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Abstract

The phase transition in a planar array of weakly coupled Ginzburg-
Landau chains with real order parameter is studied, using an original
variant of the two level approximation. The results are extended to the
quantum phase transition in a chain of quantum double well oscillators,
coupled with an elastic interaction, using the matrix transfer method.

1 Introduction

The 1D discrete  4 model and its continuum limit, the  4 quantum �eld the-
ory, have been widely investigated in many areas of physics, from elementary
particles to solid state theory [1]. For the solid state physicist, the discrete  4

chain is important to the study of the dynamics of uniaxial ferroelectrics and
hydrogen-bonded materials, to soliton excitations in trans-polyacetilene, etc.
The  4 Ginzburg-Landau functional is a central issue in almost all branches

of condensed matter physics. In this paper, we shall restrict our investigation
to 1D and 2D Ginzburg-Landau functionals, with real order parameter. They
can describe quasi-1D materials or ultra-thin �lms deposited on crystal surfaces
[2].
There is a deep connection between the 1D quantum discrete  4 chains and

the system described by 2D  4 Ginzburg-Landau functionals. This connection
is a consequence of a general theorem of statistical physics, asserting that a
classical statistical mechanical system in D + 1 dimensions is equivalent to a
quantum mechanical system in D dimensions. The equivalence between the
D+1 -dimensional classical statistical mechanics system and the D -dimensional
quantum mechanical system is assured by a "transfer matrix". We shall call the
systems connected by a transfer matrix transformation, dual systems. The
transfer matrix was �rstly used in the early �40s, applied to the 2D Ising model
by Schultz, Mattis and Lieb [3] and put in a form suitable for our discussion by
Scalapino, Sears and Ferrell [4]. Scalapino and his co-workers showed [4] that
the dual of a classical 1D statistical system, described by a  4 Ginzburg-Landau
functional
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F (1D) [ ] =

Z L

0

dx

�0

 
a 2 + b 4 + c

�
d 

dx

�2!
(1)

is a zero-dimensional quantum mechanical system, namely a quantum anhar-
monic (quartic) oscillator, described by the Hamiltonian:

H = � 1

2m

d2

dx2
+ ax2 + bx4 (2)

The meaning of the parameters �0; a; b; c;m will be explained later on. The main
point of [4] is that the free energy per unit length of the classical 1D system, f
(not to be confused to the Ginzburg-Landau functional F (1D) ) is proportional
to the ground state energy E0 of the quantum (zero-dimensional) system (2):

f =
E0
�0

(3)

Due to the connection between the partition function of (1), written as a
functional integral over the �elds  (x) ;

Z =

Z
D e��F [ ] (4)

and the free energy

f = �kBT
L

lnZ (5)

the equation (3) allows us to express thermodynamical quantities characterizing
the statistical system (1) in terms of the solution of the quantum mechanical
problem (2). For instance, the expectation value of the �eld intensity can be
written as: 


 2
�
=
@E0
@a

(6)

One of the salient points of [4] is just the fact that the statistical physics of
the 1D system can be obtained solving the quantum mechanical problem of its
dual system, the quartic oscillator.
Stoeckly and Scalapino [5] extended the approach of [4] to a 2D generaliza-

tion of (1), namely to a planar array of weakly coupled  4 Ginzburg-Landau
chains, described by the functional:

F (2D) [ ] =
NX
j=1

Z L

0

dx

�0

"
a 2j + b 

4
j + c

�
d j
dx

�2
+ cy

�
 j+1 �  j

�2#
(7)

where  j (x) is the (real) order parameter on the chain j; a; b; c; �0 are Ginzburg-
Landau parameters; for a more detailed discussion, see for instance [6]. The
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dual of this 2D statistical system is a 1D quantum system, namely a chain of
anharmonic oscillators:

H =
NX
j=1

"
� 1

2m

d2

dx2j
+ ax2j + bx

4
j + cy (xj+1 � xj)

2

#
(8)

Stoeckly and Scalapino [5] calculated the ground state energy of (8) using
the so-called "two level approximation", valid when the �rst two energy levels
of the single oscillator (2), E0 and E1; are close each other, and the third one,
E2; is much larger. In this way, they obtained the thermodynamics of (7),
using formulae similar to (3) - (5), and found that the system exhibits a phase
transition. The critical equation of this phase transition, giving the transition
temperature in terms of the model parameters, is:

E1 � E0 =
4cy
kBT

@E0
@a

(9)

So, the transition temperature of the 2D system is determined in terms of
quantities describing the 1D system (and, of course, the inter-chain coupling,
cy).
The same critical equation (9) can be used to describe a quantum phase

transition in (8), but Stoeckly and Scalapino [5] did not discuss this issue.
Another advantage of the Stoeckly-Scalapino approach is the fact that the

"two level approximation" used by them consists in the replacement of the
Hamiltonian (8) with a very simple e¤ective one, which is a 1D Hamiltonian,
bilinear in on-site fermionic operators; it can be easily diagonalized. Other
authors who applied the "two level approximation" in similar investigations [7],
[8], [9], [10], [1] [11] used, as e¤ective Hamiltonian, a transverse Ising model,
which is much more complicated (see for instance the monograph [12])
However, a disadvantage of the Stoeckly-Scalapino approach - at least, of

the variant described in their original paper [5] - is the fact that their results,
expressed in terms of quantities characterizing the quartic oscillator, cannot be
put in an analytical form, as functions of the parameters of the system, a; b; c;
etc. They are "exact", as the authors claim, only in the sense that the precision
of the numerical evaluation can be very high.
The dual of a statistical system is not just an auxiliary tool to study this

system: it also presents interest in itself. As already mentioned, the chain of
anharmonic quartic oscillators (8) is relevant for the physics of uniaxial ferro-
electrics, of hydrogen-bonded polymers, etc. It provides a phenomenological
description of the low-temperature properties of glassy materials (see references
1 and 2 in [11]). Recently, this system was studied via Monte Carlo simula-
tions [13]. The approach of [13] was opposite to that used by Scalapino and his
co-workers: the classical 2D system was studied with numerical methods, and
the results were applied, via the transfer matrix method, to the 1D quantum
system.
In order to avoid any confusions while toggling between statistical and quan-

tum mechanical systems, let us make the following remark. When it is con-
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sidered the dual of a statistical system, the quantum oscillator(s) will have a
temperature-dependent "mass" (see eq. (2) and (8)). However, we must keep
in mind that the quantum mechanical problem is solved "at zero temperature",
and the temperature dependence of the mass, coupling constant, energy levels
etc. is just a parametric dependence, without any direct physical signi�cance.
The temperature keeps its genuine meaning only when we discuss the statistical
systems.
If the 2D statistical system exhibits an ordinary phase transition, its 1D

quantum dual exhibits a quantum phase transition. This means that the prop-
erties of the ground state changes qualitatively, when the parameters a; b; cy;m
change "critically". This phase transition occurs at T = 0; due to the quan-
tum �uctuations, which - unlike the thermal ones - are present at absolute zero
too. They can restore a broken symmetry, which, in this case, is the x ! �x
symmetry of the quartic potential. Classically, the on-site potential in (8) is,
for a < 0; a two-well potential, with the particle at the bottom of one well or
another. In the quantum ground state, the quantum �uctuations assure the
tunneling between wells and restore the classically broken symmetry.
As already mentioned, the chain of anharmonic oscillators (8) was studied

with numerical methods [1], [13] [14], [15] and with analytical approximations
[1]. Surprisingly enough, the fact that (8) is the dual of a 2D Ginzburg-Landau
 4 system, for which a simple and elegant approach was proposed by Stoeckly
and Scalapino [5] quite long time ago, remained unnoticed. In particular, the
Stoeckly-Scalapino critical condition was never used to the study of the quantum
phase transition in (8). As a general remark, we can mention that the analytical
results were obtained mainly in older papers; the more recent ones are devoted,
in general, to numerical investigations.
The contribution of the present paper to the study of the above

topics consists of three steps. Firstly, we shall adapt to the problem (2) the
Hsue-Chern approach of the quartic oscillator. This approach allows us to obtain
simple and accurate analytical expressions for the energy of the anharmonic
oscillator. The bene�t is that we can express the numerical results of Scalapino,
Sears and Ferrell [4] in analytic form. Secondly, we shall use these results in
order to obtain the thermodynamics of the 2D system. We shall determine the
critical temperature in terms of the inter-chain coupling and shall calculate the
average of the �eld intensity; this quantity is non-zero in the low-temperature
phase and vanishes at the transition point. We shall study also the validity
of the two-level approximation. Thirdly, taking advantage of the fact that the
quantum  4 chain is dual to planar array of  4 Ginzburg-Landau chains, we
shall apply the Stoeckly-Scalapino critical condition in order to obtain the phase
diagram of the quantum phase transition. The agreement with the numerical
results, obtained previously, is very good.
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2 Hsue-Chern approach to the quartic anhar-

monic oscillator

We shall re-write the equation (2) in the form:

H = �1
4

�20
�2c

d2

dx2
+ ax2 + bx4;

1

�
= kBT (10)

where, out of the coe¢ cients a; b; c; only a depends on temperature:

a = a0 (t� 1) ; a0 > 0; t =
T

TMF
(11)

where TMF is the "mean-�eld transition temperature", a parameter which, in
fact, does not corresponds to any physical phase transition. �0 plays the role of
a natural length unit, being de�ned as

�20 =
c

a0
(12)

Whith this convention, the inspection of (3) assures us that the coe¢ cients
a and b have dimensions of energy, assuming that the real �eld  (x) is dimen-
sionless. However, the presence of �0 in (1) or (10) is mainly a question of
convenience; in some cases, it will be preferable to take �0 = 1; with such a
choice, the signi�cance of parameters a; b; c will be slightly modi�ed.
After a change of function, we can introduce the "reduced" Hamiltonian H0;

H =
�0
�

r
jaj
c
H� (13)

where

H� = �
1

2

d2

d'2
+
1

2
�a'

2 + �'4; �a = sgn a = sgn (t� 1) (14)

The reduced Hamiltonian depends (besides a signum function) on one para-
meter only:

� =
b�0
4�

c�1=2 jaj�3=2 (15)

or, equivalently,

� =
1

4

�
�t

2

�3=2
t

j1� tj3=2
(16)

where

�t

2
=

�
b

a02
kBTMF

�2=3
=

�
b

a02
�MF

�2=3
; �MF = kBTMF (17)
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The quantity �t "measures the size of temperature region below Tc in

which the thermal energy kBTMF is su¢ cient to drive the order parameter to
zero over the mean-�eld coherence length" [4]. An almost identical quantity (�)
is introduced by McKenzie ([16], eq. (7)) in the context of Ginzburg-Landau
theory with a complex order parameter, with the remark that "most of physics"
is determined by it.
As we shall immediately see, in some cases we must consider a as a sim-

ple, "structureless" parameter; in others, it will be considered a function of
temperature, according to (11).
Our problem is the determination of the ground state energy of the reduced

Hamiltonian (14). In the "sub-critical" regime (the use of quotation marks
is intended to remind that at t = 1 no phase transition takes place
in the 1D system described by (1)), �a = �1; t < 1 and H� describes a
particle in a two-well potential:

H� (� = �1) = H2w = �
1

2

d2

dx2
� 1
2
x2 + �x4 (18)

In the "super-critical" regime, �a = 1; t > 1; and H� corresponds to a
one-well potential:

H� (� = 1) = H1w = �
1

2

d2

dx2
+
1

2
x2 + �x4 (19)

The minima of the two-well potential

V (x) = �1
2
x2 + �x4 (20)

(or, in other words, the bottoms of the wells) are located at �xm; with:

xm =

�
2

�t

�3=4
(1� t)3=4

t1=2
(21)

and have the depth Vm = V (xm) ;

Vm =
1

4

�
2

�t

�3=2
(1� t)3=2

t
(22)

The "depth/distance" ratio is:

Vm
xm

� (1� t)3=4

t1=2
(23)

So, for small temperatures, Vmxm is large: the potential consists of two deep
and distant wells. For "critical" temperatures (t . 1) ; the potential "shrinks",
i.e. the wells become close each other and shallow.
Let us make a technical remark. De�ning the reduced Hamiltonian H� in

the form (14), we chose to deal with an oscillator of mass m = 1 and with a
coe¢ cient of the quartic term � 6= 1: Some authors ( [9], [10]) choose m 6= 1 and
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� = 1: Our option was determined by the fact that the Hsue-Chern approach,
to be used later on, has been developed for the m = 1 case.
The Hsue-Chern solution is described in detail in several papers ([17], [6]),

so we shall give here only the �nal result. The ground state energy of the
Hamiltonian H� is:

E0 =
3!2 + �a
8!

(24)

where ! is the real root of the equation

!3 � �a! + 6� = 0 (25)

The excited states are given by the formula [18]:

En = E0 + n! +
3�

!2
n (n� 1) (26)

So, the �rst excited state is E1 = E0+!: The ground state energy of (10) is:

E0 =
�0
�

r
jaj
c
E0 = �MF � t �

3!2 + �a
8!

(27)

Another useful formula is:

@E0
@a

=
�0

4�
p
jaj c

1

!
=
1

4

�MF

a0
tp
j1� tj

1

!
(28)

The results (24), (26)-(28) can be fully exploited only if we determine the
function ! = ! (�) ; according to (25). Let us discuss �rstly the two limiting
cases, � ! 0 (corresponding to low temperatures) and � ! 1 (corresponding
to "critical" temperatures, t! 1): For � = 0; the cubic equation (25) gives:

!3 � �a! = 0 (29)

with the roots ! = 0; !2 = �a: The �rst relation means that the equation has
a solution which goes to zero when � ! 0: The second one means that there
are additional real roots only in the "super-critical" case, t > 1: For the case
�!1 (t! 1); !3 ' 6� and the equation has only one real root.
For arbitrary �; the root ! (�) is:

! =

�
3�+

�
��a
27
+ 9�2

�1=2�
+

�
3��

�
��a
27
+ 9�2

�1=2�
(30)

This is the only real root for the "sub-critical" regime, �a = �1; t < 1: For
the "super-critical" regime, �a = 1; t > 1; corresponding to small values of �;
9�2 < 1

27 ; or, equivalently, to small values of t: (The precise meaning of the term
"small" depends on the value of the parameter �t; see eq.(16).) However, in this
case we cannot take the limit t ! 0 (the only physically interesting situation,
besides t � 1), because it is incompatible with the condition t > 1. So, we shall

7
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disregard these solutions, and (30) will be the only relevant root, for all range
of t:
Let us give the form of ! (�) in the two physically interesting limiting cases:
1. small temperatures, t ' 0 :

! (�) = 6�
�
1� 2232�2 + 2435�4 + :::

�
(31)

1

! (�)
=
1

6�

�
1 + 2232�2 � 2435�4 � 263105�6 + :::

�
(32)

2. critical temperatures, t � 1 :

! (�) = (6�)
1=3

�
1 +

�a
3
(6�)

�2=3 � �a
1

81
(6�)

�2
+
1

35
(6�)

�8=3 � 2
2

38
(6�)

�4
+ :::

�
(33)

1

! (�)
= (6�)

�1=3
�
1� �a

1

3
(6�)

�2=3
+
1

9
(6�)

�4=3 � �a
2

34
(6�)

�2
+ �a

2

36
(6�)

�10=3 � 7

38
(6�)

�4
+ :::

�
(34)

The ground state energy of the reduced Hamiltonian (18) can be written as:

E0 =
1

2

�
� 1

24�
+ 3�� 2 (3�)3 + 112 (3�)5 + :::

�
; t � 0 (35)

E0 =
1

8
(3�)

1=3

�
3 + 2�a (6�)

�2=3 � 1
3
(6�)

�4=3
+ �a

2

27
(6�)

�2 � 1

34
(6�)

�8=3
+
2

37
(6�)

�4 � �a
7

38
(6�)

�14=3
+ :::

�
; t � 1

(36)
The Hsue-Chern solution can also provide an alternate approach to

the evaluation of the free energy of a chain of classical anharmonic os-
cillators coupled via elastic forces. In a seminal paper, Krumhansl and
Schrie¤er [19] treated the order-disorder (deep-well) limit of this sys-
tem with the transfer matrix method, following closely the Scalapino-
Sears-Ferrell approach. They found that the system dual to the clas-
sical chain is an anharmonic oscillator; see eq. (30) of [19], almost
identical to our equation (10). The evaluation of the ground state en-
ergy of the double-well problem was made by Krumhansl and Schrief-
fer using standard quantum-mechanical approach, and the tunneling
splitting - using the WKB approximation. Finally, Krumhansl and
Schrie¤er were able to identify, in the expression obtained for the free
energy of the chain, a contribution due to the phonons and another
one, due to the motion of domain walls (solitons). The Hsue-Chern
method could simplify this calculation, giving both the ground state
energy (E0; our equation (24)) and the tunneling splitting (! = E1�E0,
our equation (26)), in a unitary approach.

8
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3 The validity of the two-level approximation

As already mentioned, this approximation is satisfactory when the �rst two
energy levels (E0; E1) are close together, and the third one (E2) is much larger.
Clearly, this happens when the lowest energy level is situated deep inside the
well. In our case, for small temperatures, according to (34), E0 ' � 1

48� < 0
and, with (22),

jE0j
Vm

' 1

3
(37)

E0 increases while t increases and reaches the top of the well (E0 = 0) for
!2 = 1

3 ; or, using the cubic equation (25), for 6� =
4

3
p
3
: With (16), this is an

equation in t; with the solution:

t0 ' 1�
35=3

23
�t ' 1� 0:8 ��t (38)

So, if the temperature approaches the "critical" region, the two-level approx-
imation becomes poorer, and near t = 1; it breaks down. What means "near
t = 1", we can understand better considering the ratio (see (26) and (16)):

E1 � E0
E2 � E1

=
!3

3�
' 72�2 = 9

16
(�t)

3 t2

j1� tj3
(39)

The function f (�) = E1�E0
E2�E1 increases monotonically with � (and with t): It

remains small, for instance f (�) < 1
10 ; for � < 0:04 or

t < 1�
�
1

4

�1=3
�t

2
' 1� 0:3 ��t (40)

If f (�) = 1; then t ' 1 � 0:8 ��t; according to (37); so, on a temperature
interval of �t2 ; the approximation becomes unusable.
The advantage of our analysis consists in the fact that we obtain a simple

analytical formula for the separation between the �rst three energy levels, (39),
in contrast with the numerical results produced by other approaches [1], [9].

4 The planar array of weakly coupled chains:
critical temperature and averaged �eld inten-
sity

The Stoeckly-Scalapino critical equation for the planar array of chains has the
form:

! = 2�cy <  21D > (41)

where  1D refers to the order parameter of the 1D system. With (28), the
critical condition can be written as:

9
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!2 = cy

�0p
jaj c

(42)

For small values of the inter-chain coupling, putting

!2 = cy!
2
0; !0 =

 
�0p
jaj c

!1=2
=

 
1

a0
1p
j1� tj

!1=2
; (43)

replacing in the cubic equation (25) and keeping the lowest order term, we get:

�acy!0 = �6� (44)

So, it has a solution only for �a = �1; t < 1: In fact,

tc '
2

3

�
2

�t

�3=2r
cy
a0

(45)

Because tc � c
1=2
y ; the critical temperature tends to zero when the inter-

chain coupling tends to zero, as expected. Indeed, if the inter-chain interaction
is suppressed, the 2D array becomes a collection of non-interacting 1D chains,
without any phase transition at t > 0:
A similar dependence of the transition temperature on the inter-chain cou-

pling, tc � c
1=2
y ; was obtained by Scalapino, Imry and Pincus [20] for a planar

array of weakly coupled classical Heisenberg spin chains (see eq. (59) of [20])
and Ginzburg-Landau chains with complex order parameter (see eq. (63) of
[20]). The authors suggest a general behaviour of the form tc � c�y ; with � -
an index depending on the number of components of the order parameter and
the dimensionality of the array. However, for a planar array of Ising chains,
and of Ginzburg-Landau chains with real order parameter, they obtained, in
the mean �eld approximation, a di¤erent behaviour of the critical temperature,
tc � 1= ln (cy=c)

Let us investigate now the behaviour of the averaged �eld intensity for this
system, <  22D > : The free energy of a planar array of chains was obtained
recently using the Stoeckly-Scalapino approach [21]. The relevant part of the
free energy, near the transition temperature, is given by

f � (1 + �)E
�
2
p
�

1 + �

�
(46)

The parameter � is de�ned as:

� =
!

2cy <  21D >
kBT; 0 < � < 1 (47)

The restriction of � on the unit interval implies a restriction of T on the
subcritical interval, 0 < T < Tc: E is the complete elliptic integral of second
kind; its second derivative has a logarithmic singularity, which corresponds,
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physically, to an Ising-type singularity of the speci�c heat. Using a formula
similar to (6), we obtain for the averaged �eld intensity <  22D > the following
behaviour:

<  22D >� j1� �j ln j1� �j (48)

Near the critical temperature, � can be written as:

1� � = �1� + �2�
2 + :::; � =

T � Tc
Tc

< 0 (49)

It is easy to see that, using Stoeckly-Sacalapino notations (eq. (4.5) of [5]),
�1 =

1
2 (�0�1 � �1�0) : Consequently,

<  22D >� j� j ln j� j ; � < 0 (50)

So, the intensity of the order parameter tends to zero when the temperature
approaches the critical value, from below.

5 Quantum phase transition in a  4 chain

In order to apply our approach to the problem of quantum phase transition in
 4 chains, we shall consider the Hamiltonian (8), the dual of (7), where the
"mass" is:

m = 2c�2 (51)

We shall write the Stoeckly-Scalapino critical equation for the system (8). In
order to match our results with the numerical simulations of Wang et al. [13],
it is convenient to modify slightly the calculations developed in the previous
sections. So, instead of (27), let us write:

H0 =

�
2 jaj
m

�1=2
H0 (52)

with

H0 = �
1

2

d2

d'2
+
1

2
�a'

2 + �'4; � =
b

(2 jaj)3=2m1=2
(53)

In order to avoid too complicated notations, we shall use the same symbols
�;E0; E0 like in the previous sections, although their signi�cation is slightly
di¤erent. We hope this ambiguity will not produce any confusion.
The ground state energy of H0 (H0) is E0 (E0) ; and:

E0 =

�
2 jaj
m

�1=2
E0 (54)
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also

<  2 >=
1

23=2
1p
m jaj

1

!
(55)

The Stoeckly-Scalapino critical equation takes the form:

!2 =
p
2�cy

1p
m jaj

(56)

The Hamiltonian used in [13] is:

HW =
X
n

�
p2n
2
+
1

2
w
�
'n+1 � 'n

�2 � 1
2
k'2n +

1

4
g'4n

�
(57)

We shall introduce use new parameters, according to the natural energy
scales of the system. The physical reason of this parametrization is linked to
the fact that structural phase transitions, described by Hamiltonians like (57),
can be frequently characterized by the competition of di¤erent energy scales,
namely, multiple potential wells of local potential with degenerate ground state
versus a coupling between neighboring local degrees of freedom. So, following
[13], we shall note E0 = ~!0; with !0 =

p
w=m; the characteristic frequency of a

coupled chains of harmonic oscillators, and Eb = k2=4g; the height of the energy
barrier between wells. It is convenient to discuss the physics of our system in
terms of two dimensionless parameters,

� =
4Eb
E0

; 
 =
w

k
(58)

It is interesting to note that, for the classical counterpart of (57), a popular
dimensionless parameter is (see for instance [22], (II 2.8)):

s =
k

8dw
=
1

8d

1



(59)

Here, d is the dimensionality of the system (in our case, d = 1): The case
s >> 1 (or 
 << 1) corresponds to the order-disorder limit, and the case s <<
1 (or 
 1) - to the displacive limit.
Our Hamiltonian (49) and Wang�s one (57) are identical if we make the

substitutions:

cy =
1

2
w; jaj = k

2
; b =

g

4
(60)

In Wang�s Hamiltonian (57), the coe¢ cient of the quadratic term in the
single oscillator Hamiltonian is negative, so, in our notations, �a = �1: Also,

� =
1

4~
1

�
1=2
(61)

and the Stoeckly-Scalapino critical equation becomes:
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!2 = 
1=2 (62)

As ! = ! (�) and � = � (�; 
) ; according to (61), the critical condition gives
a connection between the dimensionless parameters � and 
 and de�nes the
phase diagram (see Figure). It is similar to the phase diagram obtained using
Monte Carlo simulations (see [13], �g. 2).

<Fig. 1. to be inserted here>

6 Conclusions

In this paper, we have proposed an analytic approximation, useful in the in-
vestigation of a phase transition in a planar array of weakly coupled Ginzburg-
Landau ( 4) chains, described by a real (one component) order parameter. We
obtained a simple formula for the transition temperature (which is proportional
to the square root of the inter-chain coupling) and for the average of the �eld
intensity. We have also given an analytical estimation of the validity of the
two level approximation. Using the matrix transfer method, this approach was
applied to the quantum phase transition in a chain of  4 quantum oscillators
coupled by elastic interaction. The phase diagram is similar to that obtained
using Monte Carlo simulations.
An essential ingredient of our approach was the fact that we could express

the numerical results of Scalapino and his co-workers [4], [5], referring to the
statistical mechanics of low dimensional Ginzburg-Landau ( 4) �elds, in sim-
ple analytic form, using an analytical (approximate) solution of the single, one
dimensional anharmonic (quartic) oscillator. Similar solutions can be obtained
for two dimensional (planar) and three dimensional (spatial) quartic oscillator.
Due to this fact, the approach described in this paper can be easily generalized
to Ginzburg-Landau ( 4) systems described by a multi-component order para-
meter, relevant for the study of CDWs and superconductivity (two components)
or magnetism and ferroelectricity (three components).
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