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Determination of the sign of screw dislocations viewed end-on by weak-beam diffraction contrast

In a study of the nature and distribution of Burgers vectors of dislocations with both edge and screw components in a low angle boundary in Al 2 O 3 , having mainly a tilt character but with a slight twist, Nakamura et al [1] imaged the dislocations using HREM and weak-beam TEM on the same thin specimens. Figure 1 is a weak-beam image taken from their paper (their figure 3). These authors used crystallographic considerations to suggest the signs of the screw components of the partial dislocations in the low angle boundary of Al 2 O 3 shown in figure 1. The question arises whether it might be possible to determine the signs directly from weak-beam images of dislocations viewed endon in thin specimens suitable for HREM. Since the displacements R for a dislocation in an infinite medium are invariant with depth z along a column parallel to the dislocation, and image contrast depends mainly on dR/dz [START_REF] Hirsch | Electron Microscopy of Thin Crystals[END_REF], no contrast would be expected from these displacements for a screw viewed end-on, and only weak contrast for an edge dislocation due to dilatation. Any contrast would therefore be expected to be due to surface relaxation displacements which vary with z, unless, for an edge dislocation, it is tilted away from the end-on position. These displacements have not yet been derived for dislocations normal to the foil in rhombohedral structures such as Al 2 O 3 . However, they have been calculated by Eshelby and Stroh for screw dislocations normal to elastically isotropic foils [START_REF] Eshelby | [END_REF]. This paper addresses two issues:-1) the nature of the contrast expected from the surface relaxation displacements (Eshelby twist) for a screw dislocation in a thin elastically isotropic foil viewed end-on under dark field weak-beam conditions, and how to use such images to determine the sign of the dislocation. This forms the main part of the paper and has direct application to studies of the structure of screw dislocations by HREM, such as those for screw dislocations in Mo [4,5].

2) The nature of the contrast of a mixed dislocation viewed end-on, the effect of tilt under weak-beam conditions, and the possible determination of the sign of the screw component.

2.

Surface relaxation displacements for a screw dislocation normal to the foil Using the coordinate system in figure 2, where the positive direction of z is the direction of the electron beam, the surface relaxation displacement R B for a screw normal to the foil calculated by Eshelby and Stroh [START_REF] Eshelby | [END_REF] using isotropic elasticity, is given by
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where n is an integer, b z the Burgers vector of the screw, and t is the foil thickness. The displacement R B is normal to the radius vector r with its origin at the screw, in the plane normal to the screw (i.e. z).

Figure 3 shows R B /b z as a function of the depth z along a column normal to the foil (thickness t = 10nm) for various distances r from the screw. At z = 0 all the curves for small r/t approximate to (2D) - with increasing z, and an increasing slope of the curve of R B as a function of z in the middle of the foil (see columns 4 and 5). The average slope reaches a maximum (curve 4) and decreases again with increasing r (curve 6). The curves for columns on the other side of the screw dislocations (r negative) are related to those in figure 3 by reflection about the horizontal axis through zero.

Weak-beam images of screw dislocations viewed end-on

Tunstall et al [6] showed using 2-beam dynamical theory [START_REF] Hirsch | Electron Microscopy of Thin Crystals[END_REF] that in bright field and for thick foils the surface relaxation associated with screws normal to the foil gives strong black-white contrast when viewed end-on, with the line of no-contrast between the black and white lobes being parallel to g, the reciprocal lattice vector corresponding to the operating reflection. The asymmetry is due to the preferential absorption of one of the Bloch waves in thick foils. The dark field images were not considered.

We have found that under 2-beam conditions, with the deviation parameter s = 0, i.e. with the perfect crystal set at the Bragg reflecting position, the dark field image is symmetrical. This result is expected from the symmetry rule due to Ball [7], i.e. the dark field images at s = 0 from columns with displacement functions R(z) and R 0 + R(t-z) are identical. R 0 is a constant displacement. The displacement field of equation ( 1), illustrated in figure 3 is of that type.

If the crystal is set off the reflecting position the dark field image is no longer symmetrical.

Under weak-beam conditions, if the perfect part of the crystal is set at an orientation with deviation parameter s such that the effective deviation parameter s eff = s + g.dR B /dz is less than s (where g is the reciprocal lattice vector corresponding to the reflection) for some part of a column near the dislocation, then contrast might be expected along that column [8]. (in this paper s is taken to be positive unless explicitly stated to be negative.) Reference to figure 3 shows that for a given column R B has opposite signs at top and bottom, but the sign of g.dR B /dz at the two surfaces is the same.

Since dR B /dz changes sign on opposite sides of the dislocation, if s eff < s at some points on one side of the screw, s eff > s on the other side of the screw, i.e. we expect the contrast to be asymmetric, with the stronger signal on the side where s eff < s at some points.

It is instructive to use the kinematical theory [START_REF] Hirsch | Electron Microscopy of Thin Crystals[END_REF]9] to explore the nature of the contrast and its variation with thickness t and deviation parameter s. The kinematical integral and amplitude phase diagrams (APDs) should give good descriptions of the expected contrast effects under weak-beam conditions when s is sufficiently large, provided s is not such that other reflections are excited, when dynamical effects have to be taken into account. The kinematical integral is where g is the amplitude of the diffracted wave, 0 the amplitude of the incident wave. Figure 4 shows contour plots of the kinematical intensity, multiplied by s 2 , derived from profiles of intensity along y/t (y is r normal to g) through the centre of the screw dislocation at x = 0, as a function of st.
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Positive y/t corresponds to columns for which
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is positive. Figure 4 shows strong peaks on the positive side of ( ) ( ) z R g for 0.5 < st < ~1, ~1.5 < st < ~2 and ~ 2.5 < st < ~3, and very weak peaks on the negative side for st ~ 1.25 and ~ 2.25. The intensity patterns oscillate with a period st ~ 1. The profiles with the highest intensity occur at st ~ 0.72, ~ 1.75, ~2.75. For these values of st the peaks occur at y/t ~ 0.4, ~0.2, ~0.13. Thus, for t = 10nm, the strongest peak occurs at s ~ 0.072nm -1 , at y ~ 4nm. A particular feature of the intensity profiles at constant st is that they are very broad, particularly for 0.5 < st < ~1. For example, for t = 10nm, the width of the peaks along the y axis is ~ 10nm. The nature of the contrast is quite different from that of weak-beam image of inclined dislocations for g.b = 1.

Origin of contrast

In order to gain some insight into the origin of the contrast, we use the APD description of the kinematical integral.

For a perfect crystal, i.e. R B (z) = 0, the diagram is a circle of radius (2Ds) -1 , whose circumference is s -1 . Figures 5A (a-f) and 5B (a-f) show the APDs (dotted circles) for a perfect crystal foil, thickness 10nm, for a range of values of s corresponding to st = 0.5, 0.67, 1.0, 1.25, 1.62 and 2.0 respectively in figure 4. The resultant amplitude in every case is proportional to the vector OP joining the starting and end points of the diagram; the phase angle of the resultant amplitude is given by the angle between OP and the horizontal axis through O. We note that the radius of the circle is proportional to s -1 , and therefore the amplitude of the diffracted beam is proportional to s -1 for the same phase angle of the resultant. The amplitude oscillates with period st = 1, as is the case for the strained crystal (see figure 4). Now consider the APDs for two columns, parallel to and on opposite sides of a screw dislocation, Burgers vector 2 a [110], normal to the foil of thickness 10 nm, at equal distances of r from the dislocation. On one side of the screw the trajectory of the APD begins in a direction inside the perfect crystal circle, corresponding to positive values of s and (g.R B (z)) (figures 5A (a-f), full lines).

g is 002 for Cu, and the values of r are 0.2, 1, 3, 10 nm respectively. On the other side of the screw (g.R B (z)) is negative and the APD begins in a direction outside the perfect crystal circle (figures 5B (af), full lines). Because (g.R B (z)) at the bottom of the column has the opposite sign to that at the top, in figures 5A (a-f), at the bottom the circles for the dislocated crystal (full lines) bend out of the circular arcs, while those in figures 5B (a-f) (full lines) bend towards the inside of the circle arcs. The figures show that the resultant amplitudes OP 1 for the dislocated crystals always have the same phase as those (a-c) is always larger than that from the perfect crystal, while in figures 5B (a-c) the reverse is true.

The reason for this is that in figures 5A (a-c) the average radii of curvature of the arcs for the dislocated crystal are always larger than those for the perfect crystal, so that the chord OP 1 joining O to P 1 , the point at which the length of the arc from O to P 1 is equal to that for the perfect crystal arc from O to P, will always be larger than the chord OP. In figures 5B (a-c) the radii of curvature of the arcs for the dislocated crystal are always less than those of the perfect crystal, and it follows that OP 1 < OP. The same behaviour is found in figures 5A (e, f) and 5B (e, f) for st = 1.62 and 2 respectively i.e. in the range 2 st 5 . 1 < .

The APDs for st <1 show that the peak amplitudes correspond to the maximum average radius of curvature of the arc joining O to P 1 , i.e. s eff averaged over t is a minimum. This is quite different from weak beam images of inclined dislocations for 1 b g = where the peak occurs where s eff = 0 over a maximum fraction of t. For the values of st corresponding to figures 5A (a-c), the APDs shown suggest that the maximum amplitude is likely to occur around r ~ 3nm, and for figures 5A (e, f) around 1 and 3nm respectively. The more comprehensive data of figure 4 show the maxima to occur nearer r ~ 4nm for a to c, and at ~ 1 and 2nm respectively for e and f. The rather slow decrease in amplitude, particularly on the high r side of the peak, which causes the peaks to be broad, is due to the relatively slowly varying surface relaxation strainfield.

These results show that whenever there is a strong peak it occurs on the side of the screw for which g.R B (z) is positive. The APDs suggest that the strong peak occurs for columns at distance r from the screw for which the average s eff is minimum. Figure 6a shows value of sz + g.R B (z) as a function of z for s = 0.1 nm -1 and t = 10nm for various column positions on the positive side of g.R B (z). Line 7 is that for the perfect crystal, i.e. R B (z) = 0. For the distorted crystal for small r/t, each curve s approximates to 0.225 at z = 0. The curves are inverted through the midplane of the foil.

Curves 1 to 6 have a minimum near z = 0 and a maximum near z = t, but as r increases these minima and maxima become shallower because of the overlap of the displacements associated with the two surfaces, and the curves tend to become linear. The average slope is a minimum for r ~ 3 nm, (curve 4) corresponding to the minimum in the average s eff as expected from the APD for the peak amplitude.

The more comprehensive plots of figure 4 suggest an even larger peak intensity at r = y ~ 4nm for s ~ 0.07nm -1 .

Figure 6b shows sz + g.R B (z) for columns on the negative side of g.R B (z). In this case the average slope is always larger than that for the perfect crystal, i.e. s, and except for the weak peaks for st ~ 1.25 and 2.25 (see figure 4) the diffracted amplitude would be expected to be less than that for the corresponding perfect crystal as found from the APDs. The APDs also explain other features of the contrast. For example the oscillations with period st ~ 1 in figure 4 are due to the phase angle changing by 2D in that period. Minimum amplitude in figure 5A occurs when the APD nearly closes. Unlike the perfect crystal for which this occurs for st = 1 or s = 0.1nm -1 for t = 10nm (and periodically thereafter), for the strained crystal for r = y ~ 3nm and ~10nm this occurs at s ~ 0.125 (see figure 5Ad, where OP' is of zero length). In this case the corresponding amplitudes are larger for negative
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(see figure 5Bd for r = -3nm, -10nm).

However it is clear from figure 5Bd that the amplitudes are similar to those for the perfect crystal and rather weak, as is clear also from figure 4 at st ~ 1.25. Figure 4 actually shows a very sharp but weak peak on the positive side of ( )

( ) z R g
for very small y. This is because when the APD closes for r corresponding to minimum average s eff , contrast arises from a region close to the centre of the dislocation, where s eff ~0 occurs over a significant range of depths (c.f. curve 1 in figure 6a), rather like the weak beam contrast from inclined dislocations for g.b = 1. The APDs in figure 5d do not include that corresponding to this sharp peak. The same contrast pattern then repeats at st ~ 2.25.

. Although these images have been calculated for t = 10nm for different values of s, they can also be regarded a good approximation as a set of images at constant s, say s = 0.1nm -1 and different values of t, i.e. t = 5, 6.7, 10, 12.5, 16.2 and 20nm respectively. It should be noted that while the kinematical calculations (figure 4) predict that the peaks of the profiles move to smaller values of y/t with increasing st, for a given s = 0.1nm -1 , the peaks of the profiles for t = 10nm, 20nm, 30nm, 40nm all occur at approximately the same value of y ~ 3.5nm, in agreement with dynamical theory calculations.

Variation of contrast with g and b

So far we have considered only one particular value of g = 002 and one Burgers vector, a / 2 [110]. Keeping the same Burgers vector but changing g to 0 2 2 will decrease the minimum average slope of sz + g.R B (z) in figure 6a, and the value of g.R B (z) at z = 0 now being increased by a factor 2 1/2 . We therefore expect the resultant amplitude for the same s, to increase, but this will be offset in the diffracted amplitude of equation ( 2 for 002 and 0 2 2 are 42.6 nm and 60.4 nm respectively.) In figure 7 the calculated intensity profiles using 2-beam dynamical theory along y through x = 0 are compared for the two different g values, for the same s and t (s = 0.1 nm -1 , t = 7.5, 10, 17.5 nm). It is clear that the peak intensities are of the same order or less for the larger g. However, in spite of the minimum slopes of sz + g.R B (z) being less for the larger g, the peaks occur at approximately the same value of r (along y). This is because the shapes of the curves of g.R B (z) for different columns for the two values of g remain the same; the curves for the two g values are related to each other by a multiplying factor,
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, which is the same for all the columns.

The minimum slope will therefore occur at the same value of r.

Similar considerations apply to the dependence of the contrast on b z . This again acts as a multiplying factor for the curves of g.R B (z), and for a given g and s the intensity is found to increase with increasing b z , but the strong peaks occur at the same value of y.

Determination of the sign of the screw dislocation

The analysis in this paper shows that strong peaks in weak beam images of end-on screw dislocations will always occur on the positive side of g.R B (z) when s is positive. This therefore provides a method for determining from weak-beam images the sign of the screw dislocations in elastically isotropic thin foils. In practice, to avoid any possible ambiguity, it is advisable to vary s to identify the conditions for maximum contrast. With the right-handed set of axes in figure 2 (The negative sign in u z for a screw in an infinite lattice in their figure is due to their use of lefthanded axes.) The strongest peaks occur at about 4nm from the screw dislocation, approximately independent of b z and g, as described in the text.

An important result is that most of the strong peaks have a width of ~10nm. These widths are considerably greater than those of weak-beam images of dislocations parallel to the foil. This is because the strainfield from the Eshelby twist varies much more slowly than that from a dislocation parallel to the foil. The surface relaxation strainfields of screw dislocations separated by distances less than ~10nm interact strongly and give rise to images which cannot be interpreted directly; e.g. 0.1nm -1 show one strong peak between the two dislocations when g.R B (z) is positive between the two dislocations. While it would still be possible to interpret the images and determine the signs of the dislocations from comparing images taken in ± g, the interpretation is not straightforward.

Mixed dislocations viewed end-on

The surface relaxation strainfield for edge dislocations normal to a thin foil is not known. For thick foils where the surface relaxation can be taken as a superposition of the relaxation at the surface of two semi-infinite solids, the image contrast from an edge dislocation was found by Tunstall et al [6] to be much weaker than for the screw. For both cases, g parallel and normal to b e , the dilatation associated with the strainfield of an edge dislocation in an infinite lattice contributes significantly to the image contrast from foils ~100nm thick, and for g parallel to b e this effect predominates. viewed with g = 002 (i.e. g.b e = 1) in a Cu foil 10nm thick, and s = 0.1 nm -1 , when the incident beam is along [110], and tilted about g by 2.7 o , 5.2 o and 11.3 o respectively. In this case the calculations have been carried out using the Howie-Basinski equations which do not assume the column approximation, using a programme developed by Zhou et al [10]. It is essential to use these equations for very small angles of tilt away from the end-on viewing direction, because the strainfield is sampled very close to the core, where it varies rapidly and the column approximation does not apply.

The strainfield assumed is that of an edge dislocation in an infinite crystal. The contrast for the case of the beam along [110] is very small, due entirely to the dilatation causing small changes in g [see e.g. 6]. In practice when setting up the two beam condition the foil will be tilted about g to move off the zone axis. Figure 8 shows that quite small tilts result in very large increases in intensity.

On the kinematical theory the distance of the peak from the dislocation core will increase as sin S,

where S is the angle of tilt, but even for S = 11.3 o the distance is less than 0.5nm. It should be noted that the width of the peak at half height along g is ~0.5 -1nm for angles between 5 and 10 o . Along the direction normal to g, the image will extend over a width ~ t tan S; for S ~6o , t = 10 nm this amounts to ~1nm. These estimates ignore broadening due to divergence of the incident beam. If s -1 t then the image will appear as a bright spot; for s -1 < t depth oscillations will occur, as shown in the image simulations shown in figure 9 for Cu, with g.b e = 1, a tilt of 5 o , s = 0.1nm -1 , t = 10 nm; s = 0.2 nm -1 , t = 10 nm; s = 0.2 nm -1 , t = 20 nm respectively. The weak-beam images of partial dislocations of mixed character in Al 2 O 3 in figure 1 reproduced from Nakamura et al [1], which are taken under conditions of g.b e = 1 (where b e is the edge component of the dislocation) appear as bright spots about 1.5nm in diameter, consistent with a tilt of a few degrees about g, and s -1 t.

Thus under these conditions the edge component of a mixed dislocation viewed at a small angle of tilt gives rise to a very small spot. On the other hand, the profiles of the images from screws due to surface relaxation in a direction normal to g peak at ~ 4nm from the dislocation for s -1 t, and the peak widths are ~10nm. Although we have not calculated the image profiles for a screw dislocation slightly tilted about g, we expect significant changes to occur only close to the position of the screw (i.e. small y) where the width of the small contrast region for small y is likely to extend.

However the general nature of the broad bright/dark lobes is likely to remain largely unaffected. For an isolated slightly tilted mixed dislocation imaged at g.b e = 1 we therefore expect to see a small bright spot close to y = 0, where the effect of the screw surface relaxation is small, surrounded along the normal to g by black and white lobes due to the screw relaxation strainfield, at values of y where the effect due to the edge component is negligible. From the relative disposition of these black and white lobes it should then be possible to determine the sign of the screw component. This will of course only be possible if the magnitude of the screw component is large enough for the surface relaxation contrast to be visible.

The situation becomes more complicated when the dislocations are separated by distances ~10nm or less. This is the case for the mixed partial dislocations in Al 2 O 3 imaged by Nakamura et al [1] and shown in figure 1. Under these conditions, as noted in section 6, the relaxation strainfields from neighbouring screws interact strongly, and image calculations have to be carried out for the specific arrays and models, to compare with experiments.

Conclusions

This paper shows that the surface relaxation strainfield for screws normal to thin foils, calculated by Eshelby and Stroh [START_REF] Eshelby | [END_REF] on isotropic elasticity, gives rise to diffraction contrast for screws viewed end-on, in the form of black-white lobes, when imaged in weak-beam dark field under 2-beam diffraction conditions, with the line of no contrast parallel to g. The contrast is similar to that found previously by Tunstall et al [6] for bright field images from thick foils, and can be used to determine the signs of the dislocations.

The intensity profiles depend on the diffraction conditions, the most intense peaks occurring at about 4nm from the position of the dislocations for st < ~1. Unlike the case of weak-beam images from inclined dislocations, the major contrast arises from the reduction of the average s eff over the foil thickness, rather than from particular regions where s eff = 0, and unlike weak-beam images of dislocations, the images are generally very broad, because of the long range nature of the strainfield, ~10 nm wide. Kinematical theory has been found adequate in predicting the nature of the contrast, and APDs have been found useful in exploring the origin of the complexities of the weak-beam images.

The breadths of the weak-beam peaks introduce problems when considering the contrast of dislocations at spacings of ~ 10 nm or less. Then the interactions of the overlapping strainfields must be taken into account and image simulations need to be carried out. For mixed dislocations under suitable diffraction conditions the characteristic screw dislocation black-white lobe contrast should still be visible outside the bright dot images due to the edge components of the slightly inclined 12 the line of spots is not perpendicular to g is to be expected for weak-beam images of inclined dislocations [11]. 

  159. Very close to the screw (column1, r = 0.2nm), near z = 0, R B decreases rapidly with increasing z, and near z = t increases rapidly with decreasing z to nearly zero. For columns further away, the displacements associated with the two surfaces overlap, leading to a slower decrease of R B

  perfect crystal. This is because the contributions to the kinematical integral from (g.R B (z)) at the top of the column cancel out exactly with those from the bottom of the column. Now for st < 1 as in figures 5A (a-c) and 5B (a-c), the resultant amplitude OP 1 in figures 5A

  Images simulated using the 2-beam dynamical theory (for the 002 reflection of Cu at 200kV with the extinction distance nm 6 . 42 g = and the absorption distance nm 824 g = , for t = 10nm) corresponding to the values of s in figure 5 are shown in the right hand column in that figure. The relatively strong images 5 (a-c) and 5 (e, f) show the same characteristic black-white contrast expected from the APDs, and the kinematical intensity contours (figure 4) with the line of no contrast between black and white lobes parallel to g, with the bright contrast in every case on the positive g.R B (z) side of the dislocation. The simulated images also show the very weak contrast for st ~ 1.25, the oscillatory nature of the contrast, and the breadth of the images. The dynamical and kinematical calculations are in good agreement.

  ) by the larger extinction distance. (The values of R g at 200kV

  , the surface relaxation displacements given in equation(1) apply to a right-handed screw dislocation with Burgers vector b z along the positive z direction. This is consistent with the FS/RH definition of the Burgers vector with the positive line direction along positive z. The corresponding displacement function for an infinite lattice is u z = b z B/2D. The simulated images in figure5are for such a dislocation with g along the positive x axis; g is indicated in the images, which are calculated for positive s. The strong bright lobes correspond to g.R B positive. A change in sign in any one of the parameters s, R B (and therefore of b z ), and g switches the bright and dark lobes in the images. This symmetry is the same as that in figure11 a) of Tunstall et al[6] for bright field images of thick foils.

  image profiles for two screws of opposite sign separated by 5nm in a foil 10nm thick, viewed with s =
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 8 Figure 8 shows the intensity profiles along g for an edge dislocation along [110] with Burgers vector [ ] 001 2 a
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 134 Figure 1 Weak-beam dark field image with g = 0 2 11 of dislocations viewed end-on in a low angle tilt/twist boundary parallel to ( ) 0 2 11 in Al 2 O 3 (taken from Nakamura et
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 78 Figure 5A, B Amplitude-phase diagrams (APDs) (full lines) for columns at various distances r on either side of a screw dislocation (b z = [ ] 110 2 a

Figure 9

 9 Figure 9Image simulations for the same dislocation as in figure8, g = 002, g.b e = 1, but with a tilt of 5 o about g, and s = 0.1 nm -1 , t = 10 nm; s = 0.2 nm -1 t = 10 nm; s = 0.2 nm -1 , t = 20 nm respectively. The fact that

  

  

  

  

  

  

  

  

  

  

  for arrays of closely spaced dislocations the overlapping strainfields from the different screw components must be taken into account. It remains to be seen if this method of analysis can be used successfully to determine the sign distribution of the screw components of the mixed partial dislocations in the tilt / twist boundary in Al 2 O 3 studied by Nakamura et al[1].
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