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Calculating the vibrational entropy of an N-atom assembly in the harmonic 

approximation requires the diagonalisation of a large matrix. This operation 

becomes rapidly time consuming when increasing the dimensions of the simulation 

cell. In the studies of point defects, a widely used shortcut consists in calculating 

the eigen modes of the atoms contained in an inner region, called the defect region, 

while the atoms belonging to the outer region are held fixed, and in applying an 

elastic correction to account for the entropy stored in the distortion of the outer 

region. A recent paper proposed to base the correction on the local pressure change 

experienced by each lattice site. The present contribution is an extension in the 

sense that it includes the shears. We compared the two approximations for 

configurations which are currently encountered in defect studies, namely those 

pertaining to defect formation and migration. The studied defects are the single, di- 

and tri-vacancy as well as the dumbbell interstitial in a host matrix modelled by 

several empirical potentials mimicking pure copper. It is shown that the inclusion 

of shears brings a noticeable contribution to the elastic correction for all 

configurations of low symmetry. 

 

Keywords: vibrational entropy; point defects; shear strains 

 
1. Introduction 

 

The calculation of free energy is of great concern in all the fields of materials 

science. If the evaluation of potential energy has become today a routine task, the 

evaluation of the entropy remains a difficult one. Ignoring hereafter the 

configurational and electronic parts of the entropy, the present work will focus on 

the vibrational contribution in pure substances with or without point defects. 

Modern computing facilities have promoted  Monte-Carlo techniques: they are 

today considered as the best candidates for quantitative determinations of free-

energy or free-energy differences, while taking fully into account the detail of the 

atomic interactions as well as the boundary conditions [1]. Being stochastic in 

nature, they obtain a result only at the end of a long series of acceptations and 

rejections; the convergence towards the aimed at quantity with an acceptable 

uncertainty is never a trivial question and implies a very heavy computational 

burden. As a consequence their use is most often restricted to those cases where the 

determination of some basic quantity without any approximation is highly 

desirable. These highly sophisticated techniques cannot be used routinely whenever 

a large number of independent calculations is involved in the physical phenomenon 

to be modelled, like for example diffusive phase transformations described by 

successive atomic jumps with on-the-fly determinations of the diffusional 

parameters [2, 3, 4]. This is the reason why alternate and more tractable routes 

involving less calculations have constantly been looked for, even if the price to be 

paid for this is, undisputably, some loss of accuracy. In this spirit, the efficiency of 

harmonic or quasi-harmonic approximations  rests on their ability  to reduce the 

initial problem to a deterministic calculation manipulating algebraic objects. They 

have been extensively explored during decades for studying the formation and the 
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migration of point defects, in metallic alloys [5] as well as ionic crystals [6] and 

have proved their relevance by obtaining in many cases the right order of 

magnitude for these basic quantities which are accessible to an experimental 

determination. 

At the light of the most recent results, one begins to understand the conditions 

under which the harmonic (or quasiharmonic) approximation is expected to work. 

The latter focusses on the curvatures of an harmonic basin of potential energy 

around some equilibrium state. The situations where the approach departs 

substantially from more exact evaluations are encountered whenever the 

temperature raise leads to the emergence of several metastable minima, the energy 

of which are comparable to the one of the primitive harmonic basin: this case is 

typically encountered in amorphous systems and metallic nano-aggregates. For 

specific model systems where all these minima have been detected exhaustively 

with their accurate Boltzmann weight [7], the harmonic superposition 

approximation taking into account all these minima with their proper weights does 

yield an accurate description of the free eneergy over a very large temperature 

range and predicts transition temperatures with an excellent precision [8]. Coming 

back to point defect studies, the basic reason why the harmonic or quasiharmonic 

approximations are so successful is linked to a particularly favourable 

circumstance: the introduction of a point defect in a pure host matrix is not a 

perturbation of sufficient extent to question the unicity of the harmonic basin 

describing the reference state without defect and to lift its degeneracy. As a 

consequence, following the shift of the eigen modes of this unique basin is 

sufficient to have a good representation of the free energy changes versus defect 

introduction or temperature raise. It is worth noticing here that it would not be the 

case for a concentrated alloy, either crystalline or amorphous.  In all what follows 

we will confine ourselves to the most simple harmonic approximation. 

In this frame, the vibrational entropy of a solid containing N atoms is evaluated 

as the entropy of N coupled three-dimensional harmonic oscillators and reads [9] : 

{ } { }
3N

1
i i i

i 1

S k x (exp x 1) Log(1 exp x )
−

=

 = − − − − ∑   (1) 

where  i  ix kT= ωh  and the ωi are the eigen angular frequencies of the system. In 

the high temperature approximation, the expression reduces to : 

{ }
3N

i
i 1

S k 1 Log x
=

 − ∑� .    (2) 

The normal modes of this assembly are calculated with the use of the force-

constant matrix D, containing the second derivatives of the potential energy U 

versus the displacements of atoms ‘i’ and ‘j’ of masses mi and mj along the 

directions ‘α’ and ‘β’ respectively  and expressed by: 
21/ 2

i j i j

i j

U
D m m

x x

−αβ
βα

∂ =   ∂ ∂
.    (3) 

 

1.1. Supercell method 
 

The supercell method consists in applying the above equations to a periodically 

repeated crystallite of a lattice with or without defect. The frequencies 
i
ω  are the 

phonon modes at zero wave vector in the reduced Brillouin zone corresponding to 

the large unit cell: three modes have a zero frequency and correspond to the bodily 

translation induced by the repetition of the simulation cell. After having dropped 

these three translational modes by deleting the last three rows and columns of D, its 
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determinant ∆∆∆∆  is equal to the squared product of the angular frequencies ωi. In the 

high temperature approximation, the entropy change is then reduced to: 

k
S Log( ) 3k(N 1) 1 Log( )

2 kT

 = − ∆ + − −  

h
 .   (4) 

Any modification of the force constants, stemming from a spatial distortion 

and/or a mass disorder induced by the presence of a point-or-extended defect, 

produces a corresponding entropy change : 

  
k

S' S Log( '/ ) 3k(N ' N) 1 Log( )
2 kT

 − = − ∆ ∆ + − −  

h
  (5) 

where the primes denote the system with a defect. The last term serves to correct 

the dimensions of the first term whenever the number N’ of atoms in the state with 

a defect is not equal to that in the reference state, a situation which prevails in all 

the point defect calculations operating with a constant number of sites. 

At last, if the reference state is the perfect crystal, the dimensional correction is 

commonly carried back onto the perfect contribution by rescaling the number of 

atoms in the reference state to N’: 

N'/ Nk
S' S  Log( '/ )

2
− − ∆ ∆� .    (6) 

The calculation of the normal modes implies the diagonalization of the force 

constant matrix D : even for systems with short-ranged forces, this step remains 

associated with a large computational cost and to numerical problems, as soon as 

the simulation cell contains more than a few thousands of atoms. The supercell 

method is however often kept as a standard reference point for other 

approximations because its results are known to vary only weakly with the cell size 

[10]. During the last decades, numerous attempts have continuously searched for 

various kinds of simplifying approximations. 

 

1.2. Approximate methods 
 

These approximations try to reduce the size of the above matrix on the basis of 

physical arguments: in metals, the interactions are short-ranged thanks to the 

electronic screening and a small number of neighbour shells is expected to provide 

the leading contribution to the energy and the entropy. 

The Einstein approximation calculates the eigen modes of an assembly of 

uncoupled particles, where each atom vibrates in the potential well created by its 

immobile neighbours; the problem is thus reduced to the diagonalisation of (N-1) 

(3×3) matrices. Increasing gradually the coupling between the central atom and its 

neighbours by taking into account more and more distant shells provides a 

complete hierarchy of local harmonic approximations which produce sensible 

results for perfect crystals. When applied to the calculation of defect formation 

entropies [11, 12, 13] or pre-exponential factors for defect migration [2], these 

approximations are however unable to capture the quasilocalized modes around the 

point defect and to offer a quantitative evaluation of entropies. 

The second moment approximation postulates a reasonable analytical form 

for the vibrational local density of states and opens the route towards the 

determination of temperature dependent equilibrium structures through the direct 

minimization of a free energy. This formulation was used for the calculation of 

grain boundary structures as a function of temperature and enlightened the 

conditions to be fulfilled by any interatomic potential (continuity of third order 

derivatives): however it does not take into account the off-diagonal elements of the 

(3 × 3) force constant matrix and obtains a free energy which is less accurate than 

the one provided by the local harmonic formulations quoted above [14, 15]. 
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The approximation of the embedded crystallite (also called embedded cluster) 

consists in partitioning the imperfect crystal into two regions: an inner region 

containing N* defect site(s) with a selected set of neighbours and an outer region 

containing the N-N* remaining atoms. Two routes have been followed then: 

i) the Green function method is semi-analytical and assumes that the force 

constants are changed only in the inner region. Several treatments can be done 

according to whether the atomic positions used for the calculation of force 

constants are the perfect positions, or the fully relaxed ones, thus producing results 

of increasing accuracy [16]. In ionic crystals, the problem is further complicated by 

several features which are specific to ionic bonding, namely the long-ranged forces 

and the alternate charges of successive shells [17]. The pedagogical interest of 

Green function formulations is obvious since tractable analytical expressions can 

be obtained under simplifying assumptions; however, quantitative results are 

obtained only when the fully relaxed positions of a large number of neighbours are 

used, which forbids any analytical formulation of the solution and weighs the 

computational burden down by a appreciable amount; 

 

ii) the brute force method rests entirely on the knowledge of interatomic 

interactions as a function of distance. As a first step the fully relaxed positions are 

determined for all atoms in the cell; as a second step, the vibrational modes of the 

atoms belonging to the inner region are calculated, while keeping immobile the 

atoms of the outer region. It can be shown that the contribution of the outer region 

to the entropy must scale as 1/N* where N* is the number of atoms in the inner 

region [16]. Two approaches have been tried: a first procedure determines the limit 

of the entropy when N* is increased, but the latter must be limited by a moderate 

upper bound in order to keep the computational work to a tractable level [18]; a 

second procedure (named ‘elastically corrected embedded cluster’) keeps an inner 

zone of moderate extension but applies systematically an elastic correction to 

account for the entropy change stemming from the lattice distortion of the outer 

region [19]. 

 

In its original formulation, the approximation of the elastically corrected 

embedded cluster is convenient for defects of spherical symmetry like a vacancy: 

indeed, through the change of local pressure on each site, a corresponding local 

expansion or contraction is deduced and further conveniently translated into an 

entropic contribution. This procedure improves noticeably the value of the total 

entropy [19]. However the shear components of the local distorsion become no 

longer negligible for more complex defect configurations like defect clusters or 

saddle point configurations, the dipolar tensors of which exhibit three very 

different eigen values, whatever the type of potential (pairwise, many-body) used 

in the calculations [20-23]. As an illustration, the saddle configuration for a 

vacancy jump in a face-centered cubic lattice along <110> exhibits an 

orthorhombic symmetry, corresponding to a contraction of the lattice along <110> 

together with an extension along <001> ; depending on the detail of the potential, 

another contraction of smaller magnitude along <1-10> can be observed [21]. 

 

The aim of the present paper is to go one step further along the line initiated in 

[19] and to propose a more refined method including the contribution of shear 

strains to vibrational entropies in the frame of the harmonic approximation. The 

paper is organized as follows: i) section  2 recalls some basics about the link 

between strain, energy and entropy and defines the ingredients to be determined, 

namely the entropic constants; ii) section 3 explains the way how the entropic 

constants are practically evaluated and how they will be used in an heterogeneously 

strained medium; iii) section 4 illustrates this approach on copper, when modelled 

with several empirical potentials available in the literature. Various analytic forms 
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will be chosen with the hope of extracting generic features; we show in passing that 

the continuity of all the ingredients entering the formulation of the interactions and 

of their derivatives up to third order included is mandatory. In order to make the 

paper not too obscure, only the main lines of the approach are described and 

presented in the body of the text, while relegating all technical details in 

appendices. 

 

2. Energy and entropy change under a uniform strain 

 

2.1. Energy change and elastic constants 
 

For a uniformly strained medium, the energy increase per unit volume, under zero 

external pressure and at 0 K, is given by: 

1 1 1

mn mn opijkl ij kl ijklmn ij kl ijklmnop ij kl
2 6 24

...U C C C∆ = η η + η η η + η η η η  (7) 

where Cijkl , Cijklmn, Cijklmnop  are the second, third, fourth ... order Brugger elastic 

constants [24] and ηij the components of the Lagrange strain tensor. Using 

hereafter Voigt’s contraction of indices (ii => i ; 23 => 4; 31 => 5; 12 => 6) and 

limiting ourselves to cubic symmetry for sake of simplicity, the summation can be 

recast under a standard form displaying only the independent elastic constants, 

namely the three ones of second order, the six ones of third order and the eleven 

ones of fourth order [25], according to: 

1 1

11 11 12 12 44 44
2 2

1 1 1

111 111 112 112 123 123 144 144
6 2 2

1 1 1

155 155 456 456 1111 1111 1112 1112
2 24 6

1 1 1 1

1122 1122 1123 1123 1144 1144
4 6 4 4

U C P       C P        C P

     C P     C P   C P       C P

    C P    C P C P C P

    C P C P  C P

∆ = + +

+ + + +

+ + + +

+ + + + 1155 1155

1 1 1

1244 1244 1266 1266 1456 1456 4444 4444
2 2 24

1

4455 4455
4

C P

    C P  C P C P    C P

    C P ....

+ + + +

+ +

  . (8) 

The Pij, Pijk, Pijkl are homogeneous polynomials of second, third and fourth order 

respectively of the Lagrange strains {ηi}. Their expressions can be found in [26] up 

to third order and in [27] for fourth order (apart from an error in some 

multiplicative factors ahead); they are recalled below in equations 9 for sake of 

completeness.  
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2

2 2 2
11 1 2 3

2 2 2
12 1 2 2 3 3 1 44 4 5 6

3 3 3
111 1 2 3

112 1 2 1 2 2 3 2 3 3 1 3 1

2 2 2
123 1 2 3 144 1 4 2 5 3 6

2 2 2 2 2
155 1 5 6 6 4 3 4

P     P     P

P      

P ( ) ( ) ( )

P              P  

P ( ) ( ) (

= + +

= η + η + η = η η + η η + η η = η + η + η

η η η

= η η η + η + η η η + η + η η η + η

= η η η = η η + η η + η η

= η η + η + η η + η + η η +
4 4 4

1111 1 2 3

2 2 2 2 2 2
1112 1 2 1 2 2 3 2 3 3 1 3 1

2 2 2 2 2 2
1122 1 2 2 3 3 1 1123 1 2 3 1 2 3

2 2 2 2 2 2
1144 1 4 2 5 3 6

2 2
1155 1 5

2
5 456 4 5 6)       P

P       

P ( ) ( ) ( ) 

P                  P ( )   

P

P (

η = η η η

= η + η + η

= η η η + η + η η η + η + η η η + η

= η η + η η + η η = η + η + η η η η

= η η + η η + η η

= η η + 2 2 2 2 2 2 2
6 2 6 4 3 4 5

2 2 2 2 2 2
1244 1 2 4 5 2 3 5 6 3 1 6 4

2 2 2
1266 1 2 6 2 3 4 3 1 5 1456 1 2 3 4 5 6

4 4 4 2 2 2
4444 4 5 6 4455 4 5 5

) ( ) ( )     

P ( + ) ( + ) ( + )

P       P ( )

P                             P

η + η η + η + η η + η

= η η η η + η η η η + η η η η

= η η η + η η η + η η η = η + η + η η η η

= η + η + η = η η + η 2 2 2
6 6 4η + η η

. (9) 

The elastic constants can be calculated to any order through lattice sums as 

soon as the interatomic potential is known, provided its analytical expression is 

everywhere continuous up to the necessary order (third order at least for Cijk, 

fourth order at least for Cijkl ...etc) [28]. We report in Appendix A the formal 

expressions of the fourth and fifth order elastic constants as a function of the 

derivatives of the pair and N-body terms which will be used later on for the 

potentials under examination. 

For sake of simplicity in its further use, the equation 8 is rewritten in a more 

compact form. Renaming the 20 elastic constants by Ci  (C11 = C2, C12 = C3, C44 = 

C4 ...etc) and the 20 homogeneous polynomials by Pi (P11 = P2, P12 =  P3, P44 = P4 

...etc) in the order of their introduction in equation 8 (including the fractional 

multiplicative term), the equation is transformed into: 

21

k k

k 2

U C P

=

∆ =∑      (10) 

 

2.2. Entropy change and entropic constants 

 

The internal energy and entropy of a crystalline body must be represented by 

functional forms which are invariant through the symmetry operations of the lattice 

[29]; their expressions are functions  of the same combinations of scalar invariants, 

the set of which is known for all lattices and symmetry groups [30]. As a 

consequence, the general expression for the entropy change under an homogeneous 

strain will look like the one for the energy, where the elastic constants Cij, Cijk, 

Cijkl will be replaced by ‘entropic constants’ λij, λijk, λijkl. A difference must be 

noticed however. Concerning the energy, the reference state is usually taken as the 

equilibrium state under zero external pressure, the latter condition bringing no 

further contribution to the energy if the volume is increased during the application 

of the strain; therefore, the first order term which is proportional to the volume 

expansion is lacking in equation 8. Conversely, when considering the entropy, the 
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dilatational part of the strain brings always a non-vanishing first order contribution 

proportional to the volume expansion [9]: 

P
S/ V B∂ ∂ = α      (11) 

where α is the thermal volume expansion coefficient, B the bulk modulus. 

Switching from derivatives to finite differences and denoting the volume of the 

system in the reference state by Vo, an alternate writing of this equation enlightens 

the link existing between the entropy change and any volume change in general, 

whatever its physical origin (temperature increase, elastic strain ...) :   

o 1
S   BV dilat dilat∆ = α = λ     (12) 

Let us recall here that in Lagrange’s formalism, the volume expansion denoted here 

by ‘dilat’ is no longer expressed as the trace of the strain tensor but rather by: 

[ ] 1/2
dilat Det( 2 ) 1= + −I η     (13) 

As above for the energy, the entropy change is written in a closed form. Renaming 

by λk (k =1, 21) the entropic constants and by P1 the volume expansion given by 

equation 13, the entropy change will later on be expressed as: 

21

k k

k 1

S P

=

∆ = λ∑     (14) 

 

3. Determination of entropic constants 
 

The free energy of a system submitted to specific boundary conditions (external 

stress, temperature) can be determined in an elegant way by a direct minimisation 

of the total free energy yielding the equilibrium atomic configuration [31, 32]. The 

vibrational contribution to the quasiharmonic free energy is given as a function of 

an arbitrary wave vector q but a numerical summation over a relevant set of q 

vectors within the first Brillouin zone is then necessary to obtain the final value of 

the entropy as a function of the strain amplitude. Since we are working in the 

harmonic approximation with a perfect system containing one single atom per unit 

cell, a simpler method is sufficient: the homogeneous strain applied to the 

simulation cell involves no change of the inner atomic coordinates and the 

relaxation step becomes superfluous. This is the reason why we choose a direct 

route: a set of predetermined strains of increasing amplitudes are imposed to the 

simulation cell and the entropy changes are numerically evaluated and collected; 

the desired entropic constants are then extracted through a least square fitting of the 

data to the theoretical behaviour depicted by equation 14. 

  

3.1. Definition of the set of strains  

 

Following Cousins [26] we define a stretching tensor J which is chosen rotation 

free by selecting a symmetrical form. The intensity of the components can be 

varied at will with respect to some arbitrary amplitude denoted hereafter by ε : 

1 6 5

6 2 4

5 4 3

1 d   d   d  

d  1 d   d  

d   d  1 d  

+ ε ε ε

= ε + ε ε

ε ε + ε

J      (15) 

The Lagrangian strain tensor ηηηη is then defined by 
1 2

2
( I)= −η J  where I stands for 

the unit (3×3) matrix. A volume expansion is involved whenever the determinant 

Det(J) is larger than unity and a contraction otherwise. As a consequence, for a 
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given J, the strains defined by J (Det(J)
-1/3

 or J will take place at constant volume 

or not, respectively. We gathered and numbered in table 1 the set of strains which 

were applied to the simulation cell. Some of the strains are pure shears inducing no 

volume change (n° 2, 4, 6, 9-26, 28, 30, 32, 34) ; several others imply a volume 

change of first order (n° 1, 3, 7, 29, 31, 33, 35) or second order (n° 5, 8, 27) with 

respect to ε . Several of them are redundant (11 and 12, 15 and 16 ...etc) and are 

expected to give similar results (they were subsequently checked that they do so). 

Many of these strains would be impossible to apply in a practical experiment, at 

variance with the simulation of a true elastic axial loading [33]: they must be 

viewed as thought experiments which are used as a simple and systematic way to 

probe numerically the entropy surface as a function of the strain variables {ηi}. 

 

(insert table 1 around here) 

 

The strains are applied to the three orthonormal basis vectors (a, b, c) defining 

the edges of the simulation box. As already mentionned above, the symmetry of the 

system implies that the reduced atomic coordinates need not to be changed; as a 

matter of fact, the conjugate gradient algorithm in charge of relaxing the atomic 

positions finds systematically that the system is already in its minimum energy. 

The product of the eigen modes is then determined in the deformed state, which 

involves only the evaluation of the determinant of the force constant matrix. The 

corresponding energy and entropy changes with respect to the perfect undeformed 

state are recorded. 

The calculations are conducted in a cubic cell of FCC structure containing 864 

atoms. To gather a significant amount of results, the amplitude ε of the strain is 

varied in the range [-10
-2

 : +10
-2

] with 100 equally spaced mesh points between [± 

10
-2

 : ± 10
-4

] and 100 between [± 10
-4

 : ±10
-6

] for each type of strain. 

 

3.2. Extraction of the entropic constants 
 

Before extracting the entropic constants by a least square fitting of equation 14, a 

preliminary check was performed on the elastic constants in order to assess the 

relevance of the set of strains used for the measurements. 

Equation 7 is a power series expansion around the undeformed reference state: the 

coefficients are the equilibrium elastic constants of increasing order which are 

obtained on the perfect lattice through lattice sums (cf. [28] and Appendix A). 

The same equation can be used for finite (but still small) strains: to reach a 

quantitative precision for finite strains, a sufficient number of terms must be taken 

into account: the larger the strain amplitude, the higher the number of terms. The 

latter is determined empirically through the comparison of the energy change 

which is directly measured on the simulation cell and the energy change predicted 

by equation 7 with the elastic constants at equilibrium : for a strain amplitude of the 

order of 10
-6

, it is checked that the energy change which is numerically detected on 

the cell is perfectly accounted for by equation 7 (or 10) with the second order terms 

only; conversely for strain amplitudes amounting up to a fraction of a percent, it 

can be checked that the fourth order terms in equation 7 (or 10) are necessary. It 

was further checked that fifth order terms did not bring a further detectable 

contribution. This is the reason why we used systematically the fourth order terms 

to account for the energies of the whole set of deformed states. The simulated 

values were reproduced by equation 10 with an average relative precision better 

than 10
-5

. 

As a further check, the elastic constants which were determined at rest through 

lattice sums were compared with the elastic constants obtained by fitting the whole 
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collection of energy changes measured on the deformed cell under strains of finite 

amplitude (equation 10). The agreement between the two is excellent as displayed 

in table 2 for the potential FS-D-2.82 described in more detail in appendix B . As 

expected, the tightness of the agreement depends on the order: the elastic constants 

fitted on finite strain results agree with their lattice sums counterparts to better than 

10
-4

, 10
-3

 and a few 10
-2

 for second, third and fourth order constants respectively. 

The fact that all elastic constants were reasonably reproduced was interpreted as an 

indication that the set of strains was broad enough to probe correctly the potential 

energy surface of deformed states. This conclusion was assumed to hold also for 

the entropies, where such a direct check was not possible. 

The corresponding entropic constants were then determined in the same way by 

fitting the entropic changes to equation 14 with a relative accuracy of the same 

order as that observed for the energy. The entropic constants exhibited however a 

higher sensitivity to the fitting procedure than the elastic ones. For instance λ1 and 

λ4 are rather insensitive to the maximum order retained in equation 14 or to the 

strain amplitudes used in the fitting, whereas λ2 and λ3 could vary of 20% . This is 

the reason why we consider the entropic constants as defined to no better than 10
-4

 

for the first order constant λ1, a few 10
-2

 for the second order constants  λ2 = λ11, 

λ3 = λ12 and λ4 = λ44 and a few 10
-1

 for the third order ones λ5 to λ10. The fourth 

order ones could not be determined with a sufficient precision. 

 

3.3. Use of the entropic constants in defect configurations 

 

We report first the way how the coefficients in equation 14, which were determined 

for homogeneously strained systems, can be used for the heterogeneous 

deformations taking place around point defects. We then discuss the underlying 

assumptions and justify the calculation procedure. 

 

3.3.1 Procedure used for the calculation. Firstly, we assume that the same type of 

formulation can be applied locally, that is, on each of the N-N* sites of the outer 

region where the values of the polynomials Pk will now depend on the local strain 

measured on site ‘i’. The total entropy change ∆Sout of the outer region will thus 

include a summation running over the N-N* lattice sites: 

21N N

out k k out
i i

i N* 1 k 1 i N* 1

S P S

= + = = +

   ∆ = λ = ∆   ∑ ∑ ∑  (16) 

where out
i

S ∆   is the contribution of atom on site ‘i’ to the entropy change. 

 * secondly, we propose a consistent and stable procedure for determining the 

local strain. At the end of a relaxation calculation, the energy of the system with a 

defect is known with a precision of the order of 10
-12

 at best and the atomic 

coordinates are not known to better than 10
-6

. The local strains must then be larger 

than a few 10
-6

 to be detected with some confidence. 

Using the atomic coordinates to calculate the local strain is not convenient: the 

discrete and anisotropic nature of the lattice at short scale complicates the 

calculation of the distortions and numerical derivatives of the various 

displacements must be taken, leading to an important numerical noise. We propose 

alternatively to evaluate the atomic stresses according to their thermodynamical 

definition, i.e. as the derivatives of the energy contribution of atom ‘i’ with respect 

to the local strains [34]; the calculation of the atomic stresses is straightforward 
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[35] and gives access to the local strains. The calculated strain in this procedure 

becomes much less sensitive to the numerical noise on individual atomic 

coordinates since it rests on some average performed over all the neighbours 

interacting with a given atom. We recall below the usual way of determining 

numerically the stress components and establish the formal expression of stress 

versus strain components. 

 The interactions model the total energy of the atomic assembly as well as the 

energy per atom ‘i’ by: 

1

ij i i2
i i j i i

U V(r ) F( ) U
≠

= − ρ =∑ ∑ ∑ ∑    (17) 

where V(rij) stands for the pairwise part, F for the embedding function and ρi is a 

local density using a pairwise function Φ(rij)  and given by : 

 i ij

i j

(r )

≠

ρ = Φ∑ .     (18) 

The component of the local stress on site ‘i’ is given by: 

ij iji ii
I

j ii i iij ij ij

r rU1 1 V F
( )

2  r r r

βα

αβ
≠αβ

∂ ∂ ∂ ∂Φ
σ = − = − − = σ

Ω ∂η Ω ∂ρ∂ ∂
∑   (19) 

where Ωi stands for the atomic volume attached to site ‘i’, ij
rα for the ‘α’ 

component of vector rij and ‘I’ stands for Voigt’s index ‘αβ’. All these quantities 

can be numerically determined for each site ‘i’ ; further, the stress components 

were derived with Ωi set equal to the average atomic volume Ωo. We checked later 

that using the volume of the Voronoi polyhedron of each atom in place of the 

average atomic volume did not change the resulting values noticeably, due to the 

smallness of the strains coming into play. 

 The theoretical expression of the stress component is readily obtained by 

deriving equation 10  : 

21
i k
I k

Ik 2 i

P
C

=

 ∂
σ =  

∂η  
∑      (20) 

 The presence of higher order terms forbids a linear inversion of equations 20. The 

components of the local strain are thus adjusted by a conjugate gradient procedure 

minimising the sum of the squared departures between equations 19 and 20. The 

solution of the linearised problem, resting on the use of only C11, C12 and C44 , is 

taken as the starting point of the iterative process. 

It is worth noticing here that the approach described in [19] assumed a linear 

relationship between stress and strain; this assumption allowed to convert directly 

the local pressure change ∆pi into a local volume change, which was translated 

afterwards into a local entropic contribution through equation 12: 

N
1

out i

i N* 1

S p
B

= +

λ
∆ = − ∆∑ ,    (21) 

where the summation runs on the N-N* atoms of the outer region. Since our 

relaxations are performed under zero external pressure, equation 21 can be written 

in an alternate form : the average internal pressure calculated from a summation 

over the internal stresses being zero, the summation above can be replaced by a 

summation with an opposite sign running only on those atoms of the inner region: 
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N*
1

out i

i 1

S p
B

=

λ
∆ = + ∆∑ ,    (22) 

which is faster since, in the spirit of the approximation, N* is supposed to be 

markedly smaller than N. And we checked extensively all along our calculations 

that the two results were indeed identical. As already noticed above, this 

approximation ignores the fact that a pure shear at constant volume in a solid 

(unlike a liquid) gives rise to a pressure change which varies as the square of the 

strain and brings a contribution of the same order as the one brought by the shear 

components. The pressure change induced by the shears is thus unduely attributed 

to a local expansion or contraction. However the two entropic contributions do not 

behave similarly: as will be seen later, the contribution of shears is most often 

positive, whereas that of pressure has both signs. It is thus very important to know 

which one brings what. 

 

3.3.2 Discussion about the underlying assumptions. We discuss below the 

relevance of equations 16 to 20 to our problem, namely the introduction of a local 

entropy per site, the use of a stress tensor defined at the atomic level and finally the 

neglectance of any strain gradient contribution. For this purpose, we will make use 

of the results obtained in a cell containing 500 atoms for convenience, and 

interacting through the potential FS-Barreteau described in Appendix B. 

 * Equation 16 assumes that the total entropy increase can be decomposed into 

a sum of local entropies attached to each atom. This idea is widely accepted today 

since a local density of vibrational states can be defined by a projection operation : 

for each vibrational mode ωj, the contribution of atom ‘i’ is given by to mode ‘j’ is 

given by j , iV
2

α
α
∑ where Vj is the normalized eigen vector attached to ωj and 

Vj,iα its three components pertaining to atom ‘i’ (α = 1, 2, 3). The local entropy 

increment 
proj
i][ S∆ brought by the atom ‘i’ in the configuration containing a 

vacancy or a migrating atom at its saddle position can be calculated in a cell where 

all atoms are allowed to vibrate (the subscript ‘out’ will be dropped for brevity in 

what follows). These quantities are stored and used later to rate the values proposed 

by the elastic correction. 

 ** Equation 16 relies implicitely on the fact that a local distorsion can be 

defined in the configurations containing a defect. Let us emphasize first that the 

assumption is far from being obvious: it is not granted at all that the result of a 

static relaxation process, which is free to move the p neighbours of a given atom in 

all directions for the purpose of an energy minimization (3p independent 

coordinates) can be reasonably accounted for by a mere distortion having only 6 

independent components. It will be seen later when analyzing the results that it is 

however reasonably so. 

 Any local quantity depending on the local strain could be used to extract the 

strain components : for instance, with the interatomic potentials under examination, 

the energy could be a valuable candidate since it has been defined locally thanks to 

equation 17. Indeed, it is commonly used to explore energy changes versus lattice 

expansion or contraction, but it is not a sensitive detector of a more complex local 

deformation because it takes too rough an average which levels off the differences 

between extended and compressed bonds and is insensitive to bond angles. As an 

illustration, sites with a cohesive energy larger than that of the bulk were found in a 

grain boundaries, although the local atomic density is lower, as well as in the 

vicinity of a free surface [36-38]: the corresponding energy change with respect to 
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the undeformed bulk being negative, it cannot be accounted for by equation 8 since 

the latter predicts only positive changes. 

 The local atomic stress, as defined above, seems to be more convenient : 

being tensorial with the same number of components as the strain, it keeps a better 

track of the relative distorsion of neighbouring bonds than the energy. The 

thermodynamical definition at work in equation 19 can be used on each site as soon 

as the energy per site can be defined, which is the case for the potentials used in the 

present study. This local stress reflects the state of the surroundings and keeps a 

detailed account of the discrete nature of matter at the atomic level (changes in 

bond lengths and of their relative orientations) : as a consequence, its rapid 

variation from one site to another in the vicinity of a discontinuity is not surprising. 

It is well known that the relaxation of atomic planes parallel to a free surface can be 

observed inward or outward, depending on the potential, and that the sign of the 

relaxation can pretty well not be uniform and change from one plane to the next: all 

these features are involved in the calculation of the stress components at the atomic 

level, and the  oscillations close to a free surface reflect these changes of the local 

neighbourhood [39,40]. It is understandable that the identification of this local 

thermodynamical stress with the mechanical stress as defined by Cauchy is 

possible only after some coarse-grain average over a region of sufficient extent has 

been performed, in order to wipe out all these local variations which can be neither 

understood nor accounted for by continuum mechanics. Several types of coarse 

graining have been proposed in the past [41-43], but it is worth noticing that all of 

them imply in their definition, the use of a bond function which is in charge of 

partitioning the energy carried by each bond between the inner and the outer part of 

the grain: the underlying geometric definition seems at least as arbitrary and 

questionable as the volume Ωi used in equation 19. Incidentally, it should be 

mentionned that the debate about the inclusion (or not) of the momentum term in 

the expression of the stress [43] is irrelevant in the present case, since only static 

relaxations are performed.  

 In the present study, the only ingredient which is actually looked for is a 

quantitative information which allows us to go back to the local strain as precisely 

as possible. The fact that equation 19 represents a true mechanical stress or not is of 

no concern :  the only important point is the fact that the information on the local 

strain is more faithfully transmitted by the thermodynamical stress defined on each 

atomic site than by a mechanical stress which implies a coarse-graining. To prove 

the relevance of the local atomic stresses as defined by equation 19 for the present 

problem, the following calculations were done. First, the quantities 

proj
 iout[ S ]∆ were calculated through the determination of the eigenmodes ωj and 

the corresponding eigenvectors in the perfect and imperfect configurations, when 

all atoms in the cell were allowed to vibrate. Then the entropy increments predicted 

by the elastic correction 
elast
 iout[ S ]∆ were calculated in the same defect 

configurations with the same atomic positions for an embedded cluster containing 

54 atoms around the vacancy (and 445 atoms in the outer region), while using the 

atomic stress as defined by equation 19. The two sets of entropy changes are 

compared on figure 1. The elastic corrections for the 445 atoms of the outer region 

are plotted as a function of their projected counterparts. Due to the residual 

symmetries of the saddle configuration, the number of distinct points of the plot is 

smaller than the number of atoms in the outer region. At the centre of the diagram, 

are plotted the corrections of minor amplitude observed for those sites which are 

far from the defect and associated with weak distortions; on the two wings, the 

corrections of larger amplitude are obtained for those atoms of the outer region 

which are closer to the boundary of the inner region defining the embedded cluster. 

Were the elastic correction perfect, then all the points would lie on the straight line.  
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It is not the case, but it can be seen that the elastic correction is surprisingly good : 

the idea that the knowledge of the local deformation reproduces reasonnably the 

change in local entropy is thus physically sound. A detailed analysis of the 

correction on each site (graph not displayed here) shows that the elastic 

approximation is never in error concerning the expected sign of the correction. 

The same calculation was done again while replacing the stress at the atomic level 

by an average including the stress on the site itself and an increasing number of 

neighbours (12, 18, 42 or 54). The results for a stress averaged on 13 sites are 

displayed on figure 2 : it is clearly seen that the scattering around the straight line is 

markedly broader: the same detailed analysis as above shows that now a noticeable 

fraction of the corrections proposed by the elastic approximation have a wrong sign 

when compared to their projected counterparts. When the stress is further averaged 

on more atoms, the corrections deviate still more strongly from the straight line : 

the larger the range of the coarse graining, the worse the results. As a conclusion, 

the most relevant information about the local disparities at the atomic scale, which 

is at work in the elastic correction, is progressively lost in the coarse grained 

averaging. 

 It is worth noticing that similar conclusions were reached in the study of 

point defect formation in amorphous silica: the formation energy of a Si vacancy 

depends on the Si site where it is formed. The  distribution of formation energies is 

quantitatively explained by invoking the local pressure calculated on each Si atom 

prior to the vacancy formation. If this local pressure is replaced by the average 

pressure on the SiO4 tetrahedron (one Si atom and its 4 neighbouring O atoms), the 

tight correlation between formation energy and pressure vanishes and no 

explanation can be proposed to account for the distribution of formation energies 

[44-46]. Together with our results reported above, these findings should not be a 

surprise: after all,  which better sensor of the surroundings can we think of than the 

atom itself immersed in the force field of its neighbours ? 

 The last point to examine is the presence of a strain gradient in the 

configurations to be studied. When looking at two first neighbour atoms ‘i’ and ‘j’, 

the strain gradient induces a change of their force constants i kC
 

αβ  and j kC
 

αβ : the 

leading contribution to the production of eigen modes is provided by the diagonal 

terms. A close inspection of the force constant matrix in the distorted configuration 

shows that the diagonal coefficients i iCαα  and j jCββ differ by no more than a fraction 

of a percent when passing from site a ‘i’ to its first neighbour ‘j’, provided both lie 

in the outer region. As a consequence, the change of the entropy is expected to be 

well within the errors implicitely introduced by the elastic approximation. 

 

3.3.3 Application to defect studies. We will apply our approach to the formation of 

single-di-and-tri vacancy and of dumbbell interstitial as well as to the migration 

jump of these defects. The entropy difference between the perfect state and the 

imperfect one is made of two contributions. The contribution ∆Sin of the inner 

region is given by: 

(N* N ) / N*d
in

k
S Log( '/ )

2

−∆ − ∆ ∆�      (23) 

where N* and N*-Nd denote the number of atoms in the inner region of the perfect 

and imperfect state respectively (Nd = -1, -2, -3 for a single-di-tri vacancy and +1 

for a dumbbell). The contribution ∆Sout of the outer zone is given by equation 14.  

 The pre-exponential factors νo of the jump frequencies are evaluated 

according to transition rate theory [47-48] for the inner region, the eigen modes of 

which must be calculated in the starting stable configuration and in the saddle 
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configuration at the top of the energy barrier. The elastic correction is then applied 

to each site of the outer region after calculating the corresponding entropy change 

when going from the stable to the saddle configuration: 

{ })

3(N* N )
d

stable
i

saddle stablei 1
o out out3(N* N ) 1

d
saddle
i

i 1

1
  exp ( S S / k

2

−

=
− −

=

ω
ν = ∆ − ∆

π
ω

∏

∏
  (24) 

For the case of defect clusters, the only jump studied here is non dissociative: the 

direction and the jumping partner are chosen in such a way that the structure of the 

defect cluster is restored (apart from a rotation) after the jump has been completed. 

In all cases, the atomic configurations used for the calculation of entropies are the 

results of a static relaxation involving all the atoms of the simulation cell (N=2048 

atoms); the relaxation is conducted under a constant external zero pressure as 

described in [3]. In the final stable or saddle states, the component of the forces are 

of the order of 10
-6

 eV Angs
-1

. The size of the inner region ranges from 55 to 791. 

The entropies are also calculated in the supercell approach for N = 256, 500, 864, 

1372 and 2048 as benchmark data. 

 

4. Introduction of the empirical potentials used in the study and results 

 

Before reviewing the four potentials used in this work, we draw the reader’s 

attention on an important preliminary point which has been already mentionned by 

previous authors, namely the continuity of interactions at higher order [e.g. 15]. It 

is shown below that a discontinuity of third order can produce systematically faulty 

values of entropies. We illustrate this point with a simple potential of Finnis-

Sinclair type in the subsequent section. 

 

4.1. Possible deleterious effects of a third order discontinuity on the entropy 
 

A simulation cell containing 864 atoms interacting through potential FS-PT345-

2.00 described in Appendix B is strained by a pure shear involving no volume 

change (strain n°13 in table 1 with an amplitude ε  ≤ 10
-3

) and the calculated 

entropy change in units of k is plotted versus the square of the shear strain 

amplitude 2ε  in figure 3. The expected quadratic behaviour, which is predicted by 

equation 14, is not obtained and a quasi linear variation is observed (top curve with 

a slope equal to 1/2). It is however easy to check that a new calculation, switching 

the interactions to either FS-PT345-1.99, FS-PT456-2.00 or FS-PT456-1.99 cures 

entirely the anomaly and restores for the three lower curves in figure 3 the expected 

slope. The curves corresponding to the same cutoff radius 1.99 are superposed 

because the difference of the terminating polynomials does not play any role; the 

curve corresponding to the cutoff 2.00 is slightly higher since it establishes a 

vibrational connection between more distant neighbours.  

Similar conclusions are reached for the formation entropies of a vacancy or a 

dumbbell: the potential FS-PT345-2.00 exhibits anomalously large values. The 

anomaly is cured by using the other versions of the potential. It is worth noticing 

that, in all cases, the energies are very close to one another (table 3). 

 

(insert table 3 around here) 

 

This faulty behaviour comes from the fact that the vibrational entropy is a 

function of the second derivatives of the interactions, and that a distortion of the 

lattice lets implicitly come into play higher order derivatives. In the present case, 
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the origin of the flaw lies in the polynomial termination through which the 

interactions decay to zero: this polynomial has a discontinuity of its third derivative 

at rcut which was set equal to the fourth neighbour distance exactly. For the 

homogeneous shear strain under examination, some of the fourth neighbours enter 

or leave the interaction range: these displacements include unfortunately the 

discontinuity and induce an abrupt variation of the force constants. The flaw is 

cured, either by choosing a slightly smaller cutoff radius (1.99 isntead of 2) 

keeping the fourth neighbours out of reach, or by using a polynomial of higher 

order which changes the discontinuity at rcut from third to fourth order. Let us 

notice that we did not suppress the discontinuity of the third order derivative 

around rrac, but the latter distance is too far from any of the neighbour distances 

involved in the calculation of perfect or imperfect configurations to spoil the 

results. 

It could obviously be argued that the choice of the cutoff distance in FS-

PT345-2.00 is very clumsy. Indeed, around single point defects, the strains of the 

embedding lattice are known with a good precision and the possible discontinuities 

of the potential (cutoff distance for the physical interactions, radius where an 

analytical form switches to another ...etc) can be carefully tuned in such a way that 

none of the neighbour shells will ever cross these points during the lattice 

deformation leading from the perfect reference state to the imperfect one. The 

choice is much more difficult, or even impossible, when dealing with situations 

involving large strains around complex defects like those produced  by saddle 

configurations, interstitial or vacancy clusters, coherent interfaces with a large size 

misfit, grain-boundaries or local rearrangements during the collapse of a vacancy 

cluster into a vacancy loop ...etc. In all these cases, one can never be sure that some 

shell of neighbours will not cross a point where a third derivative of the potential is 

discontinuous. This is the reason why the analytical formulations of interactions for 

FS-ED-2.82 have been chosen with a damping term avoiding any discontinuity of 

any order. 

It is worth noticing that this basic requirement of continuity was not always 

met in practice in previous investigations: although the basic interactions are 

evaluated with more and more sophisticated data including ab initio results, the 

quality of the final representation can be damaged by a functional expression which 

does not meet the requirement of continuity for high order derivatives. For 

instance, in [49] the embedding function is represented by cubic splines, the latter 

introducing as many discontinuities of the third order derivative as the number of 

mesh points; in [50] the embedding function is represented by two different 

expressions on the two sides of the equilibrium density ρo with a discontinuity of 

the third order derivative at ρo; in [51] the embedding function stems from an 

equation of state represented by two different expressions on the two sides of the 

equilibrium lattice parameter ao; in this last case fortunately, the third order terms 

are identical on the two sides and the discontinuity shows up only at the fourth 

order derivative. 

 

4.2. Empirical potentials and related results 
 

The reason why we used several empirical potentials is not for the purpose of a 

quantitative comparison, which would have a minor interest: everybody knows that 

all of thems are basically wrong since none rests on a formulation of cohesion and 

atomic forces taking full account of the electronic structure. Their only virtue is to 

propose a simple phenomenological formulation of the interaction which allows a 

reasonable fit to some set of selected physical properties and experimental results. 

All the potentials examined below obey the general form of equations 17 and 18 
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above, but their pairwise and density function terms are described by very different 

analytical expressions and are fitted to different physical properties.  

Two potentials are of Finnis Sinclair type: i) the first one has a long 

interaction range with an  exponential damping function, is fitted only to four 

physical properties of bulk copper and called hereafter FS-ED-2.82; ii) the second 

has a very short interaction range, is fitted to vibrational properties of copper 

surfaces [52] and called hereafter FS-Barreteau. 

Two potentials are of EAM type: i) the first one is fitted to various properties 

of bulk copper including ab initio data [50]; we explain in Appendix B the way 

how it was modified to meet the requirement of continuity for its third derivative. 

This modified potential is called EAM-Mishin-mod; ii) the second one is 

explicitely fitted to elastic constants of second and third order [51] which have 

been experimentally determined  for long [53] and called EAM-Milstein. 

All the numerical details related to each potential are reported in Appendix B, 

including the resulting values of the elastic constants up to fourth order, the 

energetic and entropic parameters attached to the point defects under examination. 

 

4.3. Determination of entropic constants for the four potentials 
 

The entropic constants were determined using the procedure described in section 

3.2. and are gathered in table 4:  

* the first order entropic constant λ1 has a comparable magnitude for the four 

potentials: it means that similar thermal expansion coefficients are predicted;  

* if λ2 and λ3 are different from one potential to the other, the difference λ2-

λ3 has the same sign and the same order of magnitude, at least for the first three of 

them; EAM-Milstein is a special case and gives a larger result by one order of 

magnitude; 

* unlike λ2 and λ3 , the second order entropic constant λ4 has a comparable 

order of magnitude, except for the potential EAM-Mishin-mod which yields a 

value twice smaller; 

* the entropic constants λi>4 corresponding to higher order terms are very 

different in magnitude and sign and do not exhibit any noticeable trend; 

fortunately, as will be verified below, they bring a hardly detectable contribution to 

the entropy change. 

 

(insert table 4 around here) 

 

4.4. Effects of the elastic correction including shear strains 
 

We pass in review the effects of our elastic corrections on the configurations 

containing a defect enumerated in section 3.3.3. We compare the entropies obtained 

by the embedded cluster method in its original form (EC), with the elastic 

correction including pressure (ECp) and with our elastic correction including 

dilatation and shears (ECds). All the results are rated against those given by the 

supercell method (SC). The results obtained with the potentials FS-ED-2.82, FS-

Barreteau, EAM-Mishin-mod and EAM-Milstein will be displayed systematically 

in this order. 

The form of equation 11 and 14 dictates the general trend to be expected: the 

magnitude and sign of the global entropic correction depends mainly on the 

magnitude and on the sign of the relaxation volume between the reference state and 

the imperfect one, since it provides the first order term. The additional effect of 

shear strains is of second order and shows up only in those configurations where 

shear stresses (and strains) are present with a noticeable magnitude. 
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A last remark should be made here about the way with which the calculations are 

used, as well as about the relative importance of the ingredients entering the final 

results. The sites on which the elastic correction is applied are never in the close 

vicinity of the defect producing the strain; as a consequence, smaller strains than 

those used for determining the entropic constants are experienced, ranging typically 

from a few 10
-3

 to a few 10
-6

. However, we checked on preliminary calculations 

conducted on saddle configurations that the local strain tensor ηηηη could not be 

extracted with an assumption of linear relationship between stress and strain. In 

other words the expression of the energy taking into account only the second order 

terms and corresponding to the first line in equation 8 is not sufficient and higher 

order terms are mandatory. As an illustration, we compare below in table 5 the 

entropic corrections evaluated in the stable and saddle configurations obtained with 

the potential FS-ED-2.82: i) with the only knowledge of the local pressure as 

proposed by equation 21 (or 22) and denoted by stable
outS (press)∆  and 

saddle
outS (press)∆ ; ii) with the dilatation contributions stable

outS (dilat)∆ , saddle
outS (dilat)∆  

and shear contributions stable
outS (shear)∆ , saddle

outS (shear)∆ as proposed by equation 14 

of our approach. 

For the latter, a preliminary remark should be made. The total entropy 

increase defined by equation 14 can be unambiguously partitionned into a first 

contribution ∆SO1 coming from the unique first order term and a second 

contribution ∆SO>1 grouping higher order terms all together. Conversely its 

decomposition into contributions stemming from dilatation and shears respectively 

is somewhat arbitrary for two reasons: i) working with non linear elasticity, the 

definition of the pure dilatation part {ηi}
d
 of the initial strain {ηi} according to 

{ηi}={ηi}
d
 + {ηi}

s
, defines a second term {ηi}

s
 which is no longer a pure shear 

strain because it contains dilatation terms of second or higher order; ii) the fact that 

equation 14 contains non linear terms prevents us from decomposing formally the 

total entropy increase into two independent contributions corresponding to {ηi}
d
 

and {ηi}
s
 respectively, because cross terms will unavoidably show up which mix 

components of {ηi}
d
 and {ηi}

s
. In our case (small strains around point defects), we 

can however verify that these cross terms have a negligible contribution as follows. 

With equation 14, we can calculate independently from each other the entropic 

contributions dS(dilat)
η

∆  and sS(shear)
η

∆  due to a pure dilatation {ηi}
d
 and an 

impure shear {ηi}
s
 respectively. It is then checked readily that dS(dilat)

η
∆  and 

sS(shear)
η

∆ are nearly equal to ∆SO1 and ∆SO>1 respectively, to better than one 

percent. This is the reason why the first order term in equation 14 will be 

considered, at least quantitatively, as the contribution of dilatation and displayed as 

such in subsequent table 5. 

The dilatational and shear contributions are calculated with stresses derived from 

an expression of the energy taking into account second order terms, second and 

third order terms and second, third and fourth order terms in equation 8, the 

corresponding results being denoted by O(2), O(3) and O(4) respectively. The 

expressions used for the entropic correction are of the corresponding order. 

(insert table 5 around here) 

For the stable configuration, the final correction is negative, as expected, since the 

relaxation volume for vacancy formation is negative. The results O(2), O(3) and 

O(4) are very close. The ECp and ECds approaches give the same result, which 

was a priori not obvious. In a continuous medium treated with isotropic elasticity 
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the shear strains around a spherical hole have only tangential components. In the 

discrete medium made up of a FCC lattice, the pattern of internal stresses is more 

complicated: the dense rows <110> running through the vacancy site are under 

tension while the others are compressed, thus leading to non zero radial shear 

components. But their influence on the final result is apparently very weak. 

For the saddle configuration, a detailed inspection of the atomic sites shows that 

extracting the strains from stresses through formulas of increasing order enhances 

(algebraically) the local dilatation and decreases the weight of its negative 

contribution compared to that of shears. The final contribution due to dilatation 

remains however negative: indeed, the lattice parameter for the saddle point 

configuration is smaller than the parameter for the perfect lattice because the 

positive migration volume does not compensate entirely the negative relaxation 

volume observed during the vacancy formation. The contribution of the shears is 

conversely rather insensitive to the order of the approximation, which is probably 

due to the small strains experienced locally. As a result, the final entropic 

correction ECds is found negative with O(2) but it becomes positive with O(3); the 

additional contribution brought by O(4) terms is hardly detected. This correction 

ECds is to be compared to the ECp one, which is found negative. It illustrates the 

point already mentionned above in section 3.3.1: in [19], the change of pressure is 

assumed to stem only from a dilatation and it neglects the fact that shears bring also 

a quadratic contribution to pressure. In the particular case of a saddle point, the 

contribution of the shears becomes larger than the contribution of dilatation. 

All our results displayed below and denoted by ECds are obtained after extracting 

the deformation through O(4) and evaluating the entropies with λi≤4. 

 

4.4.1. Formation entropies. The entropic corrections defined above are displayed 

in figure 4 for the dumbbell interstitial. 

 For the dumbbell, the EC values are much smaller than the SC ones. The first 

order term of the elastic correction stemming from the positive relaxation volume is 

positive and very large: the ECp values are higher than the EC ones by several k 

(figure 4). The ECds values are slightly higher than the ECp ones by one k at most.  

Although dissociated along a well defined direction, the dumbbell defect produces 

noticeable shear strains only in its close vicinity; the distortion of the lattice at 

larger distances is close to what would be produced by a center of dilatation of 

spherical symmetry, a feature which is reflected by three nearly equal eigen values 

of its elastic dipole tensor [20]: as a result, the contribution of the shears to the 

elastic is not very large. 

 For vacancy defects (graphs not shown for sake of space), the EC values are 

higher than the SC values. The relaxation volume is negative: as a consequence, the 

first order term of the elastic correction due to pressure or dilatation will bring a 

negative contribution. This correction makes the ECp and ECds results definitely 

closer to those obtained by supercell method, with some overshoot. For the single 

vacancy, the effect of shears is negligible which means that the vacancy behaves 

elastically as a contraction center of spherical symmetry: the ECds results are 

practically superposed upon the ECp ones. Conversely the poorer symmetry of di- 

and tri-vacancy gives rise to a small but detectable contribution of shears which 

gives a further positive correction by a fraction of k.  

It is worth noticing that the amplitude of the elastic corrections are comparable for 

the four potentials, although the absolute values of the entropies (with or without 

the corrections) are noticeably different from one another. 

In all cases, as expected, the second order correction due to shears decays more 

rapidly than the first order correction due to dilatation and is visible only for the 

smallest sizes of the inner region: it becomes hardly detectable as soon as N* 

becomes larger than 500. 

(insert figures 4a to 4d around here) 
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4.4.2. Pre-exponential factor of jump frequencies. Saddle configurations are good 

candidates for involving large shear strains; but different situations are met 

according to the nature of the jumping defect. For sake of space we show only the 

migration results on figure 5 for the vacancy. 

For the single vacancy, the migration volume is positive, and the relative 

position of the data points on the graph is the same as the one observed for the 

dumbbell formation. But now the additional contribution of the shears, for the 

smallest sizes of the inner region, is of the same order of magnitude as the 

contribution of pressure or dilatation alone. 

For the di-vacancy and the tri-vacancy, the migration volumes are negative 

and the graphs look like those displayed for the formation of these defects. The 

effect of shears is more pronounced for the divacancy than for the tri-vacancy. As 

noticed in Appendix B for the saddle point configuration of the tri-vacancy jump, 

the jumping atom is close to the center of the tetrahedron made up by the three 

vacancies and the atom on their starting stable sites: this restores a more spherical 

symmetry for the radial displacements and decreases correspondingly the shears. 

For the dumbbell, the migration volume is positive but very small. The same 

qualitative behaviour as the vacancy case is obtained but the overall change of the 

pre-exponential factor being less than 40% over the whole range swept by 1/N*, 

the graph does not look spectacular. 

 

(insert figures 5a to 5d around here) 

 

5. Conclusion 

 

The entropy change under a general strain can be expressed as a function of the 

strain components at all order with the help of entropic constants, which play for 

the entropy the same role as the elastic constants for the energy. 

The use of non linear elasticity implies that a pressure change can be due to a 

dilatation or to a shear strain: it destroys the one-to-one correspondence between 

pressure and dilatation on one hand and shear stresses and shear strains on the 

other, which was the rule for linear elasticity. As a consequence the canonical 

variables to be chosen for expressing energy and entropy changes are the strain 

rather than the stress components. 

Using the approximation of the embedded crystallite for the calculation of 

vibrational entropies attached to defect configurations, it has been confirmed that 

the elastic correction associated with the distorsion of the surrounding matrix is of 

noticeable importance. 

Although the first order dilatational term brings in all cases a leading contribution, 

higher order term due to shear strains adds a noticeable improvement in all the 

situations of lowered symmetry, namely all those distorted configurations around 

defects or defect clusters in their stable or saddle configuration. The contribution of 

shear strains can be of the same order of magnitude as the dilatation one for saddle 

configurations. 

It was further demonstrated that the main ingredient at work in the elastic approach, 

namely the local distortion, could be deduced in a meaningful way from stresses 

defined at atomic level. 

These results are obtained with several empirical potentials, which differ from one 

another by various analytical formulations of their ingredients or by their 

interaction range. It suggests that the effect we enlightened in this study is general. 
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Appendix A: Calculation of 4
th

 and 5
th

 order elastic constants 

through lattice summations 
 
For the general form of the potential adopted here, the energy per atom ‘i’ is 

assumed to be expressed as: 

1
i ij i2

i j

U V(r ) F( )

≠

= − ρ∑     (A1) 

where iF( )ρ  is some (non linear) embedding function of the local density iρ , the 

latter being a sum over interacting neighbors i ij
i j

(r )
≠

ρ = Φ∑ . V(r) and (r)Φ  stand 

for two-body interactions. 

The n
th

 order elastic constants are defined as the n
th

 derivatives of the energy with 

respect to the components of the applied strain and can be written synthetically 

under the form:  

{

n

IJK...

O I J Kn

U1
C

...

∂
=
Ω ∂η ∂η ∂η

     (A2) 

where OΩ stands for the atomic volume in the reference state and I, J, K are the 

Voigt indices . The derivatives 
I

∂
∂η

 are calculated via space derivatives 
r

∂
∂

of the 

functions V and Φ , where r stands for the distance between some lattice site 

chosen as the origin and any other lattice site. If O 1 2 3r x a x b x c= + +
rr r r

, where 

(a,b,c)
rr r

 stands for some orthonormal set of basis vectors, is changed through the 

strain into 1 2 3r x a ' x b ' x c '= + +
ur ur urr

, then the change of distance can be expressed in a 

condensed form as 2 2
O I I

I

r r 2 X− = η∑  where XI stands for the product of 

coordinates xkxl. From this expression stems the derivative I Idr / d X / rη = . 

The calculation of the first derivatives of the energy U, which are nothing but the 

internal stresses resulting from the applied strain, is then straightforward: 

I

1 1
O I 2 2

I I I Ir r r

U dV dr dF d dV dr dF d dr

dr d dr d drd d d d

∂ ρ Φ
Ω σ = = − = −

ρ ρ∂η η η η η∑ ∑ ∑  (A3) 

where the summations over ‘r’ are to be performed on all neighbours which interact 

with the central atom chosen as the origin. Hence the final formal expressions: 

1
O I I I2

dF
SV S

d
Ω σ = − Φ

ρ
    (A4) 

with the condensed notations 

 I I

I Ir r

dV dr d dr
SV                      S

dr drd d

Φ
= Φ =

η η∑ ∑ .  (A5) 

Denoting the products XI XJ by XIJ, XI XJ XK by XIJK ... and extending the 

condensed notation to higher order derivatives of V and Φ  according to : 
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2
IJ

IJ 2 2

3 2
IJK

IJK 3 2 2 3

4 3 2
IJKL

IJKL 4 3 2 2 3 4

5 4 3 2
I

IJKLM 5 4 2 3 3 2 4

r

r

r

r

Xd f 1 df
Sf ( )

r drdr r

Xd f 3 d f 3 df
Sf ( )       

r drdr dr r r

Xd f 6 d f 15 d f 15 df
Sf ( )

r drdr dr r dr r r

Xd f 20 d f 45 d f 105 d f 105 df
Sf ( )

r drdr dr r dr r dr r

= −

= − +

= − + −

= − + − +

∑

∑

∑

∑ JKLM
5

  
r

        (A6) 

where ‘f’ stands for the V or Φ  function. The expressions of the second, third, 

fourth and fifth order elastic constants are then easily deduced: 

 
2

1

IJ IJ IJ I JO 2
2

dF d F
C SV S S S

d d
Ω = − Φ − Φ Φ

ρ ρ
       (A7) 

1
IJK IJK IJK2

2

I JK J KI K IJ2

3

I J K3

dF
C SV S

d

d F
                             S S S S S S

d

d F
                             S S S

d

Ω = − Φ
ρ

 − Φ Φ + Φ Φ + Φ Φ ρ

− Φ Φ Φ
ρ

O

      (A8) 

1
O IJKL IJKL IJKL2

2
I JKL J KLI K LIJ L IJK

                     
2

IJ KL JK LI KI JL

3
IJ K L IK J L IL J K

3
JK I L JL I K

dF
C SV S

d

S S S S S S S Sd F

d S S S S S S

S S S S S S S S Sd F
               

d S S S S S S

Ω = − Φ
ρ

 Φ Φ + Φ Φ + Φ Φ + Φ Φ
−  
ρ  Φ Φ + Φ Φ + Φ Φ 

Φ Φ Φ + Φ Φ Φ + Φ Φ Φ +
−
ρ Φ Φ Φ + Φ Φ Φ KL I J

4

I J K L4

S S S

d F
               S S S S

d

 
 
 + Φ Φ Φ 

− Φ Φ Φ Φ
ρ

 (A9) 

Page 22 of 55

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

1
O IJKLM IJKLM IJKLM2

IJK LM IJL KM IJM KL IKL JM IKM JL
2

ILM JK JKL IM JKM IL JLM IK KLM IJ2

IJKL M IJKM L IJLM K IKLM J JKLM I

dF
C SV S

d

  S S S S S S S S S S

d F
S S S S S S S S S S

d
S S S S S S S S S S

Ω = − Φ
ρ

 Φ Φ + Φ Φ + Φ Φ + Φ Φ + Φ Φ
 
 − + Φ Φ + Φ Φ + Φ Φ + Φ Φ + Φ Φ

ρ  
+ Φ Φ + Φ Φ + Φ Φ + Φ Φ + Φ Φ  

IJK L M IJL K M IJM K L IKL J M

IKM J L ILM J K JKL I M JKM I L

JLM I K KLM I J
3

IJ KL M IJ KM L IJ LM K IK JL M3

IK JM L IK LM J

  S S S S S S S S S S S S

S S S S S S S S S S S S

S S S S S S
d F

S S S S S S S S S S S S
d

S S S S S S

Φ Φ Φ + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ

+ Φ Φ Φ + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ

+ Φ Φ Φ + Φ Φ Φ

− + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ
ρ
+ Φ Φ Φ + Φ Φ Φ IL JK M IL JM K

IL KM J IM JK L IM JL K IM KL J

JK LM I JL KM I JM KL I

IJ K L M IK J L M IL J K M

4
IM J K L

4

S S S S S S

S S S S S S S S S S S S

S S S S S S S S S

  S S S S S S S S S S S S

S S S Sd F

d

 
 
 
 
 
 
 
 + Φ Φ Φ + Φ Φ Φ 
 + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ 
 + Φ Φ Φ + Φ Φ Φ + Φ Φ Φ  

Φ Φ Φ Φ + Φ Φ Φ Φ + Φ Φ Φ Φ

+ Φ Φ Φ Φ
−
ρ

JK I L M JL I K M

JM I K L KL I J M KM I J L

LM I J K

5

I J K L M5

S S S S S S S S

S S S S S S S S S S S S

S S S S

d F
    S S S S S

d

 
 
 + Φ Φ Φ Φ + Φ Φ Φ Φ
 
+ Φ Φ Φ Φ + Φ Φ Φ Φ + Φ Φ Φ Φ 
 
+ Φ Φ Φ Φ  

− Φ Φ Φ Φ Φ
ρ

 

(A10)
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Appendix B: Parameters of the interatomic interactions 

under examination for pure copper 
 

After a short description of the basic ingredients entering the definition of each 

potential, the resulting elastic constants (second, third and fourth order) are 

gathered in table B1, the formation and migration energies, volumes and entropies 

in table B2 at the end of the Appendix. Only those remarks specific for each 

potential are kept within the following subsections. 

For all potentials, the tri-vacancy energy barrier has a double hump. In the 

starting configuration, the jumping atom is located on (0,0,0) and the tri-vacancy 

on (1,1,0) + (0,1,1)+(1,0,1); the jump exchanges the atom and the vacancy initially 

located on (1,1,0). The saddle is found along <111> at approximately (0.25, 

0.25,0.25), the exact values depending on the potential. Then for all potentials, an 

intermediate metastable position shows up, the jumping atom being located at 

(1/2,1/2,1/2). The depth of the well of metastability depends sharply on the range 

of the potentials; it corresponds to a shallow minimum for most potentials but one. 

The completion of the jump is performed when the atom crosses a second barrier of 

the same height in the <11 –1> direction. 

 We will deal only with interactions describing the total energy of the atomic 

assembly by: 

1

ij i i2
i i j i i

U V(r ) F( ) U
≠

= − ρ =∑ ∑ ∑ ∑    (B1) 

where V(rij) stands for the pairwise part, F for the embedding function and ρi is a 

local density using a pairwise function Φ(rij)  and given by : 

 i ij

i j

(r )

≠

ρ = Φ∑ .     (B2) 

This formulation allows to define an energy per atom denoted by Ui  and given by : 

1

i ij i2
j i

U V(r ) F( )
≠

= − ρ∑   (B3) 

B.1. Finnis-Sinclair type with various polynomial terminations and cutoff at 

finite distance (FS-PT-xxx) 
 

The interactions are modelled through exponentially decaying functions described 

by 
ij ij o

V(r ) exp( p r / r )= α − ,  oijij
(r ) exp( 2q r / r )Φ = − ; the embedding function is 

given by 1/ 2
iiF( )ρ = βρ . ro stands for the first neighbour distance in the perfect 

crystal at rest. The four adjustable parameters ,  p,  ,  qα β  are fitted on the cohesive 

energy Ecoh, the bulk modulus B, the lattice constant ao at rest (zero temperature 

and pressure), the unrelaxed formation energy of the vacancy Ef, while taking into 

account the first, second and third neighbour shells only. 

Truncating the potential between third and fourth neighbours consists in 

replacing the exponential by a polynomial of fifth order, between some distance 

rrac arbitrarily chosen beyond the third neighbour distance (rrac = 1.825 ro) and the 

cutoff distance (rcut = 2 ro) of the form : 
3 4 5Pol(x) = ax + bx + cx     (B4) 

where x stands for r-rcut.

 

The polynomials used for V(r) and (r)Φ  will be called 

P(x) and P’(x)  respectively: the coefficients a, b, c for P(x) and a’, b’, c’ for P’(x) 

are determined in such a way that the derivatives are continuous up to second order 
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included at rrac. By construction, the energy, the force and the curvature are zeroed 

at the cutoff distance rcut. This potential fitted on copper (Ef =1.28 eV, Ecoh=3.54 

eV, ao=3.615 Angs, B=0.864583 eVAngs
-3

) is called FS-PT345-2.00 (‘PT’ for 

‘polynomial termination’; ‘345’ for the exponents appearing in P(x) and P’(x); 2.00 

for the value of rcut / ro). The coefficients are given by: 

o ocut

0.1763567  eV        p 10.65757        

1.244282     eV        q 2.310711         

r 2.556191 Angs        r =2.00 r   

α = =

β = =

=

 

The polynomial Pol(x)  can be replaced by a polynomial of higher order, namely 
4 5 6ax + bx + cx , the coefficients of which are fitted to comply the same 

conditions at rrac. 

Three other variants of this potential are then defined combining the order of Pol(x) 

together with the cutoff distance, namely FS-PT345-1.99, FS-PT456-2.00 and FS-

PT456-1.99, which will be used in section 4.1. 

 

B.2. Finnis-Sinclair type with exponential damping and cutoff at finite 

distance (FS-ED-2.82) 

 

The expressions of the nude interactions used in section B.1 are damped by an 

exponential (hence the letters ‘ED’ in the name) which ensures that the functions 

and all their derivatives at any order vanish at the cutoff radius. 

{ } { }
{ } { }

ij ij o pair cut ij

ij ij phi cut ijo

V(r ) exp p r / r   exp a /(r r )

(r ) exp 2q r / r  exp a /(r r )

= α − −

Φ = β − −
      (B5) 

The cutoff distance was chosen in order to yield approximately the same values of 

V(r) and (r)Φ  at first, second and third neighbour distances as those of the nude 

interactions in FS-PT456-2.00; the coefficients apair and aphi of the damping 

functions are chosen in such a way as to keep a positive curvature all along the 

curve. Preliminary graphic examination shows that the seventh neighbour shell 

must be included, even if its numerical contribution is very small. The 

corresponding coefficients are listed hereafter: 

pair

2
phi

o ocut

0.2356438  eV        p 10.26788               a 1  Angs        

2.476014  eV         q 2.226221               a  2  Angs         

r 2.556191 Angs       r 2.81957444  r   

α = = = −

β = = = −

= =

 

 

B.3. Finnis-Sinclair type with exponential damping and no cutoff (FS-

Barreteau) 

 

This potential was originally designed to study vibrational and thermodynamical 

properties of Cu surfaces. The interaction range is kept small enough to match 

specific physical properties of copper surfaces, namely a correct sign and 

magnitude for the surface relaxation and high frequency (optical like) vibrational 

modes at surfaces clearly separated from those of the bulk by a gap of known 

magnitude : it retains mainly the contribution of first and second neighbours 

through the use of a damping function ‘fc’ which is tuned to decay exponentially 

beyond a threshold radius rc slightly larger than the second neighbour distance: 

{ } 1
ij cfc 1 exp (r r ) /  [ ] −= + − δ . The interactions are described by 
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ij o ij

p
V(r ) (r / r )= α and oijij

(r ) exp( 2q r / r )Φ = − ; the embedding function is given 

by 2 / 3
iiF( )ρ = βρ . 

The damping function fc decreases very fast from 0.9997 at second neighbour 

distance to 4.1 10
-10

 at fourth neighbour distance. Although such a formulation 

requires in principle no cutoff radius, we used one set equal to 2.25 ro between 

fourth and fifth neighbours in order to avoid an artificially null elastic constant 

C456 as mentioned in [28] and we checked that this modification did not bring any 

detectable change in the energies or entropies. 

The corresponding coefficients are listed below: 

o c o

0.41112644734228  eV         p 7.2055121109404       

1.1021047271284     eV        q 2.2205754785209 

r 2.55265548  Angs                 r 1.5748307 r                  0.05

α = =

β = =

= = δ =

 

For the migration of the tri-vacancy, the saddle point configurations raised 

difficulties; although the final state was relaxed correctly (residual force 

components as low as 10
-5

 eV Angs
-1

), several imaginary frequencies were found 

instead of one as expected.  

The interaction range of this potential is so short that for the trivacancy jump, the 

local minimum in the intermediate metastable position becomes more stable than 

the stable starting configuration. The barrier top is somewhere around (0.25, 0.25, 

0.25). For the dumbbell, no reasonable saddle configuration could even be found 

with the drag method and more sophisticated algorithms should be used. 
 
B.4. EAM-Mishin-mod 
 

The original version of this potential has a pair term close to a Morse-function with 

a shallow minimum around the equilibrium distance ro. The density function is 

monotously decreasing and the damping function for the two contributions is a 

rational fraction of fourth order. Additional short ranged terms are used to harden 

the repulsion at close approach distances: 

The embedding function is represented by : 
4

1 2 n 2
o 2 o n o2

n 1

1 2 3 4
2 o 1 o o2

3
2 o

o 1

F( ) F F ( ) q ( )

F F ( ) q ( ) Q ( )
F( )

1 Q ( )

+

=

ρ = + ρ −ρ + ρ −ρ

+ ρ −ρ + ρ −ρ + ρ −ρ
ρ =

+ ρ −ρ

∑
    (B6) 

for ρ <  ρO and ρ > ρO respectively. The density ρO  is further normalised to unity. 

Choosing for the embedding function different analytical formulas around the 

equilibrium value ρO of the density leads to a discontinuity of its third order 

derivative. As a consequence, the calculation of entropies of a configuration 

containing a defect (vacancy, dumbbell, saddle configuration) might be altered by 

this ill-placed discontinuity because all these configurations involve a probing of 

F(ρ) on the two sides of the discontinuity. It was checked, however, that in the 

present case the consequences are not too deleterious: the differences are negligible 

for the energies and for the activation volumes; for the entropies, when noticeable, 

they remain small enough to be neglected. 

The embedding function was replaced by a function having none of the 

drawbacks enlightened above. It is possible to reproduce the results already 

published with the original version of this potential through a simple fitting of the 

N-body function by a fifth order polynomial for some neighbourhood of ρO. For 

defect calculations (formation or migration), it can be checked that the range of ρ  
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values which is probed is rather narrow 0.5 < ρ/ρO <1.5. As a consequence, a 

polynomial function of the form  
4

i+1
o i o

i=1

+F(ρ) = q q (ρ -ρ )∑     (B7) 

was fitted to the original values of the embedding function (available at http://cst-

www.nrl.navy.mil/ccm6/ap/eam/index.html) in this interval and the coefficients 

were found to be :  

o 1 2

3 4

q  2.2823539             q   0.733148257        q  0.763132346

q    0.124172653          q  0.683385904

= − = = −

= =
 

This modified analytical form of the embedding function was used to calculate the 

entropy change under strain. The basic quantities pertaining to defect formation and 

migration are gathered in table B2 and are very close to the ones published for the 

original version. 

 
B.5. EAM-Milstein  
 

The potential was primarily designed to account for second and third order elastic 

constants. For that purpose, the equation of state (EOS) is modified by replacing, in 

some range around  the equilibrium lattice parameter ao, Rose’s original expression 

by a seventh order polynomial. The values of all the coefficients can be found in 

the original paper, taking due account of the fact that γi , ηi and A must be divided 

by 1.60219. The EOS function is continuous up to third order only. 

However, no functional form for F(ρ) was proposed in the original paper and we 

explain hereafter the way how we designed one. The values of ρ and F(ρ) were 

collected by varying the lattice parameter in the range [0.8 ao : 1.5 ao]. The value of 

ρ at ao is denoted by ρo and used later on to normalize the original expression of the 

density. The resulting normalised values of ρ belong to the interval [0.3 : 15]. In 

this range, the embedding function F(ρ) can be represented fairly well by an 

expression of the form: 

{ } { }jp-, jp+ jq-, jq+F(ρ) = exp P - exp Q    (B8) 

where Pjp-,jp+ and Pjq-,jq+ are polynomials containing powers of  ρ ranging from ρjp-
 

to  ρjp+
and from ρjq-

 to  ρjq+
 respectively, where jp- and jq- are negative, jp+ and jq+ 

are positive: 
jp jq

i i

jp jq

       P p(i) r Q q(i) r
+ +

− −
= =∑ ∑ .   (B9) 

The coefficients are then determined by a least square fit of the differences between 

the trial function and the target values. Numerous fits were tried and the best ones 

contained an equal number of positive and negative powers. The optimum was 

found for P-3:3 and Q-3:3 the coefficients of which are given below : 
-1 -2

           

-1 -1

p(-3)  1.33414425293426   10 q(-3)  1.56864346323235   10

p(-2)  1.74078181863972   10         q(-2)  1.04088096867450   10

p(-1)  2.04037766897627                 q(-1)  1.141683

= − = +

= + = −

= − = +

              

-1

-1

-3 -2

94156699  10

p(0) + 2.46163195696694                 q(0)  8.57530003401110  10

p(1)  8.58259043509680   10 q(1)  8.33014047222441  10

p(2)  4.87850283177439                

= = +

= − = −

= −

              

-3

-1 -5

 q(2)  1.47083060315825   10

p(3)  2.81065015825138   10 q(3)  4.97499743917570   10

= +

= − = +

 

In some interval denoted by [ρmin : ρmax ] around ρo, the analytical representation 

is systematically too high (by 10
-5 

relative) and the minimum is not located exactly 
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at ρo =1. In this interval we subtracted a further exponential   - exp(C) where C is 

also a polynomial containing powers of ρ ranging from jc- to jc+, together with two 

more diverging terms at the bounds of the above interval : 
jc

i
min max

jc

C cdiv(1) /( ) cdiv(2) /( ) c(i) r
+

−
= ρ −ρ + ρ −ρ + ∑   (B10) 

 The coefficients where fitted to the differences between the target values and those 

attained by the approximation above, together with a further constraint on the first 

three derivatives at ρo=1 : 

       

                        

-1
min

-1
max

c(-3)  1.33414425293426  10            0.86283783196531

c(-2)  1.74078181863972  10  1.0607730618120

c(-1)  2.04037766897627                   cdiv(1)  0

= − ρ = +

= + ρ = +

= − = + -1

-1

-3

-1

.14009094343182   10  

c(0) + 2.46163195696694                   cdiv(2)  0.25927328768594   10   

c(1)  8.58259043509680   10

c(2)  4.87850283177439

c(3)  2.81065015825138   10

= = +

= −

= −

= −

 

 

(insert table B1, B2 here) 

B.6. Remarks  
 

A few trends can be extracted after examining the above tables. 

With regard to elastic constants:  

* elastic constants of second and third order are reasonably similar; those 

produced by EAM-Milstein are by construction better than the others (except C123 

which could not be tuned at will with the expression of the embedding function 

adopted above); 

* for fourth order elastic constants, the last column of table B2 does not 

contain anything but a rough evaluation based on an approximate form of the 

repulsive interaction and on a value of C111 arbitrarily set equal to 12 eV Angs
-3

 

[53]. Surprisingly, the fourth order elastic constants produced by the three first 

potentials are definitely better than those produced by EAM-Milstein, although the 

latter was fitted with more refinement than the others to elastic properties.  

With regard to parameters monitoring the formation of point defects: 

* the potential FS-Barreteau is noticeably different from the others because of 

its very short range: the formation energies of vacancy defects are larger but the 

formation energy of the dumbbell is smaller; the reverse holds for the formation 

entropies;  

* EAM-Milstein exhibits systematically higher formation entropies than all 

the other potentials for vacancy defects; but the reverse is true for the dumbbell. 

 With regard to parameters monitoring the migration of point defects: 

* the pre-exponential factors do not differ from each other by more than one 

order of magnitude. 
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Table captions 
 

Table 1. Definition of the set of homogeneous strains applied to the simulation cell. 

Columns 1 to 6 give the independent components of the strains; column 7 gives the 

corresponding volume expansion; column 8 defines the numbers attached to the 

strains ηηηη defined by J ; column 9 defines the numbers attached to the strains at 

constant volume defined by J D
-1/3

. 

 

Table 2.  Comparison of elastic constants of 2
nd

 to 4
th
 order obtained through lattice 

sums (column 2) and through a fitting to energy changes measured at finite strains 

(column 3) for potential FS-ED-2.82. The constants are multiplied by the atomic 

volume and the product Ωo Cijkl is displayed (in eV). The figures when identical in 

the two columns are bold faced. 

 

Table 3. Formation energy (in eV) and entropy (in units of k) of vacancy and 

dumbbell defect obtained by Finnis-Sinclair potentials for copper with various 

terminations. 

 

Table 4. Entropic constants of first, second and third order obtained with the four 

potentials investigated. The constants are expressed in units of k, per atom and per 

unit strain. 

 

Table 5. Entropic corrections (in units of k) obtained for the stable and saddle 

configurations of a vacancy jump with potential FS-ED-2.82. The expression of the 

energy embodies second, third or fourth order terms and the corresponding 

contributions due to dilatation and shears are displayed separately; the last line is 

the correction based on the only knowledge of the local pressure. 

 

Table B1. Elastic constants of second , third and fourth order obtained by lattice 

summations with the four potentials investigated (in eV Angs
-3

). The last column 

contains the experimental values for second and third order constants and 

estimations of fourth order constants. 

 

Table B2. Formation and migration energies, entropies, relaxation volumes for 

single vacancy (V1), divacancy (V2), trivacancy (V3) and <100> dumbbell (I) 

defects in copper obtained by the four potentials investigated. Energies are 

expressed in eV, relaxation and migration volumes in unit of atomic volume Ωo, 

entropies in units of k, pre-exponential factors νo for migration in s
-1

.
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[ ]
1 6 5

6 2 4

5 4 3

1 d d d

d 1 d d         Det D

d d 1 d

 + ε ε ε
 
 = ε + ε ε =
 

ε ε + ε  

J J  ηηηη = J ηηηη = J  D 
–1/3 

d1 d2 d3 d4 d5 d6 ∆V / V n° n° 

1 0 0 0 0 0 1+ ε  1 2 

1 1 0 0 0 0 21 2 + ε + ε  3 4 

1 -1 0 0 0 0 21− ε  5 6 

1 1 1 0 0 0 2 31 3 3 + ε + ε + ε  7  

1 1 -2 0 0 0 2 31 3 2 − ε − ε  8 9 

0 0 0 1 0 0 21− ε   10 

0 0 0 1 1 0 21 2 − ε   11 

0 0 0 1 -1 0 21 2 − ε   12 

0 0 0 1 1 1 2 31 3 2 − ε + ε   13 

0 0 0 1 -1 1 2 31 3 2 − ε − ε   14 

0 1 -1 1 0 0 21 2 − ε   15 

0 1 -1 -1 0 0 21 2 − ε   16 

0 1 -1 0 0 1 2 31 2  − ε + ε   17 

0 1 -1 0 0 -1 2 31 2  − ε + ε   18 

0 1 -1 1 1 0 2 31 3 − ε − ε   19 

0 1 -1 1 -1  2 31 3 − ε − ε   20 

0 1 -1 1 1 1 2 31 4 2 − ε + ε   21 

0 1 -1 1 1 -1 2 31 4 2 − ε + ε   22 

0 1 -1 1 -1 1 2 31 4 2 − ε + ε   23 

2 -1 -1 1 1 1 2 31 6 4 − ε + ε   24 

2 -1 -1 -1 1 1 2 31 6 4 − ε + ε   25 

2 -1 -1 1 -1 1 2 31 6 4 − ε + ε   26 

0 0 0 1 1 -1 2 31 3 2 − ε − ε  27  

1 0 0 1 0 0 2 31+ ε − ε − ε  29 28 

1 0 0 0 1 1 21 2 + ε − ε  31 30 

-1 0 0 1 0 0 2 31− ε − ε + ε  33 32 

-1 0 0 0 -1 1 21 2 − ε − ε  35 34 

 
Table 1 
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Elastic constants Ωo  Cijkl  (finite strains) Ωo  Cijkl (lattice sums) 

C11 6.247 5235685114   6.247 4252388986 

C12 9.049  2167231813 9.049  1240900153 

C44 2.825 1017423355      2.825  0716966494 

   

C111 - 17.82 8969522483     - 17.82 3955949629 

C112 - 31. 312129221365 - 31. 290734067052 

C123 - 3.6 656731068476 - 3.6 340037491056 

C144 - 1.38 45306831346 - 1.38 30762314058 

C155 - 27. 327019695211 - 27. 278818705580 

C456 2.0 145253546836 2.0 085900124411 

   

C1111 3 8.235065289803       3 6.400906868595 

C1112 7 2.858873634422 7 6.454546757452 

C1122 1 01.09643557587 1 12.67670620445 

C1123 19.837733029522         3.7343049428951 

C1144 - 0.26215922978722     0.41667730232131 

C1155 10 5.95814600150       10 6.62818222498 

C1244 2.5542637637227 3.5628063323601 

C1356 21 2.68620161031 21 4.00605228198 

C1456 -18.099248594098 - 4.7288084307735 

C4444 17. 327311252021 17. 455712085607 

C4455 0.0 63896262016610    0.0 24534599878828 

 

Table 2 
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 FS-PT345-2.00 FS-PT345-1.99 FS-PT456-2.00 FS-PT456-1.99 

     
V
FE  1.249 1.250 1.2496 1.2498 

V
FS / k  4.71 1.55 1.60 1.39 

I
FE  2.959 2.980 2.997 2.954 

I
FS / k  18.95 12.72 12.25 11.33 

 

 

Table 3 
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Entropic constants   
FS 

ED-2.82 

FS 

Barreteau 

EAM  

Mishin-

mod  

EAM 

Milstein 

full name short name     

      

λ1 λ1 +   6.570 +   6.199 + 5.365 + 7.054 

      

λ11 λ2 +   3.982 +   2.77 -  3.99 - 23.00 

λ12 λ3 -    1.676 +   0.42 -  9.67 - 64.93 

λ44 λ4 + 13.19 + 13.70 + 7.35 + 14.50 

      

λ111 λ5 +   0.85 - 143 +120 + 631 

λ112 λ6 +   9.4 - 62 +191 + 1743 

λ123 λ7 + 50 - 18 +    7 + 3025 

λ144 λ8 + 42 -   0.011 +  20 + 96 

λ155 λ9 - 31 - 99 +177 + 165 

λ456 λ10 -   0.347 - 88 -  7.3 - 92 
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Correction stable configuration saddle configuration 

with full 

strain tensor 

stable
outS (dilat)

k

∆
 

stable
outS (shear)

k

∆
 

saddle
outS (dilat)

k

∆
 

saddle
outS (shear)

k

∆
 

O(2) -0.615 +0.00882 -0.398 +0.169 

O(3) -0.601 +0.00886 -0.115 +0.180 

O(4) -0.601 +0.00886 -0.122 +0.176 

   

with local 

pressure 

stable
outS (press)

k

∆
 

saddle
outS (press)

k

∆
 

 -0.605 -0.201 
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FS 

ED-2.82 

FS 

Barreteau 

EAM 

Mishin 

modified 

EAM 

Milstein 
Experiments 

      

C11 + 1.058 + 1.113 + 1.084 + 1.104 + 1.0997 

C12 + 0.766 + 0.785 + 0.789 + 0.785 + 0.7798 

C44 + 0.478 + 0.517 + 0.476 + 0.510 + 0.5104 

      

C111 - 9.055 - 8.752 - 7.983 - 11.024 - 12.483 

C112 - 5.299 - 5.197 - 4.128 - 6.157 - 7.6146 

C123 - 0.3077 - 0.349 + 0.477 - 1.663 - 3.1207 

C144 - 0.234 - 0.233 - 0.283 - 0.838 - 0.8239 

C155 - 4.619 - 4.557 - 4.256 - 4.400 - 4.4002 

C456 + 0.170 + 0.098 + 0.113 + 0.160 + 0.1560 

      

C1111 + 73.970 + 75.100 + 47.554 + 10.155 ≈ + [84 :168] 

C1112 + 38.841 + 31.394 + 17.342 + 16.637 ≈ + [42 : 84] 

C1122 + 38.162 + 34.342 + 17.084 + 12.868 ≈ + [42 : 84] 

C1123 + 0.632 - 1.944 - 7.736 - 54.352 ≈ 0 

C1144 + 0.141 - 2.698 - 0.203 - 6.280 ≈ 0 

C1155 + 36.113 + 28.149 + 25.920 + 44.207 ≈ + [42 : 84] 

C1244 + 0.603 - 2.204 + 0.2621 + 10.784 ≈ 0 

C1266 + 36.240 + 32.341 + 24.875 + 54.976 ≈ + [42 : 84] 

C1456 - 0.400 - 3.152 + 0.312 - 9.239 ≈ 0 

C4444 + 35.472 + 31.140 + 25.017 + 25.188 ≈ + [42 : 84] 

C4455 + 0.012 - 2.817 + 0.666 - 5.809 ≈ 0 
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FS 

ED-2.82 

FS 

Barreteau 

EAM 

Mishin 

mod 

EAM 

Milstein 

     
V
FE  1.203 1.513 1.273 1.305 

V
FS / k  1.387 1.232 1.408 2.355 
V
F OV /∆ Ω  + 0.742 + 0.763 + 0.700 + 0.762 

V
ME  0.672 0.547 0.689 0.682 

V
M OV /∆ Ω  + 0.155 + 0.0696 +0.106 + 0.101 
13 V

 O10− ν  1.372 0.4288 0.7.665 0.6109 

     
V2
FE  2.270 2.881 2.401 2.440 

V2
FS / k  2.768 2.371 2.734 4.577 
V2
F OV /∆ Ω  + 1.479 + 1.541 + 1.385 + 1.543 

V2
ME  0.358 0.278 0.364 0.442 

V2
M OV /∆ Ω  - 0.099 - 0.223 - 0.132 - 0.221 

13 V2
 O10− ν  4.185 2.158 1.298  1.738 

     
V3
FE  3.198 4.273 3.379 3.392 

V3
FS / k  4.071 3.283 3.925 6.392 
V3
F OV /∆ Ω  + 2.223 + 2.371 + 2.086 + 2.383 

V3
ME  0.061 0.0915 0.0643 0.231 

V3
M OV /∆ Ω  - 0.368 - 0.560 - 0.364 - 0.708 
13 V3

 O10− ν  0.7352 ? 0.7409 1.371 

     
I
FE  3.034 2.616 3.073 3.188 

I
FS / k  10.245 11.017 7.428 9.998 
I
R OV /∆ Ω  + 0.997 + 0.770 + 0.825 + 1.225 

I
ME  0.084 ? 0.0974 0.0741 

I
M OV /∆ Ω  + 0.0287 ? + 0.0386 + 0.0213 
13 I

 O10− ν  0.1501 ? 0.1982 0.04712 

 

Table B2 
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Figure captions 
 

Figure 1. Comparison between the projected entropies (abscissas) and the entropies 

calculated with the elastic correction (ordinates): on every site, the elastic 

correction rests on a local strain deduced from the atomic stresses on this site. 

 

Figure 2. Comparison between the projected entropies (abscissas) and the entropies 

calculated with the elastic correction (ordinates): on every site, the elastic 

correction rests on a local strain deduced from the atomic stresses coarse-grained 

over 13 atoms. 

 

Figure 3. Entropy change (in units of k) of a cubic box containing 864 atoms under 

a uniform shear stress of amplitude ε in a log-log plot versus ε2
 for different 

potentials. From top to bottom: the empty circles (○) stand for potential FS-PT345-

2.00, the empty squares (□) stand for potential FS-PT456-2.00, the empty 

diamonds (◊) stand for potential FS-PT345-1.99, the multiply signs (×) stand for 

potential FS-PT456-1.99. Two straight lines of slope 1/2 (top) and 1 (bottom) are 

displayed for comparison. 

 

Figure 4. Formation entropy of dumbbell (in units of k) versus the inverse number 

N* of atoms in the inner region. (a) FS-ED-2.82; (b) FS-Barreteau; (c) EAM-

Mishin-mod; (d) EAM-Milstein. The ‘plus’ symbols (+) stand for the embedded 

crystallite results; the ‘multiply’ symbols (×) for the elastic correction including 

pressure; the empty squares () for the elastic correction including dilatation and 

shears; the filled triangles (▲) for the supercell results. 

 

Figure 5. Pre-exponential factor νo for the vacancy jump (in s
-1

) versus the inverse 

number N* of atoms in the inner region. (a) FS-ED-2.82; (b) FS-Barreteau; (c) 

EAM-Mishin-mod; (d) EAM-Milstein. Same meaning of symbols as in figure 4. 
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