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Multiple coincidences for dimensions d ≤ 3

Michael Baake and Peter Zeiner∗

Faculty of Mathematics, Bielefeld University, Box 100131, 33501 Bielefeld, GERMANY

(September 7, 2006)

Ordinary coincidence site lattices (CSLs) are very well understood for a large class of lattices in dimensions d ≤ 4, as well as its
generalisation for various highly symmetric modules. Here we consider multiple coincidence site lattices, i.e. intersections of several
ordinary CSLs, which appear in connection with triple and multiple junctions. We restrict our considerations to the most prominent
lattices in dimensions d ≤ 3 and present an outlook for further lattices and modules.

1 Introduction

Ordinary coincidence site lattices (CSLs) have proved useful in connection with grain boundaries in crystals
(see e.g. [1, 2] and references therein) and are thus well understood for lattices in dimensions d ≤ 3, for
the cubic lattices in particular see e.g. [3–8]. This concept allows several generalisations. On the one hand,
one can extend it to modules, where first steps have been made more than a decade ago to meet the needs
of aperiodic structures, see e.g. [7, 9, 10]. On the other hand, one can consider the intersection of more
than two lattices, so-called multiple coincidence site lattices. This is of interest in connection with triple
and multiple junctions [11,12] in solid state physics and in connection with quantising procedures [13,14]
in information theory. So far, multiple coincidences are well understood only for some highly symmetric
lattices and modules in the plane, see [15]. Since so far only some preliminary results on the cubic case have
been published [16], we here present the main results for the cubic case, whose details will be published
elsewhere [17].

We recall some definitions first [7]. Let Γ ⊆ Rd be a d-dimensional lattice and R ∈ SO(d) a rotation
(we restrict our considerations here to proper rotations for simplicity). Then R is called an (ordinary)
coincidence rotation if Γ (R) := Γ ∩RΓ is a lattice of finite index in Γ . The corresponding lattice Γ (R) =
Γ ∩ RΓ is called a coincidence site lattice (CSL). The coincidence index Σ(R) is defined as the index
of Γ (R) in Γ , and σ = {Σ(R) | R ∈ SOC(Γ )}, the set of all possible coincidence indices, is called the
(ordinary) coincidence spectrum. Note in passing that the set of coincidence rotations forms a group under
matrix multiplication, called SOC(Γ ). An immediate extension of these notions is the following [15,17]:

Definition 1.1 Let Γ be a d-dimensional lattice and Ri, i ∈ {1, . . . n} coincidence rotations of Γ . Then
the lattice

Γ (R1, . . . , Rn) := Γ ∩ R1Γ ∩ . . . ∩ RnΓ = Γ (R1) ∩ . . . ∩ Γ (Rn) (1)

is called a multiple CSL (MCSL). Its index in Γ is denoted by Σ(R1, . . . , Rn). The corresponding spectra
are σn := {Σ(R1, . . . , Rn) | Ri ∈ SOC(Γ )} for n fixed and σ∞ =

⋃

n∈N
σn, the latter one called full

coincidence spectrum.

Note that the requirement that the Ri are all coincidence rotations is necessary and sufficient for
Σ(R1, . . . , Rm) to be finite. In fact, this is a simple consequence of the second homomorphism theorem for

∗Corresponding author. Email: pzeiner@math.uni-bielefeld.de

Philosophical Magazine
ISSN 1478-6435 print/ISSN 1478-6443 online c© 200x Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/1478643YYxxxxxxxx

Page 1 of 6

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

groups. Another consequence is the following lemma [17], which puts restrictions on the possible values of
coincidence indices:

Lemma 1.2 Σ(R1, . . . , Rn) divides Σ(R1) · . . . · Σ(Rn).

On the other hand, it is obvious that σ ⊆ σm ⊆ σn ⊆ σ∞ for m ≤ n, since σn =
⋃

m≤n σm. These two
facts often guarantee that the spectrum stays the same for multiple CSLs, i.e. σ = σ∞. This holds true,
among others, for the 2–dimensional square lattice, the 3–dimensional cubic lattices and the 4–dimensional
centred hypercubic lattice. It also holds true for the 4–dimensional primitive hypercubic lattice. However,
the argumentation is more subtle in this case and makes use of

Lemma 1.3 Let Γ1 ⊆ Γ2 have index m in Γ2. Then, the indices Σi of the MCSLs Γi(R1, . . . , Rn) in Γi

satisfy Σ2|mΣ1.

2 2-dimensional lattices and modules

An instructive example is the 2-dimensional square lattice. We identify it with the Gaussian integers
Z[i] = {m + ni | m,n ∈ Z}, which enables us to make use of number theory. Rotations can then be
represented by unimodular complex numbers eiφ and it turns out that ω corresponds to a coincidence
rotation if and only if eiφ ∈ Q(i) (for details, see [7, 15]). Hence, we may write eiφ = α

β with β = ᾱ ∈ Z[i],
where we may assume that α and its complex conjugate ᾱ are coprime, since we may cancel common
factors. Decomposing α into prime factors we see that eiφ may be written as [7]

eiφ = ε
∏

p≡1 (4)

(

ωp

ω̄p

)np

, (2)

where ε is a unit, i.e. one of the numbers ±1,±i, and ωp are the prime factors of the complex splitting primes
p = ωpω̄p = 1 (mod 4). The ωp are not defined uniquely, since the roles of ωp and ω̄p may be interchanged
and ωp may be multiplied by a unit. However, there are no further ambiguities and a different choice of
the prime factors ωp can only affect ε and the sign of np ∈ Z. No other real primes p can contribute, since
p = 3 (mod 4) is a prime also in Z[i] (these are the so-called inert primes) and 2 = (1+i)(1−i) = −i(1+i)
is a ramified prime, i.e. the prime factors 1+ i and 1− i are associated, i.e. (1+ i)/(1− i) = i is a unit [18].
Clearly, only a finite number of np may be non-zero.

The coincidence index Σ(eiφ) is given by [7]

Σ(eiφ) =
∏

p≡1 (4)

p|np|, (3)

which is independent of the particular choice of the ωp. The spectrum of possible coincidence indices
is the set of all integers whose prime factorisation consists of primes p = 1 (mod 4) only. Note that
Σ(eiφ) = |ω(φ)|2, where we have defined

ω(φ) :=
∏

p≡1 (4)
np>0

ωnp

p

∏

p≡1 (4)
np<0

ω̄np

p . (4)

This definition enables us to state the corresponding coincidence lattice explicitly [15]

Γ ∩ R(φ)Γ = Z[i] ∩ eiφZ[i] = ω(φ)Z[i]. (5)

In terms of algebraic number theory this means that every CSL is a principal ideal of Z[i], thus reducing the
problem of counting the CSLs to the analogous problem for ideals of Z[i], which is well studied. Moreover
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this fact enables us to find the MCSLs very elegantly, see below. Another consequence is the fact that any
CSL is again a square lattice, i.e. it is a similarity sublattice [19] of Z[i].

Let f(m) denote the number of different CSLs of index m. It is clear from the above considerations that
f(m) vanishes unless all prime factors are congruent to 1 (mod 4), in this case f(m) = 2n, where n is the
number of distinct prime divisors of m. In particular, f(m) is a multiplicative function, which suggests to
use a Dirichlet series as generating function. It reads [7]

Φ(s) =

∞
∑

m=1

f(m)

ms
=

∏

p=1(4)

1 + p−s

1 − p−s
(6)

= 1 +
2

5s
+

2

13s
+

2

17s
+

2

25s
+

2

29s
+

2

37s
+

2

41s
+

2

53s
+

2

61s
+

4

65s
+

2

73s
+

4

85s
+

2

89s
+ · · ·

Since any MCSL can be viewed as the intersection of ordinary CSLs, we need to consider only finite
intersections of ideals ω(φ)Z[i] due to Eq. (5). But any intersection of ideals is again an ideal, and since
any ideal of Z[i] is a principal ideal, we end up with

Γ ∩ R(φ1)Γ ∩ . . . ∩ R(φk)Γ = ω(φ1)Z[i] ∩ . . . ∩ ω(φk)Z[i] = ωZ[i], (7)

where ω is the least common multiple (lcm) of ω(φ1), . . . , ω(φk). Again, its index is just the number

theoretic norm of ω =
∏

p≡1 (4) ω
n+

p

p ω̄
n−

p

p , i.e.

Σ(eiφ1 , . . . , eiφk) = |ω|2 =
∏

p=1(4)

pn+
p +n−

p , (8)

where n+
p = max(0, n

(1)
p , . . . , n

(k)
p ) and n−

p = max(0,−n
(1)
p , . . . ,−n

(k)
p ), see [15] for details. This implies

that the spectrum stays the same, a fact that one can alternatively deduce from our general considerations
in Sec. 1. However, new lattices emerge, since ω may contain both ωp and ω̄p, which is not possible in the
case of ordinary CSLs. In fact, all new MCSLs are just an integer multiple of an ordinary CSL and any
MCSL can be written as the intersection of at most two ordinary CSLs [15].

Thus the total number f∞(m) of MCSLs of a given index m is again a multiplicative function [15]

Φ∞(s) =

∞
∑

m=1

f∞(m)

ms
= Φ(s)ζ(s) =

∏

p=1(4)

1

(1 − p−s)2
(9)

= 1 +
2

5s
+

2

13s
+

2

17s
+

3

25s
+

2

29s
+

2

37s
+

2

41s
+

2

53s
+

2

61s
+

4

65s
+

2

73s
+

4

85s
+ · · ·

Φ∞(s) − Φ(s) = Φ(s)(ζ(s) − 1) =
1

25s
+

2

125s
+

1

169s
+

1

289s
+

1

325s
+

1

425s
+

3

625s
+

2

725s
+ . . . (10)

In a similar way, one can treat the hexagonal lattice. Moreover, these results can be generalised for
several modules related to N–fold symmetry, as long as the corresponding number field has class number
one, which comprises the cases of 5–, 8–, 10–, and 12–fold symmetry [9, 15].

3 Cubic lattices

It is well known that R ∈ SO(3) is a coincidence rotation of a cubic lattice if and only if R is a matrix
with rational entries, i.e., if R ∈ SO(3, Q) (see [3–8]). These coincidence rotations can be parameterised
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by quaternions q = (κ, λ, µ, ν) with integral coefficients κ, λ, µ, ν in the following way [7,8, 20–22]:

R(q) =
1

|q|2





κ2 + λ2 − µ2 − ν2 −2κν + 2λµ 2κµ + 2λν
2κν + 2λµ κ2 − λ2 + µ2 − ν2 −2κλ + 2µν
−2κµ + 2λν 2κλ + 2µν κ2 − λ2 − µ2 + ν2



 , (11)

where |q|2 = κ2 + λ2 + µ2 + ν2 is called the (reduced number theoretic) norm of q. Note that we will call
a quaternion an integer quaternion if it is a quaternion (κ, λ, µ, ν) with integral entries κ, λ, µ, ν or the
sum of such a quaternion with the quaternion (1, 1, 1, 1)/2. The set of all integer quaternions forms a ring
under quaternion addition and multiplication and is usually referred to as the Hurwitz ring, denoted by
H. We call a quaternion r = (κ, λ, µ, ν) with integral entries primitive if gcd(κ, λ, µ, ν) = 1. In fact, we
can parameterise every coincidence rotation by a primitive quaternion, and we will always do so in the
following. Finally note that q̄ = (κ,−λ,−µ,−ν) is the conjugate of q.

One can show that the coincidence index is given by Σ(R(q)) = |q|2/2ℓ (if q is primitive), where ℓ is
the maximal power such that 2ℓ divides |q|2 (see e.g. [4,6,7]), i.e. Σ(R) is always odd. On the other hand,
Σ(R) runs over all positive odd integers if R runs over all coincidence rotations, i.e. the spectrum σ is the
set of all positive odd integers.

Let O denote the cubic symmetry group. Then Γ (RQ) = Γ (R) if and only if Q ∈ O, i.e. R and
R′ = RQ generate the same CSL. For any R(q), we can find an R′ = R(q′) = RQ such that |q′|2 is odd,
i.e. Σ(R′) = |q′|2. We will call such a quaternion, i.e. a primitive quaternion with |q|2 odd, a reduced
quaternion.

The quaternions cannot only be used to parameterise the rotations but there is also a close connection
of the integer quaternions with the cubic lattices, in particular with the body centred cubic lattice, on
which we concentrate in the following. To see this, let Q be the algebra of real quaternions and define the
projection P : Q → R3 by P (q0, q1, q2, q3) = (q1, q2, q3). Then ΓB = PH , i.e. the body centred cubic lattice
is obtained by a projection of H onto R3. Moreover Lemma 5.1 of [8] tells us that ΓB(R(q)) = P (qH) (if
q is reduced), where qH is a right ideal of H . In fact, this establishes a one to one correspondence of CSLs
and right ideals qH generated by a reduced q, which is a key in the discussion of the body centred CSLs.
In particular, finding the number f(m) of different CSLs of given index m is equivalent to counting the
corresponding right ideals of H according to the square root of their usual ideal index. One can show that
f(m) is a multiplicative function, i.e. f(mn) = f(m)f(n) if m and n are coprime, and in particular we
have f(1) = 1, f(2) = 0 and f(pr) = (p + 1)pr−1 for all odd primes p [7, 8]. These findings are generalised
to other cases in 3–space in [10].

Turning to the MCSLs, we first observe that the spectrum does not change, i.e. σ∞ = σ, since σ already
consists of all odd positive integers, and even integers are not allowed due to Lemma 1.2. But of course
new lattices emerge. To quantify this let fn(m) be the number of distinct MCSLs of index m which are
intersections of at most n distinct ordinary CSLs, and let f∞(m) be the total number of MCSLs of index
m. In fact we can explicitly calculate all fn(m) and it turns out that f3(m) = fn(m) = f∞(m) for all
n ≥ 3. Moreover, all fn are multiplicative functions, so we can again use the Dirichlet series approach.

Theorem 3.1 f2(m) is a multiplicative arithmetic function. For any odd prime p and any integer r > 0,
we have

f2(p
r) =(r/2 + 1/2) (p + 1)pr−1 + (r/2 − 1)pr−2 − (r/2 − [r/2])pr−4

+
pr−1 − pr−2[r/3]−1

p2 − 1
+

p4[r/3]−r+2 − p4[r/2]−r−2

2(p2 − 1)
, (12)

where the Gauß bracket [x] denotes the largest integer n with n ≤ x. The corresponding Dirichlet series
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reads

Φ2(s) :=
∞

∑

n=1

f2(n)

ns
=

∏

p∈P\{2}

φ2(p, s) (13)

= 1 +
4

3s
+

6

5s
+

8

7s
+

18

9s
+

12

11s
+

14

13s
+

24

15s
+

18

17s
+

20

19s
+

32

21s
+

24

23s
+

45

25s
+

75

27s
+ · · ·

φ2(p, s) :=

∞
∑

r=1

f2(p
r)

prs
= 1 +

(p + 1)

2p

(

1

(1 − p1−s)2
− 1

)

+
(p + 1)p−3s

2 (1 − p1−3s)

(

1 − p1−2s

(1 − p1−s)2
+ 1

)

. (14)

To appreciate the number of new MCSLs we also state the difference Φ2(s) − Φ(s). Note that f2(m) =
f(m) for square–free indices Σ, thus all terms n−s with n square–free are missing in the expansion

Φ2(s) − Φ(s) =
6

9s
+

15

25s
+

39

27s
+

36

45s
+

28

49s
+

48

63s
+

60

75s
+

174

81s
+

72

99s
+

84

117s
+ · · · (15)

In contrast to the square lattice, the intersection of two ordinary MCSLs does not give us all possible
MCSLs. However, the next theorem tells us implicitly that every MCSL can be written as the intersection
of at most three ordinary CSLs, thus f3(Σ) is already the total number of MCSLs.

Theorem 3.2 f3(m) = f∞(m) is multiplicative and vanishes at all even integers. For any odd prime p
and any integer r > 0 it reads

f3(p
r) =

∑

0≤n≤r/3

f2(p
r−3n). (16)

The corresponding Dirichlet series is given by

Φ3(s) :=
∞
∑

n=1

f3(n)

ns
= (1 − 2−3s)ζ(3s)Φ2(s) (17)

= 1 +
4

3s
+

6

5s
+

8

7s
+

18

9s
+

12

11s
+

14

13s
+

24

15s
+

18

17s
+

20

19s
+

32

21s
+

24

23s
+

45

25s
+

76

27s
+ · · · ,

where Φ2(s) is given by Eq. (13).

It is remarkable that Φ3(s) is just a product of Φ2(s) with a ζ-function (and a factor involving the prime
number 2). This is a consequence of the fact that every MCSL is just an integer multiple of an intersection
of two ordinary CSLs. In fact, most new MCSLs emerge from the intersection of two ordinary MCSLs,
which can be easily seen if we compare Φ2(s) − Φ(s) with

Φ3(s) − Φ2(s) =
1

27s
+

4

81s
+

1

125s
+

6

135s
+

8

189s
+

18

243s
+

12

297s
+

1

343s
+

14

351s
+

4

375s
+ · · · . (18)

Note that these results are valid for all three types of cubic lattices, in particular the multiplicity functions
are the same for all cubic lattices. This is well known for the ordinary CSLs and extends to MCSLs due
to Lemma 1.3. It is thus sufficient to prove these results for the body centred cubic lattice, where one has
explicit expressions for the MCSLs [17]. For instance, given two reduced quaternions q1 and q2, with least
right common multiple q, we have ΓB(R(q1), R(q2)) = P (qH + q1Hq̄2) = P (qH + q2Hq̄1).
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4 Conclusions and Outlook

We have seen that the coincidence spectrum does not change for a large class of lattices and modules,
similarly the set of MCSLs stabilises after a few steps. However, all cases so far concern problems in low
dimensions with high symmetry, so we cannot draw any conclusions for the general case yet. Further
investigations are necessary, in particular some highly symmetric modules in 3-space and the hypercubic
lattices in 4 dimensions seem to be the most natural (and fruitful) next candidates to attack and in fact
work on these topics is in progress.
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