilayers 
 
Consider a plate of thickness w comprising n lamellae coherently matched along their planar 

interfaces, each of thickness wq (q=1,2,...,n) and with volume fraction f q =
wq

w
(figure 1c). 

Let (aq , bq ) be the lattice vectors of lamella q. The transformation of the lattice of plate n into 
the lattice of plate q in a plane parallel to the interface is defined by the stress-free distortion 
tensor Bq as: 
 

aq - an = Bq an (4a) 
 bq - bn = Bq bn (4a) 
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The stress-free strain Eq is the symmetric part of Bq. By construction, Bn and En are nil. 
 

3. Statics 

3.1. The Eshelby procedure [4] 
 
This procedure is, in some sense, the most natural one: 
a) Consider a stack made of n lamellae all with the lattice vectors of lamella n. The lamellae 
match perfectly. 
b) Make cuts along all each interface and apply to each lamella q a stress-free distortion Bq

defined by equation (4). The lamellae no longer match. 
c) Restore coherent match by giving each lamella, an elastic deformation - Eq by means of a 
system of a system of stresses σEq applied at the surface of each lamella. 
d) Stick all the coherently matched lamellae together. 
e) Relax the stresses σEq by  application of a system of stress -σEq.
The elastic state of the multilayer, i. e. the internal stress, the elastic strain and the curvature, 
is completely determined by these conditions. The internal stress is a consequence of the 
varying stress-free distortion in the multilayer. 
Two points are worth noticing:  

• the elastic state of the system does not depend on the reference lamella used to define 
the set of Bq, since superimposing a homogeneous stress-free distortion B* to the 
multilayer transforms each Bq into Bq+B* without changing its elastic state. 

• one may impose an arbitrary rotation to each lamella without changing the elastic 
state. Therefore the above conditions are not sufficient to determine the 
crystallographic state. The latter is thus determined up to n rotations which are 
controlled by local interactions at the atomic level. For example, epitaxial films of Al 
on Al203 exhibit a {111}± 110 Al 0001( ) 1010 α − Al2O3 orientation relationship, 
while epitaxial films of Cu on αAl203 exhibit a 
{111}± 112 Cu 0001( ) 1010 α − Al2O3 orientation relationship [6]. 

 

3.2. The Kröner procedure [5] 
 
a) Consider a stack made of n lamellae again all with the lattice vectors in P identical to those 
of lamella n.
b) Give each lamella q a stress-free distortion Bq defined by equation (4).  
c) Recover the matching by a homogeneous surface dislocation distribution on each interface. 
These dislocations, named quasi-dislocations, are not crystal dislocations but a mathematical 
device allowing the calculation of the coherency stresses.  Their stress field, and their 
curvature field are calculated by standard methods. 
This approach is particularly useful for the analysis of the stress relaxation by interfacial 
dislocation networks. The method consists in superimposing to the quasi-dislocations 
network, a periodic planar dislocation array made of crystal dislocations: 

• Given the Miller indices of the interface, and the available Burgers vectors of the 
crystal dislocations of the structure it is possible to determine periodic planar 
dislocations arrays that relax the coherency stresses completely. There is not in 
general a unique solution to the problem [7]. 
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• Given the coherency stress and the Miller indices of the interface, the dislocation 
network determines the amount of stress relaxation [8]. 

Another way to state that the crystallographic state is determined up to n arbitrary rotations is 
to notice that the superposition of a Nye wall [9] to the quasi-dislocation distribution at one 
interface modifies the rotation field without changing the stress field.  
 

3.3. Constraints imposed to the elastic field 
 
Let σq, εq, Sq, be the (internal) stress, the elastic strain, and the compliance tensor in lamella q.
We have the general relation: 
 

εq = Sq.σq (5a) 

 εij
q = Sijkl

q σ kl
q

k,l=1

k ,l=3

∑ (5b) 

 
For clarity sake, we do not use the Einstein summation rule in this paper. 
The total strain ETq in each lamella q is the sum of the stress-free strain Eq, and of the elastic 
strain εq:

ETq = Eq + εq (6) 
 
The elastic field must satisfy two kinds of conditions: continuity of the strain and elastic 
equilibrium: 
1. Coherency imposes the continuity and the compatibility of the total strain in the multilayer. 
2. The stress must satisfy equilibrium conditions in the bulk, at the interfaces, and at the free 
surface. These conditions are simply written as: 
a) in the bulk:
Equilibrium requires that: 

 
∂σ ij

∂x jj=1

j=3

∑ = 0 (7) 

Besides, from Albenga's theorem the average of the internal stress must be zero.
b) at the interfaces:
The stress must not present discontinuities. Using the coordinate system with the reference 
axis Ox1 normal to plane P, pictured in figure 1a, these conditions are simply that σ1j must be 
continuous. 
c) at the free surface normal to Ox1:
The force must be nil at all points of the surface, which imposes: 
 

σ1j = 0 (8) 
 
d) at the free surface parallel to Ox1 (lateral external surfaces) 
Since the thickness of the multilayer is small compared to its lateral dimensions, it is relevant 
to make use of the Saint Venant principle, and to impose simply that the average force, and 
the average moment be zero on these surfaces. 
For simplicity sake, the equations corresponding to the Albenga's theorem, and to the 
conditions on the lateral surfaces, will be written after simplifying the expression of the 
elastic field (§411). 
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4. Isotropic elasticity 
 
We now demonstrate that the stress field in each lamella is the sum of two terms: one term is 
homogeneous and the second varies linearly with the distance to the interface. With the stress 
gradient is coupled a curvature which is homogeneous in the whole multilayer. This solution 
will be referred to as the "general solution". In section 4-2, we develop a solution in which the 
curvature and the stress are decoupled [10, 11] referred to as the "approximate solution". 
 

4.1. General solution   

4.1.1. Stress 
 
One simple way to satisfy the above equilibrium equations at the interfaces and at the external 
surfaces perpendicular to Ox1, is to impose a state of planar stress in the multilayer, by setting: 
 

σ1j = 0 (9) 
 
We define: 

 σ1,σ 2,σ 3( )≡ σ 22 +σ 33
2

,σ 22 −σ 33
2

,σ 23






 (10a) 

 ε1,ε2,ε3( )≡ ε22 +ε33
2

,ε22 −ε33,2ε23






 (10b) 

 E1
q ,E2

q,E3
q( )≡ E22

q + E33
q

2
, E22

q − E33
q ,2E23

q








 (10c) 

 M = 2µ 1+ν
1−ν

(10d) 

 
The stress, the elastic strain and the stress-free strain are completely determined by the 
quantities σi, εi, Ei

q (i=1,2,3). M is known as the biaxial modulus, µ, ν are the shear modulus 
and the Poisson ratio, respectively. 
With these notations, the relation between the stress and the elastic strain is simply: 
 

σi = mi εi (i=1, 2, 3)    (11a) 
 (m1, m2, m3) = (M, µ, µ) (11b) 
 
The elastic energy density is: 
 

u = u1 +
u2 + u3

2
(12a) 

ui = miεi
2 (12b) 

 
Let Ei

T and χi be 6 dimensionless quantities, that are constant in the whole multilayer, we 
show now that the general solution to the problem is: 
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σ i
q = mi

qεi
q = mi

q Ei
T − Ei

q + χi
x1
w







 (13) 

 
We notice at first that the elastic field defined by equation (13) satisfies the conditions of 
continuity and compatibility everywhere, as well as the conditions of equilibrium in the bulk, 
at the external surfaces parallel to P, and at the interfaces. It depends on the 6 unknown 
dimensionless parameters Ei

T and χi, which are entirely determined by the following 6 
conditions: 
a) The Albenga theorem is written: 
 

σ idx1
0

w
∫ = 0 (14) 

 
Since the stress depends only on the coordinate x1 (equation 13), condition 14 also expresses 
the fact that the total force is nil on the lateral surface.  
b) the average moment on the lateral surface must be nil. Hence:  
 

σ i x1dx1
0

w

∫ = 0 (15) 

 
The 6 unknown constants are expressed as linear functions of the Ei

q , by substituting 
equations (10, 11, 13) into equations (14, 15): 
 

Ei
T = Ai

qEi
q

q=1

q=n
∑ (16a) 

 χi = Bi
qEi

q

q=1

q=n

∑ (16b) 

 
The coefficients Ai

q and Bi
q are calculated in the appendix (formulae A-5). They depend on the 

thickness and elastic modulii of the various plates and on their stacking order (formula A-3c).  
 

4.1.2. Curvature  
 
The curvature tensor K is defined by [5]: 
 

Kij ≡
∂ωi
∂x j

= εikr
∂ε jr

∂xkk ,r
∑ = εi1r

∂ε jr

∂x1l
∑ (17) 

 
ω is the lattice rotation, and εikl is the Levi-Civitta symbol, whose non-zero elements are: 
 

ε123 =ε231 =ε312 =-ε321 =-ε213 =-ε132 = 1      (18) 
 
By substituting equation (13) into equation (17), the non-zero components of the curvature 
tensor are: 
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K22 = −K33 =
−χ3
2w

K23 =
χ2 − 2χ1

2w
K32 =

2χ1 + χ2
2w

(19) 

 
The tilt components K23 and K32 of the local lattice curvature around Ox2, and Ox3 depend on 
χ1 and χ2, while the twist components K22 and K33 around the same axes depend on χ3.

4.1.3. Remarks 
 
In elastically isotropic media, there is no coupling between the shear and the dilatation 
components of the stress-free strain tensor, which yields simple results in the following cases: 
 
1. All the stress-free strains Eq are pure dilatations 
The non-zero component of the stress free strain and of the stress in lamella q are 
respectively E1

q , and σ1
q . The non-zero components of the curvature tensor are: 

 

K23 = −K32 = −
χ1
w

(20) 

 
the elastic strain field is a pure dilatation everywhere, and the resulting rotation is a pure tilt 
around the Ox2 and Ox3 axes. 
 
2. All the stress-free strains Eq are pure shears 
Their non-zero component of the stress free strain and of the stress in lamella q are 
respectively E2

q , E3
q , σ 2

q ,σ 3
q . The elastic strain field is a pure shear, while the induced 

rotation combines twist and tilt. The situation further simplifies if all the shear vectors are 
parallel to the coordinate axes. Then their non-zero component is E3

q , the non-zero 
component of the stress is σ 3

q and the non zero components of the curvature tensor are: 
 

K22 = −K33 = −
χ3
w

(21) 

 

4.2. Approximate solution neglecting the coupling between 
curvature and stress 

 
A simplified, and approximate, solution is obtained by neglecting the force on the lateral 
surfaces, i. e. by ignoring the condition (15). In order to avoid confusion in the following, 
quantities related to this solution are upperlined with a ~. 
A satisfactory solution to equations (14) is [10, 11]: 
 

σ̃ i
q = mi

qε̃i
q = mi

q Ẽi
T − Ei

q( ) (22a) 
 χ̃i = 0 (22b) 
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This solution is however approximate since equation (15) is not satisfied, that is, the average 
moment on the lateral faces is not zero. Indeed condition (22b) is obviously in contradiction 
with the real situation. This issue shall be further discussed in § 5.  
Substituting equation 22a in equation (14): 
 

Ẽi
T = Ãi

qEi
q

q=1

q=n
∑ (23a) 

Ãi
q =

fqmi
q

fqmi
q

q=1

q=n

∑
(23b) 

 
From equations (22) and (23): 

• the state of stress is independent of the stacking order. For example, the state of stress 
of a multilayer comprising p different crystalline components distributed in n slices of 
various width wn, is completely determined by the volume fraction fp of each 
component, whatever the distribution of the p variants in the multilayer [10, 11]. 

• the smaller the volume fraction of a component, the larger its internal stress.  
Notice that Ẽi

T is the volume average of the Ei
q , while Ei

T combines a volume average on the 
various stress-free strains Ei

qand of the average strain induced by the curvature. 
Let us consider now a bilayer made of a substrate s, and a film f (figure 1a, 2a) whose elastic 
modulii are mis and mif. Ei

f is nil by construction.  
We define ri:

ri =
mis − mif

mis
ri <1     (24) 

 
For a homogeneous two-phase multilayer, ri = 0. 
From equations (23, 24): 
 

Ãi
s , Ẽi

T( )=
1− f
1− fri

1,Ei
s( ) (25) 

 

σ̃ i
s ,σ̃ i

f( )= − f ,1− f( ) 1− ri
1− fri

mi
sEi

s (26) 

 
the stress concentrates into the thinnest plate in a bilayer. 
The result is the same for a sandwhich sfs where the film f is matched between two identical 
layers s as indicated in figure 2b, notwhistanding the position of the film. Formulae (25, 26) 
apply equally for a multilayer sfsfs...f made of n alternating layers s and f of the same 
thickness (figure 2c), with f =1/2, which gives: 
 

σ̃ i
s ,σ̃ i

f( )= −1,1( )1− ri
2 − ri

mi
sEi

s (27) 
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5. Two-phases multilayer 

5.1. General equations 
In this section, we consider a multilayer made of two components s and f whose elastic 
modulii are mis and mif. By definition, the stress free strain keeps the same value Ei

sin all the s
layers, while it is nil in all the f layers, then formulae 16 can be written: 
 

Ei
T ,χi( )= Ai

s, Bi
s( )Ei

s (28) 
 
The general expression of Ai

sand Bi
s can be calculated by standard algebra, in terms of ri and 

of 3 numerical coefficients C1
s, C2

s, C3
s, as indicated in § A-1-3 of the appendix. Then the 

stress is: 
 

σ i
s = mi

s Ai
s −1+ Bi

s x1
w







Ei

s (29a) 

 σ i
f = 1− ri( )mi

s Ai
s + Bi

s x1
w







Ei

s (29b) 

 
The curvature tensor is defined by equations (19,28). 
From equations (12), the total energy per unit surface is: 
 

U =U1 +
U2 +U3

2
(30a) 

 Ui = ui0
w∫ dx1 (30b) 

 
Substituting equations (29): 
 

Ui

mi
sEi

s2
w

= C1
s Ai

s −1( )2
+ 2Bi

s Ai
s −1( )C2

s + Bi
s2

C3
s + 1− ri( ) Ai

s2
C1

b + 2Ai
sBi

sC2
b + Bi

s2
C3

b













(31) 

 
From equations (26, 31): 
 

Ũi

mi
sEi

s2
w

=
1− ri
1− fri










2

f 1− f( ) (32) 

 

The above formulae generalize results which have been obtained for the case where the stress-
free strain is a pure dilatation [1-3] to any stress-free transformation: dilatation, shear or any 
combination of both.  
Although combining standard algebra the general expressions are tedious, and not prone to 
simple physical interpretation. Therefore we concentrate in the following to a situation where 
the multilayer is homogeneous, and the stress-free strain has only one component. Applying 
formulae (A-9, A-14, 28, 29, 31) to the three homogeneous two phase multilayers defined in 
figure 2. we have: 
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1. Bilayer (figure 2a) 

σ i
s = f 2− 3 f − 6 1− f( ) x1

w





mi

sEi
s (33a) 

 σ i
f = 1− f( ) 1+ 3 f − 6 f x1

w





mi

sEi
s (33b) 

 χi = 6 f 1− f( )Ei
s (33c) 

 Ui = f 1− f( ) 1− 3 f + 3 f 2( )mi
sEi

s2
w (33d) 

 
2. Sandwich (figure 2b) 
 

σ i
s = f −4 + 3 f + 6 f1 + 6 1− f − 2 f1( ) x1

w





mi

sEi
s (34a) 

 σ i
f = 1− f( ) 1− 3 f( )+ 6 ff1 + 6 f 1− f − 2 f1( ) x1

w





mi

sEi
s (34b) 

 χi = 6 f 1− f − 2 f1( )Ei
s (34c) 

 Ui = f 1− 4 f + 6 f 2 − 3 f 3 +12 ff1 1− f − f1
2( )[ ]mi

sEi
s2

w (34d) 

 
3. Multilayer sfsfs...f (figure 2c) 
 

σ i
s = −

1
2

+
3

2n
−

3
n

x1
w






mi

sEi
s (35a) 

 σ i
f =

1
2

+
3

2n
−

3
n

x1
w






mi

sEi
s (35b) 

 χi = −
3
n

Ei
s (35c) 

 Ui =
1
4

1−
3

n2






mi

sEi
s2

w (35d) 

 

5.2. Discussion 
For simplicity sake we restrict at first the discussion to the case where the stress-free strain 
has only one non zero component and compare the results given by formulae (33-35) to those 
obtained through the approximate solution (26, 27, 32). 
 
a) homogeneous bilayer (figure 2a).
Figure 3 represents the variation of the stress in a homogeneous bilayer, calculated after 
formulae (33), as a function of x1, compared to that calculated from formula (26). The 
discrepancy is obvious. Notice for example that the stress changes sign in the substrate. 

The plot of the ratio Ũi
Ui

of the average elastic energy stored in the bilayer calculated from 

formulae (31) and (32) represented figure 4 emphasizes the importance of the stress relaxation 
due to the curvature. As soon as the volume fraction of the film is larger than a few %, the 
approximate solution overestimates the stored elastic energy quite significantly. This stems 
from the fact that the approximate solution does not take into account the elastic relaxation 
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due to the curvature. This should be taken into account when modelling the growth of 
epitaxial multilayers used in electronic devices. 
Whenever f << 1, formula (A-7) shows that the stress in the film, and the curvature can be 
calculated to a good approximation by using formulae (33b, 33c), even in heterogeneous 
multilayers. 
It has been known for a long time that if the stress free strain is a pure dilatation, the bilayer 
undergoes bending. The radius of curvature has been calculated by superimposing to the 
elastic field calculated by equation 27 a bending G which cancels that moment. The 
corresponding bending radius R̃ is [12]: 
 

R̃ = −
1− f( )2 w

6 fEi
s (36)  

 
This result has been widely used to determine the stress in the film through the measurement 
of the curvature of the bilayer [13-15]. 
In our formulation, a stress-free strain which is a pure dilatation corresponds to i =1 in 
formulae 33, which corresponds to a bending with a curvature radius R1:

R1 = −
w

6 f 1− f( )Ei
s (37)  

 
The relative error is of the order of 3f, which is appreciable except if f<<0.1. 
 
b) Sandwich 

In this case: 
 

Ui = fEi
sw σ i

f (38) 

 
σ i

f is the average stress in the f layer. (Be careful, this equation is valid only for a 

homogeneous sandwich). 
Figure 5a is a plot of the elastic energy of the sandwich as a function of its position f1. It is 
seen that the energy is maximum when the f layer is in the midle of the film, which 
corresponds to zero curvature. Figure 5b is the plot of the ratio hb of the average energy per 
unit surface of the approximate solution to that given by equation 34d, as a function of f1,
which shows the same trend.  
 
c) aba..b multilayer 
 
Formulae 35 show explicitly that the curvature is a decreasing function of the number n of 
layers. As a consequence the stress, and the energy are an increasing function of n. When n
tends to infinity, the approximate solution (formula 27) is recovered. 
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6. The stress-free strain is a pure shear 

6.1. The structure of lamellar TiAl 
 
A relevant practical example of this situation is found in nearly stoïchiometric Titanium-
Aluminium alloys, which, under appropriate thermal treatments, is made of coherently 
matched lamellae of the α2 Ti3Al and the γ TiAl phases [16, 17]. 
The lattice of the α2 phase is DO19, with parameters cα = 0.462nm, and aα = 0.577nm,  in the 
stoïchiometric composition. The lattice of the γ phase is centred tetragonal (figure 6a), with 
parameters cγ = 0.406nm, and aγ = 0.400nm, in the stoïchiometric composition. It is a stacking 
ABCABC, or CBACBA of {111}planes. The {111} planes are equivalent but the various 
<110> directions are not: the row 110[ ] is composed of one kind (Ti or Al) of atom, the rows 
101[ ] and 011[ ] contain both kinds of atoms (figure 6b). The relation between the α2 and γ

lamellae is 111{ } 110[ ]γ 0001{ } 1120[ ]α2
.

There are 6 variants, hence 6 ways to perform lattice match between a given α2 and a γ
lamella (Figure 7a). The stacking ABCABC (resp CBACBA) gives 3 variants obtained by 
successive rotations of 2π/3, which we denote γ1, γ2, γ3 (resp γ'1, γ'2, γ'3) (Figure 7b). There is 
no  mismatch between the twinned lamellae  γi, γ'i .

cγ = aγ (1 + α ) aα2 = aγ (1 + α' )√2
(39) 

 
Typical values are α = 1.5 10-2, and α'= 2 10-2. They vary slightly with composition as the 
parameters of both phases do. 
The transformation strain between a γi and a γj is a pure shear (figure 7c). Since the terms of 
second order in α can be neglected, denoting Bi/j the transformation strain for a film γi on a 
substrate γj, we have very generally: 
 

Bi/j+ Bj/i = 0 (40a) 
 

Bi/j+ Bj/k+ Bk/i = 0 (40b) 
 
It is not our purpose in this paper to give a full discussion of the various microstructures 
related to lamellar TiAl, and we shall restrict at first to the so called polysynthetically twinned 
(PST) crystals which exhibit a single lamellar orientation over the entire crystal [18]. 
 

6.2. General equations for a γ3/γ2 bilayer 
 
Using the reference frame of figure 7a, we obtain, from formulae (3), and (39): 
 

B3/2 =α 0 2
3

0 0















E3/2 =
α
3

0 1
1 0









 (41) 

 
Therefore: 
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E3
s =α 3

3
(42) 

 
In the approximation of elastic isotropy, the elastic modulii are identical; formulae 33 

apply with i =3. The curvature is a pure torsion with: 
 

K22= K33=χ3 (43) 
 

6.3. Discussion  
 
It is well known, that volume fractions of the various γ phases larger than 20% are currently 
observed. Besides the mismatch is rather large, of the order of 10-2. The relaxation due to the 
stress-curvature coupling should be very important. Unfortunately, there are no precise 
experimental observations of free-standing bilayers. 
The transposition to γ multilayers is obvious, although one must consider the 3 different types 
of matching (γ1/γ2, γ2/γ3, γ3/γ1). 
Since the γ lamellae develop from the disordered α2 phase, a complete description should in 
addition include an analysis of the various α2/γi bilayers. There is no difficulty in writing the 
corresponding equations. The only difference is the existence of a dilatation component. Since 
in the observed multilayers the volume fraction of the α2 phase is rather small, of the order of 
a few %, one observes a concentration of the compression stress in this phase. The curvature 
has both tilt and twist components. 
One important consequence is that it is not a priori correct, to consider that the elastic state of 
a multilayer is defined by the volume fraction of each component, whatever the size and order 
distribution of the layers. This imposes constraints on the order of growth of the γi lamellae on 
one α2 lamella. 
The situation is more complex in polycrystalline fully lamellar TiAl. The observation of low 
angle grain boundaries in as grown crystals is very likely the result of the coupling between 
the stress and the curvature. The experimental observations on lamellar TiAl should be 
revisited taking into account this coupling.   
 

7. Concluding remarks 
We have shown that the elastic state of a coherent multilayer consists in a coupled stress (or 
elastic strain), curvature field, and we have developped a general method to calculate these 
fields. The method applies to every stress-free transformations. The importance of the stress 
relaxation due to the curvature has been emphasized on specific examples. The calculations 
have been developped under the approximation of isotropic elasticity, but they can easily be 
generalized to elastically anisotropic multilayers, as shown in appendix 2. 
The stress-curvature coupling should be taken into account when considering the coherency 
stress relaxation by dislocations nucleation in multilayers, as well as the growth mechanisms 
of the latter. 
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Appendix 

 

A1. Calculation of Ei
T and ci for a multilayer 

 
A-1-1 General definitions 
 
Figure 1c describes the geometry of  a multilayer of total thickness w, made of n lamellae of 
thickness wq, lamella q being defined as the domain corresponding to: 
 

Wq-1≤ x1≤ Wq (A-1) 
 

W q = wr

r=1

r=q

∑ (A-2) 

 
Here q and r are superscripts, not exponents.  
Let the dimensionless quantities Cp

q , and the composite modulii Mip, be defined by: 
 

Cp
q =

1
w( )p x1

p−1dx1
W q−1

W q

∫ =
1

p w( )p W q( )p
− W q−1( )p





p=1,2,3,... (A-3a) 

 

Mip =
1

w( )p mi
q x1

p−1dx1
W q−1

W q

∫
q=1

q=n
∑ = Cp

qmi
q

q=1

q=n
∑ (A-3b) 

 

Mi1 =
1
w

mi
qwq

q=1

q=n

∑ (A-3c) 

 
Notice that Mip depends on the stacking order for p>1.  
 
A-1-2 General multilayer 
 
Substituting equations (13) into equations (14, 15), and using formulae (A-3), one obtains: 
 

Mi1Ei
T + Mi2χi = C1

qmi
qEi

q

q=1

q=n

∑ i=1,2,3   (A-4a) 

 

Mi2Ei
T + Mi3χi = C2

qmi
qEi

q

q=1

q=n

∑ (A-4b) 

Solving equations A-4 gives equations (16), with: 
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Ai
q =

C1
qMi3 −C2

qMi2( )mi
q

Mi1Mi3 − Mi2( )2 (A-5a) 

 Bi
q =

C2
qMi1 −C1

qMi2( )mi
q

Mi1Mi3 − Mi2( )2 (A-5b) 

 
A-1-3 Two phased multilayer 
 
Let Cp

s (resp Cp
f ) be the sums defined by formulae (3a) restricted to the layers s (resp f), we 

have very generally: 
 

Cp
s + Cp

f =
1
p

(A-6) 

From formula (A3b):  
 

Mip =
1
p
− riCp

f







mis  (A-7) 

 
ri is defined by equation (24). 
 
Let us define: 
 

Ai
s =

C1
sMi3 −C2

sMi2( )mi
s

Mi1Mi3 − Mi2( )2 (A-8a) 

 Bi
s =

C2
sMi1 −C1

sMi2( )mi
s

Mi1Mi3 − Mi2( )2 (A-8b) 

 
Ai

s and Bi
sare calculated by substituting equations (A-6,A-7), in equations (A-8). Let us just 

notice that Ai
s and Bi

sare completely defined by the knowledge of ri, C1
s,C2

s ,C3
s .The general 

expression is however tedious and of little use.  
Since Ei

f is nil, equations (16) can be written: 
 

Ei
T = Ai

sEi
s (A-9a) 

 χi = Bi
sEi

s (A-9b) 
 
We now calculate C1

s,C2
s ,C3

s for the multilayers represented figure 2: 
a) bilayer sf of figure 2a: 
 

Cp
s =

1− f( )p

p
(A-10) 

 
b) For the sandwich sfs (figure 2b): 
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Cp
s =

1+ f1
p − f + f1( )p

p
(A-11) 

 
c) For the alternate sps..p multilayer (figure 2c): 
 

Cp
s =

1
np

2h −1( )p

h=1

h=n /2

∑ − 2h( )p

h=1

h=−1+n /2

∑












(A-12a) 

 

C1
s ,C2

s,C3
s( )=

1
2

, n −1
4n

, 2n −1
24n







 (A-12b) 

 
Finally, if both phases have the same elastic modulii mi

s (homogeneous two phases 
multilayer), from equation (A-6), ri is nil, and: 
 

Mip =
mis
p

(A-13)  

 
Then: 
 

Ai
s = 2 2C1

s − 3C2
s( ) (A-14a) 

 Bi
s = 6 2C2

s −C1
s( ) (A-14b) 

 
A-2 Equations for a bilayer taking into account anisotropy 
 
Let Cs (resp Cf ) and Ss (res Ss) be the elastic modulii and elastic compliances tensor of the 
substrate (resp the film) in the axes of figure 1a. Using the matrix representation, we may 
write Hooke's law: 

 σm = Cmnγn
n=1

n=6
∑ (A-15a) 

 γn = εn n = 1, 2, 3    (A-15b) 
 γn = 2εn n = 4, 5, 6    (A-15c) 
 
With these notations equation (9), is written: 
 

σ1
r =σ5

r =σ 6
r = 0 (A-16) 

 
Here r stands for s or f.
By substituting equations (A-15a) in equations (A-16), one may express γ1

r ,γ5
r ,γ6

r , and 
σ 2

r ,σ 3
r ,σ 4

r as  linear functions of γ2
r ,γ3

r ,γ4
r , which we write: 

 
σm

r = Qm2
r γ2

r +Qm3
r γ3

r +Qm4
r γ4

r m = 2, 3, 4  (A-17) 
 
We define: 
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Γ2
q ,Γ3

q ,Γ4
q( )= E2

q , E3
q ,2E4

q( ) (A-18) 
 
Here q stands for s, f, T.
Therefore the solution can be written as: 
 

γn
s = Γn

T −Γn
s + χn

x1
w

n = 2, 3, 4   (A-19a) 

 γn
f = Γn

T + χn
x1
w

n = 2, 3, 4   (A-19b) 

 
The 6 dimensionless constants (Γn

T , χn) are determined by substituting equations A-19 into 
equations A-17 and solving equations 14, and 15.  
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Figures Captions 
 
1. Coherently matched multilayers. 

a. Bilayer made of a substrate S and a film F. The axis Ox1 is normal to the interface. 
The coordinate axes Ox2, Ox3, are in the interface plane. 
b. The lattice of the substrate is defined by the two vectors (as, bs); the lattice of the 
film by the two vectors (af, bf). 
c. Multilayer made of 5 layers of thickness wq, q=1,...,5. 

2. Three examples of two phase multilayer 
 a. Bilayer sf.

b. Sandwich sfs.
c. sfsfsf multilayer (n = 6). 

3. Plot of the variation of σ i
s

misEi
s as a function of x1/w for f=0.1, and mif = mis . Full line: 

general solution. Dotted line: approximate solution. 

4.  Plot of the ratio ha =
Ũi
Ui

of the stored energy in a bilayer as a function of the volume 

fraction f.
5. a. Plot of Ui as a function of f1 for f=0.1. 

 b. Plot of the ratio hb =
Ũi
Ũi

as a function of f1 for f=0.1.  

6.  a. Tetragonal TiAl 
 b.  Representation of the triangle A1A2A3.

a1 = a2 ≈ aγ 2 1+
α
2







 a3 = aγ 2

7. a. Left:the elementary triangle in the basal plane of the α2 lamella. 
Right: the reference axes. 
b. Projection of the (111) plane of the three possible arrangements γ1, γ2, γ3 of 
tetragonal TiAl.  

 c. The transformation strain for γ3/γ2, is a pure shear. 
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