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Two results about equidistribution of tile orientations in primitive substitution tilings are stated, one for finitely many, one for infinitely
many orientations. Furthermore, consequences for the associated diffraction spectra and the dynamical systems are discussed.

1 Substitution tilings

Several important models of quasicrystals are provided by (decorations of) nonperiodic substitution tilings.
In this paper, only tilings of the plane are considered. In larger dimensions some aspects become rather
complicated, in particular, generalisations of Theorem 2.2. A substitution (or tile-substitution, but we
stick to the shorter term here) is just a rule how to enlarge and dissect a collection of tiles P1, . . . , Pm into
copies of P1, . . . , Pm, as indicated in Figure 1 (left) or Figure 2. Iterating this rule yields tilings of larger
and larger portions of the plane. However, the precise description of a substitution tiling in R2 is usually
given as follows.

Let P1, . . . , Pm be compact subsets of R2, such that each Pi equals the closure of its interior. These
are the prototiles, the pieces our tiling is built of. We refer to sets which are congruent to some prototile
simply as tiles. (Sometimes two prototiles are allowed to be congruent, compare Figure 1. Then we equip
each one of them with an additional attribute (colour, decoration) to distinct them. Whenever we speak of
’congruent’ tiles in the sequel, this means ’congruent with respect to possible decorations’.) A tiling (with
prototiles P1, . . . , Pm) is a collection of tiles (each one congruent to some Pi) which covers R2 such that
every x ∈ R2 is contained in the interior of at most one tile. Note, that each such tiling T can be described
by placements of the prototiles:

T = {Rα1Pi1 + t1, Rα2Pi2 + t2, . . .},

where Rαi
denotes a rotation through αi, and ti ∈ R2 are translation vectors. For later purposes, we define

the orientation φ(T ) of a tile: If T = RαPi + t, α ∈ [0, 2π[, then φ(T ) = α.
Now, let λ > 1 and σ be a map which maps each prototile Pi to a non-overlapping collection of tiles,

each one congruent to some prototile Pi. Furthermore, we require the substitution σ to be selfsimilar in
the sequel. That is, λPi =

⋃
T∈σ(Pi)

T for 1 ≤ i ≤ m. By setting σ(RPi + t) = Rσ(Pi)+λt, the substitution
σ extends naturally to any tile congruent to some prototile. In a similar way, by σ({T1, T2, . . .}) = σ(T1)∪
σ(T2) ∪ . . ., the substitution σ extends to all (finite or infinite) collections of tiles. In particular, one can
iterate σ on the prototiles to obtain the k-th order supertiles σk(Pi).

Definition 1.1 Let σ be a tile-substitution with prototiles P1, . . . , Pm. A tiling T is called substitution tiling
(with substitution σ) if for each finite subset F ⊂ T there are i, k such that a copy of F is contained in
some supertile σk(Ti). The family of all substitution tilings with substitution σ is denoted by Xσ. The
matrix Mσ with (Mσ)ij = #{T ∈ σ(Pj) : T = RPi + t} is called substitution matrix. A substitution is
primitive, if there is k ≥ 1 such that Mk

σ is strictly positive.

Here, #A denotes the cardinality of the set A. This definition of a substitution tiling fits well into several
contexts, for instance, to the hull of a tiling, see Section 4.
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Figure 1. A substitution tiling where horizontal rectangles are more frequent in the tiling than vertical ones. By Theorem 2.3, this can
be achieved only when the two types of rectangles are substituted differently from each other.

2 Statistical circular symmetry

Most of the well-known substitution tilings have the property that all prototiles occur in only finitely
many orientations. For instance, the Penrose dart and kite tiling has just two prototiles, a convex and a
non-convex quadrangle. Each one occurs in one of 10 different orientations throughout the tiling. There
are also substitution tilings where the tiles occur in infinitely many orientations. The most prominent
examples are certainly the pinwheel tilings [1]. But there are many other examples, compare [2], [3]. Two
examples are shown in Figure 2.

It was known for the pinwheel tiling that there are not only infinitely many orientations of the tiles, but
that they are furthermore equidistributed [1], [4]. Intuitively, this means that each orientation occurs with
the same frequency throughout the tiling. In order to make this precise, we need the following definition.
Recall that a sequence (aj)j≥0 is equidistributed in [0, 2π[, if for all 0 ≤ x < y < 2π holds:

lim
n→∞

1
n

n∑

j=1

1[x,y](aj) =
x− y

2π
.

Since the above sum is not absolutely convergent, it depends strongly on the ordering of the sequence.
Thus we need to order the tiles in the tiling in some not-too-weird way. This is done in the following
definition.

Definition 2.1 Let T = {T1, T2, . . .} be a primitive substitution tiling. Let the numbering be such that the
sequence (Tj)j≥1 satisfies the following property: for all n ≥ 1, there is some ` ≥ n such that the patch
{T1 . . . , T`} is congruent to some supertile σk(Pi) for some prototile Pi, k ≥ 1. The tiling Tσ has statistical
circular symmetry, if, for all 0 ≤ x < y < 2π, one has:

lim
r→∞

1
n

n∑

j=1

1[x,y](φ(Tj)) =
x− y

2π
.

The ordering in the definition is compatible with other natural notions, for instance, ordering the tiles
with respect to their distance to the origin. The following result was obtained in [2]. Only while preparing
the present text, the author realized that a similar result already appeared in [1]; see also the comments
in Section 4.

Theorem 2.2 Let T be a primitive substitution tiling in R2, where copies of some prototile occur in
infinitely many orientations. Then T is of statistical circular symmetry.

In the next section this theorem is used to show that any such tiling has circular diffraction spectrum.
Now we show an analogue of the theorem above for tilings with tiles in finitely many orientations. One can
ask whether there are substitution tilings where tiles occur more frequent in one direction than the other.
This is possible, see Figure 1 for an example. But this is achieved by substituting the horizontal rectangle
differently from the vertical rectangle. In fact we have two prototiles in this example, each one occurring
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Figure 2. Two substitutions yielding tiling with statistical circular symmetry. The left one is due to Danzer and Goodman-Strauss [5],
the right one is from [2].

in one direction only. This is illustrated in the right part of Figure 1 by assigning different decorations to
the tiles. The following theorem states that each prototile Pi occurs in each of its orientations with the
same frequency in a primitive substitution tiling. In order to make this precise, let freq(Pi, α) denote the
frequency of tiles RαPi + t in a tiling T . That is,

freq(Pi, α, T ) = lim
r→∞

#{T ∈ T ∩Br : ∃t T = RαPi + t}
#{T ∈ T ∩Br} , (1)

where Br denotes the closed ball of radius r around the origin. For primitive substitution tilings, this
frequency exists and is independent of the choice of the origin. This can be seen as follows: Up to now,
we identified types of tiles with respect to congruence congruence classes. In a tiling with finitely many
orientations, one can as well identify types of tiles with respect to translation classes. Usually, this results
in a larger number of prototiles (e.g., the Penrose dart and kite tilings have two prototiles up to congruence,
but 20 prototiles up to translation). The frequency of each prototile in a primitive substitution tiling can
be obtained from the substitution matrix Mσ. This result is folklore, see for instance [6], [7]: The normed
Perron-Frobenius eigenvector of Mσ contains the relative frequencies of the prototiles. In particular, in all
tilings in Xσ, these frequencies are the same. Therefore, for any given primitive substitution, we can drop
the T in the definition of the frequency in this case and write just freq(Pi, α).

Theorem 2.3 Let σ be a primitive substitution with prototiles {P1, . . . , Pm}. If freq(Pi, α) 6= 0,
freq(Pi, β) 6= 0 then freq(Pi, α) = freq(Pi, β).

Proof If freq(Pi, α) 6= 0, then the prototiles occur in finitely many orientations only, by primitivity of the
substitution and Theorem 2.2. Therefore we obtain finitely many prototiles with respect to translations:
(P1, 0), (P1, α1,1), (P1, α1,2), . . . , (P1, α1,k); (P2, 0), (P2, α2,1), . . . . . . (Pm, αm,`).

Consider a tiling T ∈ Xσ. By the remarks preceding the theorem, freq(Pi, 0) is well defined, and its value
is the same in the tiling T and in the tiling Rαi,j

T ∈ Xσ. And trivially, freq(Pi, 0) in T equals freq(Pi, αi,j)
in Rαi,j

T . Therefore, freq(Pi, 0) = freq(Pi, αi,j), and the claim follows. ¤

3 Diffraction

There is a wealth of literature devoted to the mathematical description of the diffraction spectrum of
nonperiodic structures, see for instance [8], [9], [10], [11], or the introductory text [12] and references
therein. Usually one starts with a discrete point set Λ ⊂ R2 rather than a tiling. In the present context of
tilings, this can be achieved by decorating each prototile with one or more points (’atomic decorations’).

Let Λ be such a point set, obtained from a tiling. The diffraction spectrum of Λ is the Fourier transform
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of the autocorrelation of Λ. The autocorrelation (also called Patterson function) of Λ is

γ = γΛ = lim
r→∞

1
vol(Br)

∑

x,y∈Λ∩Br

δx−y, (2)

if this limit exists. Here and in the following we are working in the framework of tempered distributions
[13], [14]. Thus the limit above is to be understood as a vague limit. If the limit does not exist, there is a
subsequence converging to an autocorrelation which is known to be translation bounded (since we started
with a translation bounded measure δΛ) and positive definite. Thus γ can be regarded as a translation
bounded positive definite measure. Now, the Fourier transform γ̂ of γ is the diffraction measure, and its
support is the diffraction spectrum of Λ. We are interested in the nature of γ̂. By Lebesgue’s decomposition
theorem, γ̂ has a unique decomposition

γ̂ = γ̂pp + γ̂sc + γ̂ac

with respect to the Lebesgue measure in R2. The pure point part γ̂pp is a countable sum of Dirac measures.
The absolutely continuous part γ̂ac is a measure with locally integrable density function supported on a
set of positive Lebesgue measure. The singular continuous γ̂sc part assigns zero to all finite sets, but is
supported on a set with Lebesgue measure zero. The (idealized) diffraction spectrum of a quasicrystal is
pure point, the singular parts vanish completely.

The following results show that substitution tilings with statistical circular symmetry have a diffraction
measure which is of (perfect) circular symmetry. Consequently, the pure point part of the diffraction is
trivial.

Theorem 3.1 Let T = {Rα1Pi1 +t1, Rα2Pi2 +t2, . . .} be a primitive substitution tiling of statistical circular
symmetry, with prototiles P1, . . . , Pm. Choose ’control points’ xi ∈ Pi, and define Λ = {Rα1xi1+t1, Rα2xi2+
t2, . . .}. Then the autocorrelation γΛ of Λ is circular symmetric.

The subtlety of this theorem is that the autocorrelation is not of statistical circular symmetry only (this
is easy to see) but of perfect circular symmetry. The rotated measure R.µ is defined by R.µ(A) = µ(R−1A)
for all measurable sets A. Then µ is of circular symmetry if R.µ = µ for all R.

Proof Since T is of statistical circular symmetry, T contains tiles Tj congruent to some prototile Pi for
(countably) infinitely many distinct angles αj = φ(Tj). By equidistribution, the frequency of tiles in one
certain orientation is 0. But, again by the equidistribution of (αj)j≥0, the frequency of tiles in a certain
range of orientations — say, [β, γ[⊆ [0, 2π[ — equals the frequency of tiles in orientations [β + c, γ + c[
mod 2π for all c. The same is obviously true for supertiles in T .

The autocorrelation is defined via difference vectors x−y. We deduce the circular symmetry of the auto-
correlation by assigning these vectors x− y to supertiles in T . Each such vector arises from a constellation
of two tiles (usually not adjacent). Consider only vectors x − y of fixed a length r > 0. Let k ≥ 1. Then
either x and y are contained in the same k-th order supertile, or in two different k-th order supertiles. With
growing k, the ratio of the latter kind to the former kind tends to zero. Thus it suffices to regard the former
kind only. Each one arises from a k-th order supertile, these are equidistributed, hence equidistribution
of orientations of difference vectors x − y of radius r follows. In other words, the frequency of difference
vectors x − y of length r with orientation ϕ ∈ [β, γ[⊆ [0, 2π[ equals the frequency of difference vectors of
length r in orientations [β + c, γ + c[ mod 2π for all c. It follows that γΛ = R.γΛ for all rotations R. ¤

Now we can apply the following standard result, which can be found for instance in [15].

Lemma 3.2 Let R be an orthogonal map, µ a measure, and let the measure R.µ be given by R.µ(A) =
µ(R−1A). Then R.µ̂ = R̂.µ .

Since R.γΛ = γΛ, with Λ as in 3.1, it follows R.γ̂Λ = R̂.γΛ = γ̂Λ for all rotations R. Altogether we have
obtained the following result.
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Theorem 3.3 Let Λ be as in Theorem 3.1 arising from a tiling with statistical circular symmetry. Then
the diffraction of Λ is circular symmetric. ¤

An immediate consequence is that the pure point part of the diffraction spectrum of a tiling with
statistical circular symmetry is at most one peak at the origin. A simple argument shows that this peak
always exists, compare [9], [4]. These results are relevant for physics because such tilings can serve as a
simple model for powder diffraction [16].

4 Tiling dynamical systems

An important tool in investigating properties of nonperiodic tilings is the fact that such a tiling gives rise
to a dynamical system, compare [8], [11], [17], [18], [19]. From the properties of the dynamical system one
can deduce properties of the tiling. For brevity, we describe the metrical dynamical system corresponding
to [1]. In the context of this paper, the topology defined by this metric is the same as the more general
local rubber topology in [8], as well as the topology in [17] and the local topology in [11]. Let d be the
following metric, measuring whether two tilings are ’close’ to each other.

d(T , T ′) = min
{ 1√

2
, inf
ε>0
{ε : B1/ε ∩ (T + s) = B1/ε ∩ (RαT ′ + t), ‖s‖, ‖t‖ ≤ ε

2
, |α| ≤ ε}}

If d(T , T ′) is small, then T and T ′ agree on a large ball around the origin, after a small rotation followed
by a small translation. Now, the hull XT of the tiling T is the closure of {T + t : t ∈ R2} with respect to
d. It is a well-known fact that the hull of a primitive substitution tiling with substitution σ is the family
Xσ of all substitution tilings (compare Def. 1.1). Therefore, we denote the hull of T by Xσ, if it is clear
which substitution σ belongs to T .

A substitution σ gives rise to a dynamical system (Xσ, G), where either G = R2 (all translations in the
plane), or G = E(2) (all direct Euclidean motions, i.e., all maps x 7→ Rx + t, R a rotation, t a translation
vector). The study of such dynamical systems yields deep insight into the diffraction properties of the
tilings in Xσ. A milestone in the mathematical diffraction theory is the result that the diffraction spectrum
is pure point if and only if the dynamical spectrum is pure point [8], [9], [11], [18], [20]. Other important
results are collected in the following theorem. It summarises contributions of several people to the subject
over the last two decades. For brevity, it is formulated for the special case of plane tilings only.

Theorem 4.1 Let σ be a primitive substitution.

(i) Xσ has uniform cluster frequencies, that is, each patch occurs with a well defined frequency throughout
the tilings in Xσ. Here, frequency is defined analogously to (1).

(ii) If the tiles in tilings in Xσ show finitely many orientations, then (Xσ,R2) is uniquely ergodic.
(iii) If the tiles in tilings in Xσ show infinitely many orientations, then (Xσ, G) is uniquely ergodic, where

G ∈ {R2, E(2)}.
(iv) All tilings in Xσ have the same autocorrelation, thus the same diffraction spectrum.

The first part is a simple consequence of Def. 1.1, compare the discussion in Section 2, or [18] for ’self-
affine’ tilings. (Each Xσ as above contains a self-affine tiling, and by primitivity, all tilings in Xσ have
the same cluster frequencies.) However, for tilings with statistical circular symmetry, these frequencies are
zero. But see [2] for a similar uniformity result in this case. A detailled proof of the second part can be
found in [18] or [20]. For tilings with tiles in infinitely many orientations, part three is stated in [1] for
G = E(2). For G = R2, it can hopefully be shown via Theorem 2.2, adapting methods from [20]. We aim to
give a precise and detailled proof in the future. The last part of the theorem is an immediate consequence
from part one and the definition of the autocorrelation.
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[2] D. Frettlöh, Substitution tilings with statistical circular symmetry, European J. Combin., accepted; math/0704.2521.
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