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Theory of bending of polycrystalline beams by creep at low stress 

 

B. BURTON
*
 

H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK. 

 

Attempts to extend diffusion creep theory from simple grain geometries to more complex 

polycrystalline structures generally make the assumptions that the vacancy creation (or 

annihilation) rate is constant over each grain face and that the volume of each grain is 

conserved. These assumptions do not permit grain rotation, a common feature of 

polycrystalline creep, nor is diffusion allowed to occur between individual grains. These two 

aspects are investigated theoretically in this paper, for the specific case of the grain boundary 

diffusion controlled bending of a polycrystalline beam consisting of a set of orthorhombic 

grains of dimensions X, Y and Z, with the Z dimension, parallel to the axis of bending, 

assumed large such that two-dimensional diffusion predominates The grains are aligned with 

continuous boundaries across the beam height.  

 

For grains highly elongated along the beam length (X >> Y), the derived rotation rate is 

identical to that for a bicrystal having the same height as the beam. For smaller X, diffusion in 

boundaries along the beam length make increasing contributions and the rotation rate 

increases. The novel prediction is made that the non-conservation of grain volume is an 

inevitable consequence of the grain boundary diffusion controlled deformation of this 

particular polycrystalline configuration.  

 

1. Introduction 

 

The theory of diffusion creep was originally developed for simple grain geometries such as 

the ‘bamboo’ structures used in early experimental studies [1]. These structures are circular 

wires having a single grain per cross section and tested in simple tension. Subsequent 

attempts to extend the theory to polycrystalline materials have proved more complex. The 

analysis by Greenwood [2] of the lattice diffusion creep of a three-dimensional array of 

orthorhombic grains, satisfied all the necessary physical requirements and predicted creep 

rates under multi-axial stresses as a function of the grain dimensions X, Y and Z. A similar 

                                                 
*
 drbburton@aol.com 

Page 1 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 2 

analysis for the grain boundary diffusion case was achieved by using numerical methods [3]. 

Both these analyses assumed that the boundaries on each grain face acted either as a source or 

sink for vacancies and that the vacancy creation or annihilation rate was constant over each 

face. However, such an assumption does not allow for the possibility of grain rotation, a 

feature that is commonly observed during the creep of polycrystalline materials with grain 

structures more complex than the uniform geometry used in the above models. A second 

assumption in the analyses was that creep occurred at constant grain volume, so that no 

diffusion was allowed between individual grains. 

 

By relaxing the first of the above conditions and allowing the vacancy creation rate to vary 

linearly with distance along a boundary, leads naturally to the possibility of relative rotation 

of grains about their common boundary. Analyses have been presented for the diffusion 

controlled rotation about the common boundary of a bicrystal, for the cases where both grain 

boundary and lattice diffusion predominate [4-7]. 

 

In the present paper, the analysis of diffusion controlled rotation is extended from the 

bicrystal case, to that of an array of orthorhombic grains under an applied bending moment. 

The validity of the second of the above assumptions, namely that deformation occurs at 

constant grain volume, is evaluated. The work was stimulated by recent experimental 

measurements of the deflection rates of polycrystalline beams at low stresses [8]. 

 

2. Analysis 

 

Consider a cantilever beam of height h, consisting of an array of orthorhombic grains of 

dimensions X, Y and Z arranged as shown schematically in Fig.1, under an applied bending 

moment M. At elevated temperatures, the bending moment leads to stress-directed vacancy 

flow, which causes a local redistribution of the boundary stresses, grain rotation and creep 

bending of the beam. It is assumed that the stresses are too low for dislocation creep 

mechanisms to operate and the temperature to be sufficiently low for boundary diffusion to 

predominate. 

 

2.1 Diffusion in the y-direction 
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The analysis is simplified by considering the case where Z >> X and Y, so that diffusion 

occurs predominantly in one dimension along each boundary. For rotation to occur about the 

vertical boundary AB, vacancies must be created at a rate that varies linearly along AB, so 

that: 








 −= 1
2

)( max
h

y
y ββ           (1) 

where βmax is the vacancy creation rate at y = h, with an annihilation rate - βmax at y = 0. Note 

that the relative normal velocity between grains v(y) = ωΩβ(y) where ω is the grain boundary 

width and Ω the atomic volume. This may be expressed as a local creep rate in the x-direction 

at a position y, such that: XyXyvyx /)(/)()( βωε Ω==& . 

 

The equation governing steady state diffusion along the boundary is given by: 
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where C is the vacancy concentration and DV the grain boundary vacancy diffusion 

coefficient. For the n
th

 grain, this equation may be solved by integrating twice with the 

boundary conditions C = Cn-1 at y = yn-1 and C = Cn at y = yn to give the result: 
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The local stress at the grain boundary is related to the vacancy concentration according to: 
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where k is Boltzmann’s constant, T the absolute temperature and CEQ the equilibrium vacancy 

concentration. The approximation ln(α) ~ (1 + α) is used since in cases of practical 

importance σΩ << kT. The moment about the position y = 0 can be calculated using 

equations (3 & 4). Thus, for the n
th

 grain, the moment Mn is given by: 

dy
C

yC
y

kT
dyyy

Z

M

EQ

y

y

y

y

n
n

n

n

n











−

Ω
== ∫∫

−−

1
)(

)(

11

σ        (5) 

This evaluates to: 
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where σn = (Cn/CEQ -1)kT/Ω, σn-1 = (Cn-1/CEQ -1)kT/Ω and Dg (= DVCEQΩ) is the grain 

boundary diffusion coefficient of atoms. The moment exerted over the entire boundary is: 
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which reduces to: 
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For a bicrystal, N = 1, h = Y and σn = σn-1 = 0 (since C = CEQ at y =0 and y =Y). The rotation 

rate is then given by:  
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This rate is identical to that predicted previously for a bicrystal [3]. 

 

2.2 Diffusion in the x-direction 

 

The equation governing diffusion along boundaries in the x-direction is given by: 

0
2

2
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where ξn is the vacancy creation rate along the n
th

 boundary. In this case the creation rate is 

independent of distance since, with the grain configuration considered, no rotation occurs 

about the longitudinal boundaries. The equation may be solved with the boundary conditions 

dC/dx = 0 at x = X/2 and C = Cn at x = 0 (or x = X), to give the result: 
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The stresses over the boundary must sum to zero, so that: 
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which evaluates to: 
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Similar analysis for the (n – 1)
th

 boundary reveals: 
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and: 
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2.3 Diffusion fluxes at the nodes 

 

For the n
th

 node (at y = yn), the vacancy flow in the y-direction in the boundary of the n
th

 grain 

is given by: 
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Using equations (3) and (4), this gives: 
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Since h = NY, yn = nY and yn+1  = (n+1)y, this reduces to: 
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Similarly, for the (n - 1)
th

  grain, the flow at the node position  y = yn is: 
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For diffusion in the x-direction at node n, the diffusion flows are derived from equations (11), 

(14) and (4) to give: 
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For conservation of matter at the node n, it is required that: 

10 )( −== Φ=Ψ−Ψ−Φ nxXxn          (22) 

which gives: 
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2.4 Rotation at boundary AB in a beam with N = 2 

 

Equations (8, 13 & 23) provide the basis for solving the diffusion problem for beams with 

different numbers of grains in the cross section AB. For N = 2, there is just one horizontal 

boundary, located at yn/h = ½. Since C = CEQ at both y = 0 and y = h then σ0 = σ2 = 0. 

Equations (8) and (23) then reveal that σ1 = 0 and  
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MDg
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This gives rise to a rotation rate: 
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Since h (= NY) = 2Y, the rate is identical to that of a bicrystal given by equation (9). 

 

The variation of local stress along the boundary AB may be deduced from equations (3, 4 & 

24) to give: 
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This is again identical to the result for the stress variation along the boundary of a bicrystal 

undergoing grain rotation [3]. The stress σ(y) takes maximum and minimum values of 

±10M/3
1/2

Zh
2
, at the positions (y/h) = (1 ± 1/3

1/2
)/2.  

 

There is no diffusion flow in the x-direction since Ch/2 = CEQ and therefore σ1 = 0. The flow 

in the y-direction at the node located at y = h/2 may be calculated from either equation (18) or 

(19) and is given by: 

kTY
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This diffusion flow represents the transfer of material from grains in the lower (y < h/2) to 

those in the upper (y > h/2) half of the beam. This material transfer requires that grain volume 

is not conserved during the diffusion controlled bending of this particular polycrystalline 

configuration. 
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2.5 Rotation at boundary AB in a beam with N = 4 

 

Equations (8, 13 & 23) again provide the necessary equations to effect a solution, namely: 
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Simultaneous solution of equations (28-31) and also noting that σ0 = σ4 =0, give the results: 
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The rotation rate becomes: 
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For large X, when Y/X → 0, like the previous case for N = 2, the rotation rate reduces to that 

for a bicrystal of height h. For smaller X, the stresses at the nodes vary according to equation 

(32) and the rotation rate increases, eventually reaching the limit 45MΩωDg/19ZY
5
kT when σ1 

→ -15MX/76ZY
3
 and σ3 → +15MX/76ZY

3
 respectively. 

 

2.6 Rotation at boundary AB in a beam with N = 6 

 

Using a similar method of solution gives the results: 
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The rotation rate is: 
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The limiting value when X << Y is kTZYDM g

522/15 ωΩ . 

 

The variation of stress along the boundary AB, calculated from equations (3), (4) and (36-40), 

is plotted in Fig.2 for three values of the ratio Y/X. The stress is represented in the normalised 

form σ(y)/σref, where σref = 10M/3
1/2

Zh
2
 is the maximum value of stress for the bicrystal case 

derived from equation (26) 

 

When X >> Y, negligible diffusion occurs along boundaries in the x-direction and the stress 

variation along AB is identical to that for an equivalent bicrystal of height h, given by 

equation (26). The stresses σ1, σ2 and σ3 given by equations (36–38) all reduce to values 

identical to those for a bicrystal, calculated from equation (26), at corresponding positions y/h 

= 1/6, 1/3 and 1/2. 

 

For the equi-axed case (X = Y), the influence of diffusion in the x-direction now reduces the 

values of σ1, σ2 and σ3 and in the extreme case where X << Y, σ1, σ2 and σ3 tend to zero. 

 

2.7 Non-conservation of grain volume during creep 

  

It is clear by observation from Fig.2, that the stress gradient (and therefore the vacancy 

concentration gradient) along the boundary AB at the centre position (y = h/2) is non-zero. 

This means that vacancy flow must occur between the top and bottom half of the beam. This 

can occur only if individual grain volume is not conserved during creep bending of the beam. 

These changes in grain volume can be assessed quantitatively, using the example of a beam 

with an even number of grains over its height, by calculating the vacancy flux at the position y 

= h/2 from equation (19). Thus: 

N

Y

YkT

D

Z

gNhy

3

max2/)2(2/ ωβωσ
−=

Φ −=
        (41) 
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For N = 2, the vacancy flow at the centre 12/6/ maxmax2 ZhZYN ωβωβ −=−=Φ = . This is 

identical to the flow that occurs at h/2 for a bicrystal of equivalent height h = Y. Thus the 

grain defined by n = 1 changes volume at a rate -ΦΩ per second and grain n = 2 at a rate 

+ΦΩ. 

 

For N = 4, the flow at y = h/2 is: 









+
+

−=Φ =
XY

XYZY
hy

/61

2/31

12

max

2/

ωβ
        (42) 

and for N = 6: 










++

++
−=Φ = 2

2
max

2/
)/(48/161

)/)(3/16(9/401

12 XYXY

XYXYZY
hy

ωβ
     (43) 

 

The rate of change in volume of an individual grain during deformation can be calculated 

from the creep rates in the orthogonal directions xε& and yε& as follows: 

)( yxXYZV εε &&& +=           (44) 

Taking the example where N = 6, the creep rates for grains n = 3 and 2 respectively are given 

by: 










++

++Ω







−=
Ω

−=
2

2

22

max

3
)/)(27/176(81/4761

)/(48/161

108

5

6

1
)(

XYXY

XYXY

kTXY

D

ZY

M

X

g

x

ωωβ
ε&  (45) 










++

++Ω







−=
Ω

−=
2

2

22

max

2
)/)(27/176(81/4761

)/(48/161

108

15

2

1
)(

XYXY

XYXY

kTXY

D

ZY

M

X

g

x

ωωβ
ε&  (46) 










++

+Ω







=
Ω+

=
222

23

3
)/)(27/176(81/4761

/31

27

20

2

)(
)(

XYXY

XY

YkTX

D

ZY

M

Y

g

y

ωωξξ
ε&   (47) 










++

+Ω







=
Ω+

=
222

12

2
)/)(27/176(81/4761

/41

27

45

2

)(
)(

XYXY

XY

YkTX

D

ZY

M

Y

g

y

ωωξξ
ε&   (48) 

Using equations (44-48) gives the results: 










++

Ω
−=

233
)/)(27/176(81/4761

1

108

5

XYXYkTY

DM
V

gω
&      (49) 

and 










++

+Ω
−=

232
)/)(27/176(81/4761

)/(41

36

5

XYXY

XY

kTY

DM
V

gω
&      (50) 

Page 9 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 10 

Note also, by symmetry, that 34 VV && −= and 25 VV && −= . The rate of volume change, represented 

in the dimensionless form gDMkTYV ωΩ/3& is plotted as a function of the aspect ratio Y/X for 

grains 2 to 5 in Fig.3. The grain volume changes are negative on the compressive side of the 

beam (y < h/2) and positive on the tensile side (y > h/2) and the magnitudes are greater in 

grains located further away from the centre of the beam. The volume changes are greatest as 

Y/X → 0, when they take the (dimensionless) values ±5/36 and ±5/108 for the outer and inner 

grains respectively, and they tend to zero as Y/X → ∞. 

 

3. Discussion 

 

During the creep of polycrystalline materials at low stresses, individual grains undergo shape 

changes, grain boundary sliding and rotation. These processes interact in a complex way and 

result in the externally applied stress being shared between the internal grain boundaries such 

that the shape changes, sliding and rotation occur at matching rates. The theories of shape 

changes and sliding are well developed, but rotation has received relatively little attention. 

The present work extends the theory of the diffusion controlled rotation of a bicrystal
3-7

 to a 

simple polycrystalline case. The two dimensional model of a bending beam is chosen for 

mathematical simplicity and grain boundary diffusion is assumed to dominate so that exact 

solutions to the diffusion equations can be derived. The structure is chosen such that all the 

vertical boundaries are aligned, and this introduces an additional simplification in that rotation 

is required to occur only about these boundaries, with none occurring about those in the 

horizontal direction. This enables the predictions to relate directly to those for a bicrystal 

under the limiting conditions X >> Y, when negligible diffusion occurs along boundaries in 

the x-direction. This is demonstrated by equations (9, 25, 35 & 40), when the rotation rates are 

shown to converge with those predicted for a bicrystal. Similarly, the stress distribution over 

the boundary AB also converges to that for a bicrystal given by equation (26) when X >> Y. 

This is also demonstrated graphically in Fig.2 for the beam with N = 6.  

 

The vertical diffusion flux predicted to occur along the boundary AB at the central position (y 

= h/2) is of special interest. Under the limiting conditions X >> Y, this flux is again identical 

to that for a bicrystal, but the flux also remains finite for all values of Y/X.  The existence of 

this flux is one of the most important results to emerge from the present work. It shows that 

grain volume is not conserved during the diffusion controlled bending of the polycrystalline 
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structure considered. This demonstrates theoretically for the first time that the non-

conservation of grain volume can be an inevitable consequence of the diffusion controlled 

deformation of polycrystalline matter. 

 

The present work was stimulated by a recent experimental study on the bending of 

polycrystalline beams at low stress levels
8
. These experiments showed behaviour resembling 

the grain rotation in a bicrystal, for structures where a single grain occupied the entire beam 

cross section in both the y and z-directions and ‘continuum’ creep behaviour when the grain 

size was much smaller than the specimen thickness. Behaviour was more complex in the case 

where grains occupied the entire beam height, but several grains were present in the z-

direction. The experiments were performed at high temperatures where lattice diffusion was 

rate controlling, compared to the present analyses where boundary diffusion is considered. 

However, the analysis shown in the Appendix for the grain boundary diffusion case also 

demonstrates convergence towards continuum behaviour when the grain size is much smaller 

than the beam thickness.   

 

In the earliest analyses of the diffusion creep of polycrystals
2,3

, neither grain rotation nor the 

non-conservation of grain volume were predicted because of the simple grain structures and 

the applied stress systems considered. The analyses assumed an infinite array of identical 

grains under uniaxial stresses. Under these conditions the vacancy concentrations at each 

equivalent grain corner were identical throughout the structure and symmetrical around an 

individual grain, in such a way that there was no driving force for either rotation or inter-grain 

diffusion leading to non-conservation of grain volume. In real materials, the presence of 

external surfaces (where the vacancy concentration must always take the equilibrium value), 

variations in grain size, or indeed in phase differences between grains, will lead to non-

symmetrical vacancy concentrations around grains that may result in both grain rotation and 

volume non-conservation. It is likely that both rotation and non-conservation effects will 

occur under uniaxial stresses and do not necessarily require bending moments as in the 

present analysis.       

 

4. Conclusions 

 

The theory of grain boundary diffusion controlled bending of a beam consisting of an array of 

orthorhombic grains of dimensions X, Y and Z has been developed for the case where the 

Page 11 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 12 

grains are aligned with a continuous boundary across the beam height. The dimension Z, 

parallel to the axis of bending, is assumed large such that diffusion occurs only in the x and y-

directions. For grains highly elongated along the beam length (X >> Y), the rotation rate is 

predicted to be identical to that of a bicrystal having the same height as the beam. For smaller 

X, diffusion along boundaries in the x-direction, make additional contributions and the 

rotation rate then increases. It is shown that diffusion between grains is an inevitable 

consequence of the deformation for the configuration considered. This demonstrates 

theoretically for the first time, the non-conservation of individual grain volume during 

diffusion creep. It is inferred that that non-conservation of individual grain volume may be a 

more general feature of the diffusional flow of polycrystalline materials.   

 

Acknowledgement 

 

The author is grateful to the Wingate Foundation for the award of a scholarship. 

 

Appendix 

 

Continuum creep bending of a beam. 

The analyses presented in the main body of the paper are concerned with the bending of a 

beam resulting from diffusion controlled rotation localised at boundaries. To provide a 

comparison, the hypothetical case is now considered where the creep of material is 

everywhere uniform. For a beam of height h and depth Z, undergoing such continuum creep, 

the rate must vary linearly with y according to the relationship: 

max)1
2

()( εσε && −==
h

y
Ay

m

yc         (A1) 

where ± maxε& are the creep rates of the outer fibres of the beam, Ac is the creep constant and m 

is the stress exponent for creep. For m = 1, the stress thus varies across the beam according to 

the relationship: 

)1
2

(max −=
h

y

Ac

y

ε
σ

&
         (A2) 

The bending moment in the beam is given by: 

c

h

c

h

y
A

Zh
dy

h

y
y

A

Z
dyyZM

6
)1

2
( max

2

0

max

0

εε
σ

&&

∫∫ =−==      (A3) 
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This may be rearranged to give: 








=
2max

6

Zh

M
Acε&          (A4) 

Then from equations (A2) and (A4): 

)1
2

(
6

2
−=

h

y

Zh

M
yσ          (A5) 

The stress thus varies linearly over the beam height between the limits ±6M/Zh
2
. 

 

When the grain size of a material is much smaller than its exterior dimensions, diffusion creep 

may be expected to approximate to continuum flow. For the grain geometry considered in the 

present paper, the creep rate may be derived by considering diffusion in the two orthogonal 

boundaries. The diffusion equation can be solved for boundaries in the x-direction as shown 

in equation (10). Forces may be resolved over the boundary to give: 

y

X

EQVEQ

Xdx
X

x

X

x

CD

X

C

CkT
σ

ξ
=

















 −+−

Ω ∫
0

2
2*

)()(
2

1      (A6) 

where σy is the stress in the y-direction. This yields the result: 

g

y
D

kTX

12

2
* ξ

σσ +=          (A7) 

where σ
*
 = (C

*
/CEQ – 1)kT/Ω is the stress at the grain corner. Similar analysis for the 

orthogonal boundaries gives the result: 

g

x
D

kTY

12

2
* β

σσ +=          (A8) 

Grain volume conservation requires: 0=+ YX βξ and then solution of equations (A6-A8) 

gives the results: 

)/1(

)(12

2
YXkTY

D

Y

X gyx

+

−
=−=

σσ
ξβ        (A9) 

yx
YXYX

YX
σσσ 







+

+







+

=
/1

1

/1

/*        (A10) 

The creep rate is given by: 

)/1(

)(12

2
YXkTXY

D

XY

X gyx

yx +

Ω−
=

Ω
=−=

ωσσβω
εε &&       (A11) 

In the present case σy = 0, so that: 

Page 13 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 14 

xc

gx

x A
YXkTXY

D
σ

ωσ
ε =

+

Ω
=

)/1(

12

2
&        (A12) 

Using equation (A4) this gives: 

)/1(

72

22max
YXkTXYZh

DM g

+

Ω
=

ω
ε&         (A13) 

The rotation rate assuming continuum creep is given by: hXc /2 maxεθ && =  and noting that h = 

NY, this gives for equi-axed grains (X = Y): 

bicrystal

g

c

N

kThZY

DM
θ

ω
θ &&









=

Ω
=

10

72 2

32
       (A14) 

where kTZhDM gbicrystal

5/720 ωθ Ω=& is the rotation rate of a bicrystal. 

 

The rotation rate derived in the main body of the paper is of similar form to equation (A14). 

Thus equations (25, 35 & 40) may be written in the form: bicrystalθζθ && = , where for the equi-

axed case (X = Y), ζ = 1, 2.52 and 4.85 for N = 2,4 and 6 respectively. Other evaluations not 

shown here for reasons of space, give ζ = 7.99, 11.94 and 167.1 for N = 8, 10 and 40. The 

ratio 2/10/ Nc ζθθ =&& thus evaluates to 2.5, 1.57, 1.35, 1.25, 1.19 and 1.04 with N = 2, 4, 6, 8, 

10 and 40 respectively. Thus for equi-axed grains, the behaviour tends towards continuum 

creep with increasing N values. The ratio cθθ && /  approaches unity for N > 40. The stress 

variation along AB, for the equi-axed case (X = Y) where N = 40  is shown in Fig.A1 

alongside equivalent plots for a bicrystal and for continuum creep.  
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Fig.1 Representation of a simple polycrystalline beam undergoing creep bending.  
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Fig.2 Variation of the local stress σ(y) along the boundary AB as a function of the fractional 

distance y/h, for three different grain aspect ratios Y/X as labelled The stress is represented in 

the normalised form σ(y)/σref, where σref = 10M/3
1/2

Zh
2
.  
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Fig.3 The rate of grain volume change, represented in the normalised form 

gDMkTYV ωΩ/3& , as a function of aspect ratio Y/X for grains 2-5 in a beam with N = 6. 
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Fig.A.1  Variation of the local stress σ(y) along the boundary AB as a function of the 

fractional distance y/h, for a beam with N = 40 and Y/X =1. The stress is represented in the 

normalised form σ(y)Zh
2
/M. The equivalent curves are shown for a bicrystal and a material 

undergoing continuum creep.   
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