The Aperiodic Double Chain Model Applied to Composition Flexible Compounds

Ted Janssen, Juan Manuel Pérez-Mato

To cite this version:

Ted Janssen, Juan Manuel Pérez-Mato. The Aperiodic Double Chain Model Applied to Composition Flexible Compounds. Philosophical Magazine, 2007, 87 (18-21), pp.3031-3041. 10.1080/14786430701355125 . hal-00513831

HAL Id: hal-00513831

https://hal.science/hal-00513831

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Aperiodic Double Chain Model Applied to Composition Flexible Compounds

Journal:	Philosophical Magazine \& Philosophical Magazine Letters
Manuscript ID:	TPHM-06-Aug-0334.R1
Journal Selection:	Philosophical Magazine
Date Submitted by the Author:	09-Dec-2006
Complete List of Authors:	Janssen, Ted; University of Nijmegen, Theoretical Physics Pérez-Mato, Juan Manuel; Universidad del País Vasco, Física de Materia Condensada
Keywords:	composite materials, incommensurate structures, lattice dynamics
Keywords (user supplied):	incommensurate composite, composition flexible compounds, composite modelling
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.	
refaper06.bib Aperiodic06_jape_new.tex	

Figure 1
$237 \times 176 \mathrm{~mm}$ (300×300 DPI)

Figure 2
$217 \times 173 \mathrm{~mm}(300 \times 300$ DPI)

Figure 3
$246 \times 190 \mathrm{~mm}$ (300×300 DPI)

Figure 4
$203 \times 175 \mathrm{~mm}$ (300×300 DPI)

Figure 5
$254 \times 203 \mathrm{~mm}$ (300×300 DPI)

16 simple model for composition flexible compounds is studied. A discussion is given of the coupling between structure and composition, 1and of the dynamics.

28 Incommensurate composites have been studied with the Double Chain Model (DCM) [6]. It is a system consisting of two parallel 2 dains at a distance d, where the lattice constant a of the first chain is incommensurate with the lattice constant b of the second. The 1 ntra-chain interaction is limited to nearest neighbours. The potential energy is given by

January 12, 2007

Page 7 of 11

Philosophical Magazine \& Philosophical Magazine Letters

Philosophical Magazine,
1.Vol. 00, No. 00, DD Month 200x, 2-6
2. The model

2
$3_{\text {For the comp }}$ the comporition flexible compounds we mase this APDC as well. The chain corresponding to the system of octahedra and prisms 4has an incommensurability which has its origin in the coupling to the other chain. However, there are two types of incommensurability hhere. One is the sequence of prisms and octahedra, which is a discrete sequence, and one is the displacements wave induced by the $\mathrm{\sigma}^{\text {interaction. For given sequence of building blocks this may be modelled by the APDC model. }}$
6 The second chain now represents the atoms between the stacks of octahedra and prisms. They form a modulated chain with 7average distance b. The first chain represents the stacks and is composed of n_{11} intervals of length a_{1} and n_{12} intervals of length a_{2}. The gength, the difference between the average positions \bar{x}_{n} and \bar{x}_{n-1}, corresponds to the value of a spin variable σ_{n} such that

$$
\begin{equation*}
\bar{x}_{n}-\bar{x}_{n-1}=a+\sigma_{n} \Delta . \tag{3}
\end{equation*}
$$

11
1 Shere are n_{11} spins up, and n_{12} spins down, with $n_{11}+n_{12}=n_{1}$. The relations for the periodic boundary conditions become
13
14
$n_{2} b=n_{11} a_{1}+n_{12} a_{2}=n_{11}(a+\Delta)+n_{12}(a-\Delta)=L$.
15 The concentration c is defined as

119 om this follows that
20
21
22
23otice that, for $\Delta=0$, we recover the original DCM.
The potential energy of the systems becomes

$$
\begin{equation*}
V=\sum_{n} V_{1}\left(x_{n}-x_{n-1}, \sigma_{n}\right)+\sum_{m} V_{2}\left(y_{m}-y_{m-1}\right)+\lambda \sum_{n, m} V_{i}\left(x_{n}, y_{m}\right) . \tag{6}
\end{equation*}
$$

$V_{1}(x, \sigma)=\alpha(x-a-\sigma \Delta)^{2} / 2$ and $V_{2}(y)=\beta y^{2} / 2$. In principle the interaction V_{i} also depends on σ. This is taken into account by 30 idering as variation parameter the discrete set of spin configurations σ. The influence of σ on the inter-chain interaction (intervals 30 different length correspond actually to different atoms) is neglected here. By the interaction the second chain becomes displacively $3 \neq$ odulated, the first chain has an aperiodic average structure which also becomes modulated by the interaction. The average distance of 32 first chain depends on the concentration c. $3 \mathrm{~g}^{\text {commensurability is given by } \bar{a} / b=n_{2} / n_{1} \text {. } . \text {. }}$
40
41
42
43
44
45
46
47
48

53 Figure 1. Embedding of the system, and closeness condition. The vertical lines correspond to spin up of chain 1, the gaps to spin 54
55
56 59 in up particles and a portion (1-c) of spin down particles. Take the first in the interval $[0, c]$ and the second in the interval $[c, 1]$. At the

Philosophical Magazine,
$1^{\text {Vol. 00, No. 00, DD Month 200x, 3-6 }}$
average position \bar{a}, the value of the second coordinate ξ_{2} of the top of the interval is $-q \bar{a}+1$. The closeness condition requires (Fig. 1) 2 hat
3
4
5
6Since $q=1 / b$ it follows that
7
8
9
$\overline{\bar{a}}=1+c \rightarrow n_{2} / n_{1}=1+c$.
Whe physical reason for this condition is a condition on the charge. Because A atoms in the aperiodic chain are divalent and the B atoms 1ntonovalent, charge neutrality requires that
12
13

$$
\begin{equation*}
2 n_{1} c+n_{1}(1-c)=n_{2} \quad \rightarrow \quad 1+c=n_{2} / n_{1} . \tag{9}
\end{equation*}
$$

14
15 he concentration c is the parameter x in the chemical formula $A_{1+x}\left(A_{x}^{\prime} B_{1-x}\right) O_{3}$. Therefore, the charge condition leads to the closeness 16 ndition, which has a simple interpretation in the superspace picture.
17
18
arhere ϕ determines the starting point of the spin distribution and m the number of sign changes. The value $m=1$ corresponds to a distribution of spins on the atomic surface which consists of a connected region with value +1 and and its complement with value -1 . ${ }^{2}{ }^{\circ}$ his gives a most non-uniform distribution of spins in the internal space, but the distribution in physical space is then as uniform as 2 23ssible. On the other hand, a spin wave with one harmonic in physical space (non-uniform in this space) gives a spin distribution on $3 \npreceq e$ atomic surface which is very uniform. The value of ϕ determines the position of the spin wave with respect to the two chains. Special 3ρ pints would be $0, \pi / 2, \pi$ and $3 \pi / 2$, because then the number of spins up could be extremal.

The potential energy minima give the ground states for values of n_{1} and n_{2} such that n_{2} / n_{1} is an approximation to c. These are 3\&en embedded into two-dimensional space using the customary procedure. The 2D lattice coordinates ξ_{1} and ξ_{2} are given by 49 ace, although the energy differences are small.
50 A second parameter is the relative phase of spin wave and modulation. The lowest energy is obtained for $\phi=\pi / 2$ if $\lambda>0$ and
$50=3 \pi / 2$ if $\lambda<0$. For negative λ this means that the closeness condition is satisfied, or in other words that the spin wave is uniform in 5 thysical space. Again the energy differences are small.
52 For $\Delta=0, \lambda \neq 0$ the lines are no longer straight, but a modulation of the chains sets in. For small values of the interaction 5 marameter the modulation is smooth. For larger values the atomic surface is split into disjoint parts.

If $\Delta \neq 0$, then the atomic surface consists of disjoint parts already from $\lambda=0$. There is an average slope of the pieces. For $\lambda=0$,

57 Because the energy differences between uniform and non-uniform distributions are small, there are many metastable states. The正-uniform distributions correspond to atomic surfaces with an increasing number of gaps if the number of harmonics in the spin wave 58 creases. Nevertheless, the gaps in one atomic surface correspond to pieces in the atomic surfaces of the neighbours, but the closeness 59 ndition is no longer satisfied.

Philosophical Magazine,
$1^{\text {Vol. 00, No. 00, DD Month } 200 x, 4-6}$
2
3
4
5
6
7
8
9
10
11
12
13

49 gure 3. Embedding of 5 solutions. In the first row the pictures give the difference between uniform spin distributions in physical and 50 internal space. For strong coupling λ the atomic surfaces will become discontinuous for $\Delta=0$ as well. For $\Delta>0$ there is always a 51 discontinuity (frame 4). In the second row the changes in the atomic surfaces are shown if the spin wave is taken to be weakly or $52^{\text {strongly }}$ uniform, and when the coupling λ becomes large. In the latter case the atomic surface is no longer smooth. On the average there remains one modulated system with a displacive and an occupation modulation. Values of the parameters: $\alpha=1.0, \beta=1.5$, 34 .
35 The phason mode with wave vector zero is the phonon mode for which the displacement of the centres of mass of the two 36 bsystems, with respect to each other, is maximal. The eigenvector of this phason mode, when there is a phason gap. has maximal 3 displacements of the atoms near the discontinuity of the modulation function. This has been found also in the DIFFOUR (discrete 3.7 ustrated ϕ^{4}) model for incommensurate phases [4].

38 A shift of the subsystems with respect to each other, which may also be described as a change of the internal coordinate in $39 p e r s p a c e$, connects ground states of the same energy. This is, however, not a harmonic excitation, because it involves jumps of atoms hotween positions. These jumps, in quasicrystals called phason jumps, are actually non-linear excitations. It has been shown for the DCM that such a shift of one system with respect to the other does not cost energy if the atomic surfaces are continuous AND the velocity is 40elow a certain threshold [3]. In this case, however, the atomic surfaces are discontinuous, which means that a phason shift is dissipative.

$$
\begin{equation*}
x_{n, \ell}=x_{n-1}+a+\sigma_{n} \Delta, \quad y_{n, \ell}=\ell c \tag{12}
\end{equation*}
$$

Philosophical Magazine

ISSN 1478-6435 print/ISSN 1478-6443 online © 200x Taylor \& Francis
http://www.tandf.co.uk/journals
DOI: 10.1080/1478643YYxxxxxxxx

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 Figure 5. Dispersion curves in the Brillouin zone of the approximant structure, for $\Delta \neq 0$, for 4 values of λ. Upper row, left: $\lambda=0$: there are 2 modes with frequency zero. For increasing values of λ the phason gap opens. Simultaneously gaps open at the Brillouin zone

30
3.hd the particles in subsystem 2 have basic structure positions

32
33
34
35
3 hhe potential energy may be taken to be
37
38
39
40
41
$4{ }^{\text {Kh}}$ is higher-dimensional model is under investigation.
43
44

极eference

46 L. Elcoro, J.M. Perez-Mato, J. Darriet, and A. El Abed. Superspace description of trigonal and orthorhombic $\mathrm{A}_{1+x} \mathrm{~A}_{x} \mathrm{~B}_{1-x} \mathrm{O}_{3}$ 47 compounds as modulated layer structures; application to the refinement of trigonal $\mathrm{Si}_{6} \mathrm{Rh}_{5} \mathrm{O}_{15}$. Acta Cryst. B, 59:217-233, 2003.
4 [6] M. Evain, F. Boucher, O. Gourdon, V. Petricek, M. Dusek, and P. Bezdicka. Incommensurate versus commensurate description of the

50] T. Janssen, O. Radulescu, and A.N. Rubtsov A.N. Phasons, sliding modes and friction. Eur.Phys.J., B29:85-95, 2002.
$54]$ T. Janssen and J.A. Tjon. Microscopic model for incommensurate crystal phases. Phys.Rev., 25:3767-3785, 1982.
5 J.M. Perez-Mato, M. Zakhour-Nakl, and J. Darriet. Structure of composites $\mathrm{A}_{1+x}\left(\mathrm{~A}^{\prime}{ }_{x} \mathrm{~B}_{1-x}\right) \mathrm{O}_{3}$ related to the 2 H hexagonal perovskite: 52 relation between composition and modulation. J. Chem. Materials, 9:2795-2808, 1999.
56] O. Radulescu and T. Janssen. Sliding mode and breaking of analyticity in the double chain model of incommensurate composites. 54 Phys. Rev. B, 60:12737-12745, 1999.
57 T. van Erp, A. Fasolino, O. Radulescu, and T. Janssen. Pinning and phonon localization in frenkel-kontorova models on quasiperiodic substrates. Phys. Rev. B, 60:6522-6528, 1999.

