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(2007)

The coincidence site lattices (CSLs) of prominent 4-dimensional lattices are considered. CSLs in 3 dimensions have been used for decades
to describe grain boundaries in crystals. Quasicrystals suggest to also look at CSLs in dimensions d > 3. Here, we discuss the CSLs of the
A4-lattice and the hypercubic lattices, which are of particular interest both from the mathematical and the crystallographic viewpoint.
Quaternion algebras are used to derive their coincidence rotations and the CSLs. We make use of the fact that the CSLs can be directly
linked to certain ideals and compute their indices, their multiplicities and encapsulate all this in generating functions in terms of Dirichlet
series. In addition, we sketch how these results can be generalized for 4–dimensional Z–modules by discussing the icosian ring.

1 Introduction

1.1 Coincidence site lattices and modules

Let Γ ⊆ Rd be a d-dimensional lattice and R ∈ O(d) an isometry. Then, R is called a coincidence isometry
if Γ (R) := Γ ∩RΓ is a lattice of finite index in Γ , and Γ (R) is called an (ordinary or simple) coincidence
site lattice (CSL) (for an introduction, see [1]). The group of all coincidence isometries of Γ is called
OC(Γ ), whereas the subgroup of all orientation preserving isometries is called the group of coincidence
rotations and referred to as SOC(Γ ). The coincidence index Σ(R) is defined as the index of Γ (R) in Γ ,
and σ = {Σ(R) | R ∈ OC(Γ )} denotes the (ordinary or simple) coincidence spectrum. These definitions
can be generalized to include the possibility of multiple CSLs, see [2–4].

All these concepts also extend to Z–modules [1,5]. By a Z–module of dimension d and rank k, we mean
the Z–span of k rationally independent vectors in Rd.

1.2 Quaternions and rotations

Rotations in R4 can be parameterized by a pair of quaternions [6–8]. Recall that the quaternion algebra
H(R) is the vector space R4 equipped with a special (associative but non–commutative) product. In
standard notation, where 1, i, j, k form an orthogonal basis of R4, the product satisfies the defining relations
i2 = j2 = k2 = −1 and ijk = −ijk = −1. This definition is extended to all quaternions by linearity. All
non–zero quaternions q = (a, b, c, d) = a+bi+cj+dk have an inverse q−1 = 1

|q|2 q̄, where q̄ = (a,−b,−c,−d)

is the conjugate of q and |q|2 = a2 + b2 + c2 + d2 is its (reduced) norm. With this notation at hand, we
can write any rotation in R4 as

Rx = R(q, p)x =
1

|qp|
qxp̄. (1)

Reflections and, more generally, all orientation reversing isometries may be parameterized by a pair of
quaternions as well, but a conjugation is required in addition. For our purposes, it is suffient to focus the
discussion to (proper) rotations. This is no restriction, since all the lattices and modules we discuss have a
reflection as a symmetry operation and thus every coincidence isometry can be written as the product of
this reflection and a coincidence rotation with the same index. All CSLs are already obtained by (proper)
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coincidence rotations and the spectrum does not change either. There are exactly as many coincidence
rotations as orientation reversing isometries and the total number of coincidence isometries is just twice
the number of coincidence rotations.

1.3 Equivalent rotations and CSLs

Two coincidence rotations R and R′ are called symmetrically equivalent if there is an element Q in the point
group P (Γ ) such that R′ = RQ. Note that RΓ = R′Γ holds if and only if R and R′ are symmetrically
equivalent. In particular, symmetrically equivalent rotations R and R′ generate the same CSL, so that
Γ (R) = Γ (R′). However, the converse statement is not true in general, i.e., two rotations generating the
same CSL need not be symmetrically equivalent. In particular, in all the examples presented below there
are additional rotations that generate the same CSL.

2 Hypercubic lattices

The hypercubic lattices have been discussed in detail in [1, 9]. Here, we just review the most important
facts, reformulate some of them and add some new details, in particular an explicit expression for the
number of CSLs.

2.1 Centred hypercubic lattice

The centered hypercubic lattice D∗
4, which is the dual lattice of the root lattice D4, which in turn is a similar

sublattice of D∗
4, can be identified with the Hurwitz ring J of integer quaternions. This is the Z–span (i.e. the

set of all integral linear combinations) of the quaternions (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), 1
2(1, 1, 1, 1). Any

coincidence rotation can be parameterized by a pair of integer quaternions. More generally, a rotation is a
coincidence rotation of D∗

4 if and only if it can be parameterized by an admissible pair of quaternions [1,9].
Here, we call a quaternion q ∈ J primitive if 1

nq ∈ J with n ∈ N implies n = 1. A primitive pair (q, p)
is called admissible if |qp| ∈ Z. In addition, we call a primitive quaternion q ∈ J reduced if |q|2 is odd
(for a more general discussion of reduced quaternions, see [10]). Due to the unique (left or right) prime
decomposition in J, we can decompose any primitive quaternion q ∈ J as qrs, where qr is reduced and |s|2

is a power of 2. Note that qr is unique up to right multiplication by a unit from J.
For any admissible pair (q, p), we can define the factors

αq :=

√

|pr|2

gcd(|qr|2, |pr|2)
, αp :=

√

|qr|2

gcd(|qr|2, |pr|2)
.

The pair (qα, pα) := (αqqr, αppr) is called the reduced extension of the pair (q, p). Note that two admissible
pairs are symmetrically equivallent if and only if their reduced extension pairs are equal (up to units). The
coincidence index of a rotation R(q, p) can now be written [1, 9] as

ΣD4
(R(q, p)) = lcm(|qr|

2, |pr|
2) = |qα|

2 = |pα|
2. (2)

Since any (positive) integer can be written as a sum of four squares, this implies that the spectrum σ is
the set of all odd natural numbers.

The CSLs can be calculated explicitly [11]. They read

J ∩
qJp̄

|qp|
= qαJ + Jp̄α. (3)

Since the point group of D4 contains 576 rotations, the number of coincidence rotations of a given index
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n can be written as 576f rot
D4

(n). This gives a multiplicative arithmetic function, i.e.

f rot
D4

(mn) = f rot
D4

(m)f rot
D4

(n) if m,n are coprime, (4)

which is completely determined by f rot
D4

(1) = 1, f rot
D4

(2r) = 0 for r ≥ 1 and

f rot
D4

(pr) =
p + 1

p − 1
pr−1(pr+1 + pr−1 − 2) if p is an odd prime, r ≥ 1. (5)

The multiplicativity of f rot
D4

(n) suggests the use of a Dirichlet series as a generating function for it.

Φrot
D4

(s) =

∞
∑

n=1

f rot
D4

(n)

ns
=

∏

p 6=2

(1 + p−s)(1 + p1−s)

(1 − p1−s)(1 − p2−s)

= 1 +
16

3s
+

36

5s
+

64

7s
+

168

9s
+

144

11s
+

196

13
+

576

15
+

324

17
+ · · · . (6)

Similarly, one can calculate the number fD4
(n) of different CSLs of a given index n. Clearly, fD4

(n) ≤
f rot

D4
(n), and we do not have equality in general, since two CLSs that are not symmetrically equivalent

may generate the same CSL. In fact, we have the following theorem which tells us when two CSLs are
equal [11].

Theorem 2.1 Let (q1, p1) and (q2, p2) be two primitive reduced admissible pairs. Then,

J ∩
q1Jp1

|q1p1|
= J ∩

q2Jp2

|q2p2|
(7)

holds if and only if |q1p1| = |q2p2|, lcm(|q1|
2, |p1|

2) = lcm(|q2|
2, |p2|

2), glcd(q1, |p1q1|) = glcd(q2, |p2q2|) and
grcd(p1, |p1q1|) = grcd(p2, |p2q2|) hold.

Here, glcd and grcd denote the greatest left and right common divisors in J, which are defined up to
units. We find that fD4

(n) is multiplicative, too, and is determined by fD4
(1) = 1, fD4

(2r) = 0 for r ≥ 1
and

fD4
(pr) =

{

(p+1)2

p3−1

(

p2r+1 + p2r−2 − 2p(r−1)/2
)

, if r ≥ 1 is odd,
(p+1)2

p3−1 (p2r+1 + p2r−2 − 2pr/2−1 1+p2

1+p ), if r ≥ 2 is even,
(8)

for odd primes p. The corresponding Dirichlet series reads

ΦD4
(s) =

∞
∑

n=1

fD4
(n)

ns
=

∏

p 6=2

1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1 − p2−s)(1 − p1−2s)

= 1 +
16

3s
+

36

5s
+

64

7s
+

152

9s
+

144

11s
+

196

13
+

576

15
+

324

17
+ · · · .

Differences to Eq. (6) occur for all integers that are divisible by the square of an odd prime.

2.2 Primitive hypercubic lattice

It is well known that the primitive hypercubic lattice Z4, which is a sublattice of D∗
4 of index 2, has a

smaller point group than D∗
4, containing only 192 rotations. As a consequence, every class of symmetri-

cally equivalent rotations splits into three classes, one of which has the same coincidence index as before
ΣZ4(R) = ΣD4

(R), while the other two classes have index 2ΣD4
(R). The number of coincidence rotations
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is thus given by 192fZ4(n), where fZ4(n) is again multiplicative, but slightly more complicated than f rot
D4

(n)
(see [1, 9]) and has the generating function

Φrot
Z4 (s) =

∞
∑

n=1

f rot
Z4 (n)

ns
= (1 + 21−s)Φrot

D4
(s) = (1 + 21−s)

∏

p 6=2

(1 + p−s)(1 + p1−s)

(1 − p1−s)(1 − p2−s)

= 1 +
2

2s
+

16

3s
+

36

5s
+

32

6s
+

64

7s
+

168

9s
+

72

10s
+

144

11s
+

196

13
+

128

14s
+

576

15
+

324

17
+ · · · . (9)

The CSLs split into two classes only, one of which has odd and the other even index. Hence, the generating
function for the number of CSLs reads

ΦZ4(s) = (1 + 2−s)ΦD4
(s) = (1 + 2−s)

∏

p 6=2

1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1 − p2−s)(1 − p1−2s)

= 1 +
1

2s
+

16

3s
+

36

5s
+

16

6s
+

64

7s
+

152

9s
+

36

10s
+

144

11s
+

196

13
+

576

15
+

324

17
+ · · · .

Differences to Eq. (9) occur for all even integers and all integers that are divisible by the square of an odd
prime.

3 A4 lattice

Usually, the A4 lattice — we will denote it by L in the following — is embedded in R5 as a lattice plane.
However, this is inconvenient for our purposes and we prefer to look at it in R4, since we want to exploit
the useful parameterization by quaternions which we do not have at hand in 5 dimensions. A possible
choice of basis vectors for L is

(1, 0, 0, 0),
1

2
(−1, 1, 1, 1), (0,−1, 0, 0),

1

2
(0, 1, τ − 1,−τ), (10)

where τ = 1+
√

5
2 is the golden mean and τ ′ = − 1

τ is its algebraic conjugate. L cannot be identified with
a ring of quaternions. However, if we interpret the basis vectors as quaternions, they relate to the icosian
ring I, which is the Z[τ ]–span of the quaternions

(1, 0, 0, 0), (0, 1, 0, 0),
1

2
(1, 1, 1, 1),

1

2
(1 − τ, τ, 0, 1). (11)

L has the following remarkable representation:

L = {x ∈ L|x = x̃} = {x + x̃|x ∈ I}. (12)

Here, x̃ := (x′
0, x

′
1, x

′
3, x

′
2) is an involution of the second kind, i.e. a special kind of antiautomorphism which

was called twist map in [12,13]. Note that it is an algebraic conjugation followed by a permutation of the
last two components. None of these maps alone is an (anti-)automorphism of L or I.

Any coincidence rotation (and only those) can be parameterized by a single primitive admissible quater-
nion q ∈ I by means of R(q) = 1

|qq̃|qxq̃ (see [13]). Here, admissible means that |qq̃| ∈ N.

Admissibility garantuees that one can define the factors

αq :=

√

|q̃|2

gcd(|q|2, |q̃|2)
, αq̃ := α′

q =

√

|q|2

gcd(|q|2, |q̃|2)
, (13)
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which are elements of Z[τ ]. Note, however, that they are only defined up to units of Z[τ ]. In addition,
we define the extension of a primitive admissible quaternion by qα = αqq. The coincidence index now
reads [13]

ΣA4
(R(q) =

|qq̃|2

gcd(|q|2, |q̃|2)
= |qq̃|αqαq̃ = lcm(|q|2, |q̃|2). (14)

Consequently the coincidence spectrum is N. An explicit expression for the CSLs exists, too:

L ∩
qαLq̃α

|qαq̃α|
= {qαx + x̃q̃α|x ∈ I} = (qαI + Iq̃α) ∩ L. (15)

Along the same lines as for the hypercubic lattices one can calculate the number of coincidence rotations
and the number of CSLs of a given index n. The expressions obtained are slightly more complicated, since
one has to distinguish between the three cases p = 5, p = ±1 (mod 5) and p = ±2 (mod 5), as these
primes behave differently and correspond to the ramifying, splitting and inert primes of Z[τ ]. If 120f rot

A4
(n)

is the number of coincidence rotations — recall that the point group of L contains 120 elements — its
generating Dirichlet series is given by

Φrot
A4

(s) =
1 + 51−s

1 − 52−s

∏

p≡±1(5)

(1 + p−s)(1 + p1−s)

(1 − p1−s)(1 − p2−s)

∏

p≡±2(5)

1 + p−s

1 − p2−s

= 1 +
5

2s
+

10

3s
+

20

4s
+

30

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

150

10s
+

144

11s
+ · · · .

Similarly, we have for the number of CSLs

ΦA4
(s) =

(

1 + 6
5−s

1 − 52−s

)

∏

p≡±2(5)

1 + p−s

1 − p2−s

∏

p≡±1(5)

1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1 − p2−s)(1 − p1−2s)

= 1 +
5

2s
+

10

3s
+

20

4s
+

6

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

30

10s
+

144

11s
+ · · · .

Here, a criterion analogous to Theorem 2.1 exists, which will be published elsewhere [11].

4 Icosian Ring

It is also interesting to discuss the coincidences of the icosian ring I itself. Note that it is no lattice in
4–space but a Z–module of rank 8. However, this does not matter and one can argue similarly to the
hypercubic case. The main difference is that one has to work with Z[τ ] instead of Z, which does not cause
any problems. In fact, some steps are even easier since the prime 2 does not play a special role here. So, a
primitive quaternion is already reduced and hence the notion of reducibility is not needed here.

Let us call a pair (q, p) ∈ I× I primitive admissible if q, p are primitive and |qp| ∈ Z[τ ]. Then, a rotation
is a coincidence rotation if and only if it is parameterized by a primitive admissible pair (q, p). For any
primitive admissible pair (q, p), we can once more define

αq :=

√

|p|2

gcd(|q|2, |p|2)
, αp :=

√

|q|2

gcd(|q|2, |p|2)
,

which are again elements of Z[τ ], defined up to units. As before, (qα, pα) := (αqq, αpp) is the corresponding
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extension pair. We get the following expression for the coincidence index [11]:

ΣI(R(q, p)) = N(lcm(|q|2, |p|2)) = N(|qα|
2) = N(|pα|

2).

Here N(a) = |aa′| is the (number theoretic) norm of a ∈ Z[τ ]. Thus the coincidence spectrum consists of
all integers that do not contain odd powers of prime factors p = ±2 (mod 5). The CSMs read explicitly

I ∩
qIp

|qp|
= qαI + Ipα.

If 7200f rot
I

(n) denotes the number of coincidence rotations and fI(n) the number of CSMs, we get again
f rot

I
(n) ≥ fI(n). Again, equality fails to hold in general, and a complete analogue of Theorem 2.1 tells us

which CSMs are equal [11]. The corresponding Dirichlet series read

Φrot
I (s) =

(1 + 5−s)(1 + 51−s)

(1 − 51−s)(1 − 52−s)

∏

p≡±1(5)

(

(1 + p−s)(1 + p1−s)

(1 − p1−s)(1 − p2−s)

)2
∏

p≡±2(5)

(1 + p−2s)(1 + p2−2s)

(1 − p2−2s)(1 − p4−2s)

= 1 +
25

4s
+

36

5s
+

100

9s
+

288

11s
+

440

16s
+

400

19s
+

900

20s
+

960

25s
+ · · · (16)

and

ΦI(s) =
1 + 5−s + 2 · 51−s + 2 · 5−2s + 51−2s + 51−3s

(1 − 52−s)(1 − 51−2s)

∏

p≡±1(5)

(1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s)2

(1 − p2−s)(1 − p1−2s)

×
∏

p≡±2(5)

1 + p−2s + 2p2−2s + 2p−4s + p2−4s + p2−6s

(1 − p4−2s)(1 − p2−4s)

= 1 +
25

4s
+

36

5s
+

100

9s
+

288

11s
+

410

16s
+

400

19s
+

900

20s
+

912

25s
+ · · · . (17)
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