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Introduction

Ordinary coincidence site lattices (CSLs) have proved useful in connection with grain boundaries in crystals (see e.g. [START_REF] Bollmann | Crystal Defects and Crystalline Interfaces[END_REF][START_REF] Bollmann | Crystal lattices, interfaces, matrices[END_REF] and references therein) and are thus well understood for lattices in dimensions d ≤ 3, for the cubic lattices in particular see e.g. [START_REF] Grimmer | Disorientations and coincidence rotations for cubic lattices[END_REF][START_REF] Grimmer | Warrington Coincidence-site lattices and complete pattern-shift lattices in cubic crystals[END_REF][START_REF] Bleris | A new formulation for the generation of coincidence site lattices (CSL's) in the cubic system[END_REF][START_REF] Grimmer | The generating function for coincidence site lattices in the cubic system[END_REF][START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF][START_REF] Zeiner | Symmetries of coincidence site lattices of cubic lattices[END_REF]. This concept allows several generalisations. On the one hand, one can extend it to modules, where first steps have been made more than a decade ago to meet the needs of aperiodic structures, see e.g. [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF][START_REF] Pleasants | Planar coincidences for n-fold symmetry[END_REF][START_REF] Baake | Coincidence site modulesin 3-space[END_REF]. On the other hand, one can consider the intersection of more than two lattices, so-called multiple coincidence site lattices. This is of interest in connection with triple and multiple junctions [START_REF] Gertsman | Geometrical theory of triple junctions of CSL boundaries[END_REF][START_REF] Gertsman | Coincidence site lattice theory of multicrystalline ensembles[END_REF] in solid state physics and in connection with quantising procedures [START_REF] Suhas | Asymmetric multiple description lattice vector quantizers[END_REF][START_REF] Sloane | Quantizing using lattice intersections[END_REF] in information theory. So far, multiple coincidences are well understood only for some highly symmetric lattices and modules in the plane, see [START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF]. Since so far only some preliminary results on the cubic case have been published [START_REF] Zeiner | Multiple CSLs for the body centered cubic lattice[END_REF], we here present the main results for the cubic case, whose details will be published elsewhere [START_REF] Zeiner | Multiple CSLs for cubic lattices[END_REF].

We recall some definitions first [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF]. Let Γ ⊆ R d be a d-dimensional lattice and R ∈ SO(d) a rotation (we restrict our considerations here to proper rotations for simplicity). Then R is called an (ordinary) coincidence rotation if Γ (R) := Γ ∩ RΓ is a lattice of finite index in Γ . The corresponding lattice Γ (R) = Γ ∩ RΓ is called a coincidence site lattice (CSL). The coincidence index Σ(R) is defined as the index of Γ (R) in Γ , and σ = {Σ(R) | R ∈ SOC(Γ )}, the set of all possible coincidence indices, is called the (ordinary) coincidence spectrum. Note in passing that the set of coincidence rotations forms a group under matrix multiplication, called SOC(Γ ). An immediate extension of these notions is the following [START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF][START_REF] Zeiner | Multiple CSLs for cubic lattices[END_REF]:

Definition 1.1 Let Γ be a d-dimensional lattice and R i , i ∈ {1, . . . n} coincidence rotations of Γ . Then the lattice Γ (R 1 , . . . , R n ) := Γ ∩ R 1 Γ ∩ . . . ∩ R n Γ = Γ (R 1 ) ∩ . . . ∩ Γ (R n ) (1) is called a multiple CSL (MCSL). Its index in Γ is denoted by Σ(R 1 , . . . , R n ). The corresponding spectra are σ n := {Σ(R 1 , . . . , R n ) | R i ∈ SOC(Γ )}
for n fixed and σ ∞ = n∈N σ n , the latter one called full coincidence spectrum.

Note that the requirement that the R i are all coincidence rotations is necessary and sufficient for Σ(R 1 , . . . , R m ) to be finite. In fact, this is a simple consequence of the second homomorphism theorem for groups. Another consequence is the following lemma [START_REF] Zeiner | Multiple CSLs for cubic lattices[END_REF], which puts restrictions on the possible values of coincidence indices:

Lemma 1.2 Σ(R 1 , . . . , R n ) divides Σ(R 1 ) • . . . • Σ(R n ).
On the other hand, it is obvious that σ ⊆ σ m ⊆ σ n ⊆ σ ∞ for m ≤ n, since σ n = m≤n σ m . These two facts often guarantee that the spectrum stays the same for multiple CSLs, i.e. σ = σ ∞ . This holds true, among others, for the 2-dimensional square lattice, the 3-dimensional cubic lattices and the 4-dimensional centred hypercubic lattice. It also holds true for the 4-dimensional primitive hypercubic lattice. However, the argumentation is more subtle in this case and makes use of

Lemma 1.3 Let Γ 1 ⊆ Γ 2 have index m in Γ 2 . Then, the indices Σ i of the MCSLs Γ i (R 1 , . . . , R n ) in Γ i satisfy Σ 2 |mΣ 1 .
2 2-dimensional lattices and modules An instructive example is the 2-dimensional square lattice. We identify it with the Gaussian integers

Z[i] = {m + ni | m, n ∈ Z},
which enables us to make use of number theory. Rotations can then be represented by unimodular complex numbers e iφ and it turns out that ω corresponds to a coincidence rotation if and only if e iφ ∈ Q(i) (for details, see [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF][START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF]). Hence, we may write e iφ = α β with β = ᾱ ∈ Z[i], where we may assume that α and its complex conjugate ᾱ are coprime, since we may cancel common factors. Decomposing α into prime factors we see that e iφ may be written as [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF] e iφ = ε p≡1 (4)

ω p ωp np , (2) 
where ε is a unit, i.e. one of the numbers ±1, ±i, and ω p are the prime factors of the complex splitting primes p = ω p ωp = 1 (mod 4). The ω p are not defined uniquely, since the roles of ω p and ωp may be interchanged and ω p may be multiplied by a unit. However, there are no further ambiguities and a different choice of the prime factors ω p can only affect ε and the sign of n p ∈ Z. No other real primes p can contribute, since p = 3 (mod 4) is a prime also in Z[i] (these are the so-called inert primes) and 2 = (1+ i)(1-i) = -i(1+ i) is a ramified prime, i.e. the prime factors 1 + i and 1 -i are associated, i.e. (1 + i)/(1 -i) = i is a unit [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF].

Clearly, only a finite number of n p may be non-zero.

The coincidence index Σ(e iφ ) is given by [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF] Σ(e iφ ) = p≡1 (4)

p |np| , (3) 
which is independent of the particular choice of the ω p . The spectrum of possible coincidence indices is the set of all integers whose prime factorisation consists of primes p = 1 (mod 4) only. Note that Σ(e iφ ) = |ω(φ)| 2 , where we have defined

ω(φ) := p≡1 (4) np>0 ω np p p≡1 (4) np<0 ωnp p . (4) 
This definition enables us to state the corresponding coincidence lattice explicitly [START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF] Γ

∩ R(φ)Γ = Z[i] ∩ e iφ Z[i] = ω(φ)Z[i]. (5) 
In terms of algebraic number theory this means that every CSL is a principal ideal of Since any MCSL can be viewed as the intersection of ordinary CSLs, we need to consider only finite intersections of ideals ω(φ)Z[i] due to Eq. ( 5). But any intersection of ideals is again an ideal, and since any ideal of Z[i] is a principal ideal, we end up with

Z[i],
Φ(s) = ∞ m=1 f (m) m s = p=1(4) 1 + p -s 1 -p -s (6) 
Γ ∩ R(φ 1 )Γ ∩ . . . ∩ R(φ k )Γ = ω(φ 1 )Z[i] ∩ . . . ∩ ω(φ k )Z[i] = ωZ[i], (7) 
where ω is the least common multiple (lcm) of ω(φ 1 ), . . . , ω(φ k ). Again, its index is just the number

theoretic norm of ω = p≡1 (4) ω n + p p ωn - p p , i.e.
Σ(e iφ1 , . . . , e iφk ) = |ω| 2 = p=1(4)

p n + p +n - p , (8) 
where n + p = max(0, n

p ) and n - p = max(0, -n

p ), see [START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF] for details. This implies that the spectrum stays the same, a fact that one can alternatively deduce from our general considerations in Sec. 1. However, new lattices emerge, since ω may contain both ω p and ωp , which is not possible in the case of ordinary CSLs. In fact, all new MCSLs are just an integer multiple of an ordinary CSL and any MCSL can be written as the intersection of at most two ordinary CSLs [START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF].

Thus the total number f ∞ (m) of MCSLs of a given index m is again a multiplicative function [START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF] 

Φ ∞ (s) = ∞ m=1 f ∞ (m) m s = Φ ( s)ζ(s) = p=1(4) 1 (1 -p -s ) 2 (9) 
+ • • • Φ ∞ (s) -Φ(s) = Φ(s)(ζ(s) -1) = 1 25 s + 2 125 s + 1 169 s + 1 289 s + 1 325 s + 1 425 s + 3 625 s + 2 725 s + . . . (10)
In a similar way, one can treat the hexagonal lattice. Moreover, these results can be generalised for several modules related to N -fold symmetry, as long as the corresponding number field has class number one, which comprises the cases of 5-, 8-, 10-, and 12-fold symmetry [START_REF] Pleasants | Planar coincidences for n-fold symmetry[END_REF][START_REF] Baake | Multiple planar coincidences with N -fold symmetry[END_REF].

Cubic lattices

It is well known that R ∈ SO(3) is a coincidence rotation of a cubic lattice if and only if R is a matrix with rational entries, i.e., if R ∈ SO(3, Q) (see [START_REF] Grimmer | Disorientations and coincidence rotations for cubic lattices[END_REF][START_REF] Grimmer | Warrington Coincidence-site lattices and complete pattern-shift lattices in cubic crystals[END_REF][START_REF] Bleris | A new formulation for the generation of coincidence site lattices (CSL's) in the cubic system[END_REF][START_REF] Grimmer | The generating function for coincidence site lattices in the cubic system[END_REF][START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF][START_REF] Zeiner | Symmetries of coincidence site lattices of cubic lattices[END_REF]). These coincidence rotations can be parameterised by quaternions q = (κ, λ, µ, ν) with integral coefficients κ, λ, µ, ν in the following way [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF][START_REF] Zeiner | Symmetries of coincidence site lattices of cubic lattices[END_REF][START_REF] Koecher | Hamilton's quaternions[END_REF][START_REF] Hurwitz | Vorlesungen über die Zahlentheorie der Quaternionen[END_REF][START_REF] Val | Homographies, Quaternions and Rotations[END_REF]:

R(q) = 1 |q| 2   κ 2 + λ 2 -µ 2 -ν 2 -2κν + 2λµ 2κµ + 2λν 2κν + 2λµ κ 2 -λ 2 + µ 2 -ν 2 -2κλ + 2µν -2κµ + 2λν 2κλ + 2µν κ 2 -λ 2 -µ 2 + ν 2   , (11) 
where |q| 2 = κ 2 + λ 2 + µ 2 + ν 2 is called the (reduced number theoretic) norm of q. Note that we will call a quaternion an integer quaternion if it is a quaternion (κ, λ, µ, ν) with integral entries κ, λ, µ, ν or the sum of such a quaternion with the quaternion (1, 1, 1, 1)/2. The set of all integer quaternions forms a ring under quaternion addition and multiplication and is usually referred to as the Hurwitz ring, denoted by H. We call a quaternion r = (κ, λ, µ, ν) with integral entries primitive if gcd(κ, λ, µ, ν) = 1. In fact, we can parameterise every coincidence rotation by a primitive quaternion, and we will always do so in the following. Finally note that q = (κ, -λ, -µ, -ν) is the conjugate of q.

One can show that the coincidence index is given by Σ(R(q)) = |q| 2 /2 ℓ (if q is primitive), where ℓ is the maximal power such that 2 ℓ divides |q| 2 (see e.g. [START_REF] Grimmer | Warrington Coincidence-site lattices and complete pattern-shift lattices in cubic crystals[END_REF][START_REF] Grimmer | The generating function for coincidence site lattices in the cubic system[END_REF][START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF]), i.e. Σ(R) is always odd. On the other hand, Σ(R) runs over all positive odd integers if R runs over all coincidence rotations, i.e. the spectrum σ is the set of all positive odd integers.

Let O denote the cubic symmetry group. Then Γ (RQ) = Γ (R) if and only if Q ∈ O, i.e. R and R ′ = RQ generate the same CSL. For any R(q), we can find an

R ′ = R(q ′ ) = RQ such that |q ′ | 2 is odd, i.e. Σ(R ′ ) = |q ′ | 2 .
We will call such a quaternion, i.e. a primitive quaternion with |q| 2 odd, a reduced quaternion.

The quaternions cannot only be used to parameterise the rotations but there is also a close connection of the integer quaternions with the cubic lattices, in particular with the body centred cubic lattice, on which we concentrate in the following. To see this, let Q be the algebra of real quaternions and define the projection P : Q → R 3 by P (q 0 , q 1 , q 2 , q 3 ) = (q 1 , q 2 , q 3 ). Then Γ B = P H, i.e. the body centred cubic lattice is obtained by a projection of H onto R 3 . Moreover Lemma 5.1 of [START_REF] Zeiner | Symmetries of coincidence site lattices of cubic lattices[END_REF] tells us that Γ B (R(q)) = P (qH) (if q is reduced), where qH is a right ideal of H. In fact, this establishes a one to one correspondence of CSLs and right ideals qH generated by a reduced q, which is a key in the discussion of the body centred CSLs. In particular, finding the number f (m) of different CSLs of given index m is equivalent to counting the corresponding right ideals of H according to the square root of their usual ideal index. One can show that f (m) is a multiplicative function, i.e. f (mn) = f (m)f (n) if m and n are coprime, and in particular we have f (1) = 1, f (2) = 0 and f (p r ) = (p + 1)p r-1 for all odd primes p [START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF][START_REF] Zeiner | Symmetries of coincidence site lattices of cubic lattices[END_REF]. These findings are generalised to other cases in 3-space in [START_REF] Baake | Coincidence site modulesin 3-space[END_REF].

Turning to the MCSLs, we first observe that the spectrum does not change, i.e. σ ∞ = σ, since σ already consists of all odd positive integers, and even integers are not allowed due to Lemma 1.2. But of course new lattices emerge. To quantify this let f n (m) be the number of distinct MCSLs of index m which are intersections of at most n distinct ordinary CSLs, and let f ∞ (m) be the total number of MCSLs of index m. In fact we can explicitly calculate all f n (m) and it turns out that f 3 (m) = f n (m) = f ∞ (m) for all n ≥ 3. Moreover, all f n are multiplicative functions, so we can again use the Dirichlet series approach. Theorem 3.1 f 2 (m) is a multiplicative arithmetic function. For any odd prime p and any integer r > 0, we have

f 2 (p r ) =(r/2 + 1/2) (p + 1)p r-1 + (r/2 -1)p r-2 -(r/2 -[r/2])p r-4 + p r-1 -p r-2[r/3]-1 p 2 -1 + p 4[r/3]-r+2 -p 4[r/2]-r-2 2(p 2 -1) , ( 12 
)
where the Gauß bracket [x] denotes the largest integer n with n ≤ x. 

+ • • • φ 2 (p, s) := ∞ r=1 f 2 (p r ) p rs = 1 + (p + 1) 2p 1 (1 -p 1-s ) 2 -1 + (p + 1)p -3s 2 (1 -p 1-3s ) 1 -p 1-2s (1 -p 1-s ) 2 + 1 . (14) 
To appreciate the number of new MCSLs we also state the difference Φ 2 (s) -Φ(s). Note that f 2 (m) = f (m) for square-free indices Σ, thus all terms n -s with n square-free are missing in the expansion 

Φ 2 (s) -Φ(s) = 6 
In contrast to the square lattice, the intersection of two ordinary MCSLs does not give us all possible MCSLs. However, the next theorem tells us implicitly that every MCSL can be written as the intersection of at most three ordinary CSLs, thus f 3 (Σ) is already the total number of MCSLs.

Theorem 3.2 f 3 (m) = f ∞ (m)
is multiplicative and vanishes at all even integers. For any odd prime p and any integer r > 0 it reads

f 3 (p r ) = 0≤n≤r/3 f 2 (p r-3n ). ( 16 
)
The corresponding Dirichlet series is given by where Φ 2 (s) is given by Eq. ( 13).

Φ 3 (s) := ∞ n=1 f 3 (n) n s = (1 -2 -3s )ζ(3s)Φ 2 (s) (17) 
It is remarkable that Φ 3 (s) is just a product of Φ 2 (s) with a ζ-function (and a factor involving the prime number 2). This is a consequence of the fact that every MCSL is just an integer multiple of an intersection of two ordinary CSLs. In fact, most new MCSLs emerge from the intersection of two ordinary MCSLs, which can be easily seen if we compare Φ 2 (s) -Φ(s) with Note that these results are valid for all three types of cubic lattices, in particular the multiplicity functions are the same for all cubic lattices. This is well known for the ordinary CSLs and extends to MCSLs due to Lemma 1.3. It is thus sufficient to prove these results for the body centred cubic lattice, where one has explicit expressions for the MCSLs [START_REF] Zeiner | Multiple CSLs for cubic lattices[END_REF]. For instance, given two reduced quaternions q 1 and q 2 , with least right common multiple q, we have Γ B (R(q 1 ), R(q 2 )) = P (qH + q 1 H q2 ) = P (qH + q 2 H q1 ). We have seen that the coincidence spectrum does not change for a large class of lattices and modules, similarly the set of MCSLs stabilises after a few steps. However, all cases so far concern problems in low dimensions with high symmetry, so we cannot draw any conclusions for the general case yet. Further investigations are necessary, in particular some highly symmetric modules in 3-space and the hypercubic lattices in 4 dimensions seem to be the most natural (and fruitful) next candidates to attack and in fact work on these topics is in progress.

Φ 3 (

 3 • • • . (18)

  this fact enables us to find the MCSLs very elegantly, see below. Another consequence is the fact that any CSL is again a square lattice, i.e. it is a similarity sublattice[START_REF] Baake | Bravais colourings of planar modules with N -fold symmetry[END_REF] ofZ[i].Let f (m) denote the number of different CSLs of index m. It is clear from the above considerations that f (m) vanishes unless all prime factors are congruent to 1 (mod 4), in this case f (m) = 2 n , where n is the number of distinct prime divisors of m. In particular, f (m) is a multiplicative function, which suggests to use a Dirichlet series as generating function. It reads[START_REF] Baake | Solution of the coincidence problem in dimensions d ≤ 4[END_REF] 
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thus reducing the problem of counting the CSLs to the analogous problem for ideals of Z[i], which is well studied. Moreover
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