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Abstract 

The structure determination of quasicrystals remains a complex and challenging problem. The most fruitful 
approach to this problem so far, has been by the use of the high dimensional crystallography.  In this paper we 
introduce the basic tools used in this approach and illustrate it with the case of the CdYb icosahedral phase 
determination. The relation between the high dimensional description and the resulting 3D structure is 
presented. We briefly introduce the concept of phason modes and its consequences on the diffraction pattern. 
 
Keywords: Quasicrystal, atomic structure, phason modes 
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1 Introduction 

Aperiodic crystals are a broad class of non periodic 3D ordered structure. They are characterised by a 
diffraction pattern presenting sharp Bragg reflections (‘essentially discrete’) as a signature of long range 
order, but which can not be indexed by a linear combination of three integer Miller indices. Generally 
aperiodic crystals are grouped in three different categories:  incommensurately modulated structure (the 
modulation being either displacive or composition like), composite structures and quasicrystals. 
Incommensurately modulated structures are described by an average periodic structure whose atomic 
positions (or chemical species) are modulated by a wave whose wavelength is incommensurate with the lattice 
constant of the underlying average structure. Composite structures (intergrowth or inclusion compounds) 
correspond to the case where two icommensurate sublattices interact. Quasicrystals, discovered by Shechtman 
in 1982 [1], have a diffraction pattern whose symmetry is incompatible with lattice translation symmetry, for 
instance the icosahedral symmetry.  
 As shown by de Wolff, Janner, and Janssen [2-5], aperiodic crystals are best described in a higher 
dimensional space, where lattice periodicity is recovered. This allows an analysis of the symmetry of the 
aperiodic crystal and of its diffraction pattern, and a modelling of its structure making use of the high-
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dimensional periodicity. Methods and software for the structure determination of modulated and composite 
structures have been largely developed, so that now complex incommensurate or composite structures have 
their structure determined with an accuracy which is comparable with what is achieved in ‘standard’ 3D 
periodic crystallography. This is not yet the case for quasicrystals, whose structure determination remains a 
challenging problem. Sophisticated methods have been developed for the high dimensional description of 
quasicrystals, and a few refinement procedures against diffraction data have been proposed. However, a 
complex ‘tayloring’ of the model has to be developed for each case. The recent discovery of the binary CdYb 
icosahedral phase has been a breakthrough in that respect.  
 The paper is intended to give an introduction to the method used for the structure determination of 
quasicrystals. The principles of the method are presented on a simple 1D example in section 2 and then 
generalised to the case of 3D icosahedral quasicrystals. Some of the principles used to model quasicrystals are 
then briefly presented. The i-CdYb structure determination is presented in section 3. Finally an introduction to 
phason modes in quasicrystals is given in section 4.  
   

2 Structure determination of quasicrystals: principles 

2.1 A simple 1D example. 

The simplest toy model for quasicrystal (QC) is the so-called Fibonacci chain. It consists of two segment lines 
a long (L) and a short (S) one, whose lengths are in the ratio L/S=τ, where τ=(1+√5)/2=1.618… is the golden 
mean. Although the non-periodic symmetry can not be dealt with in such a simple 1D example, it allows to 
grasp the essential features of the structure determination of quasicrystals. The Fibonacci chain can be 
generated by a substitution rule such as S->L and L->LS. Starting from a S segment the successive series are S, 

L, LS, LSL, LSLLS, LSLLSLSL, LSLLSLSLLSLLS… which at infinity give the Fibonacci chain. The diffraction 
pattern of the Fibonacci chain is non periodic but can be indexed by a linear combination of two wavevectors 
whose lengths are incommensurate. This means that the Fibonacci chain can be described in a 2 dimensional 
space in a periodic way.  This is illustrated in figure 1 (a): the higher dimensional periodic space is a square 
lattice with a lattice constant a. It decomposes in two 1D subspaces: the parallel (or external) space which 
corresponds to the 1D physical space, and the perpendicular (or internal) space. The slope of the parallel space 
is irrational and equal to 1/τ. Each lattice node is decorated by a segment line, named atomic surface, which 
has an extension only in the perpendicular direction. The length of the atomic surface is obtained as the 
projection of the square unit cell onto the perpendicular space. The 1D Fibonacci chain is then obtained as a 
section of the decorated 2D periodic lattice by the 1D parallel space Epar. Each time the Epar line crosses a 
segment line, an atomic position is generated as shown in figure 1-a. There are several advantages in using the 
2D periodic description of the Fibonacci chain. First, it is easy to carry out a statistical analysis of the different 
local environments in the high dimensional space. There is in fact a one to one correspondence between the 
generated local environments in physical space and the way the atomic surfaces are placed in the 2D periodic 
space. For instance it is easy to realise from Figure 1-a that the first interatomic distances in the Fibonacci 
chain are S and L, given by the projection of the (1,0) and (0,1) vectors onto the parallel space.  As shown on 
the insert, all the successive generated points can be seen on the unit cell, shaded as a grey area. The 
successive paths of the parallel space cut are shown: starting from a point A the line goes up to B, this point is 
equivalent (by lattice translation) to the point B’ (dashed line). From this point the cut can continue. At 
infinity, since the slope is irrational, the square unit cell is uniformly covered, from which one can deduce that 
the point density of the 1D QC is equal to Dper/a

2, where Dper is the length of the atomic surface. From this 
analysis one also readily realises that the frequency of the L segment is higher than the one of the S segment. 
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In fact, the 2D image of the Fibonacci chain can be made such as to highlight this distribution of L and S 
segments as shown Figure 4 (left). The decomposition into two block allows one to calculate the frequency of 
L and S bonds which is proportional to the ratio of each of the grey square in Fig 4 to Vcell=a2. The second 
advantage of the 2D image of the quasicrystal is that it allows an easy computation of its Fourier transform. 
Indeed the structure is described as the convolution of a square lattice with a decoration where the decoration 
is a step like function, extended only in perpendicular space, with a length equal to Dper.  Since the Fourier 
transform (FT) of a convolution A*B is the product of the FT(A) by FT(B), it follows that the FT of the 
decorated 2D square lattice is a square lattice of lattice constant 2π/a, whose points have integer coordinates 
Q=(n1, n2)2π/a. This 2D reciprocal vectors also decomposes in two 1D reciprocal vector Qpar and Qper the 
parallel (or physical space) and perpendicular reciprocal coordinates. Each lattice point of the 2D reciprocal 
lattice is ‘weighted’ by the FT of the atomic surface, which is a sinx/x oscillating function decaying with Qper. 
This acts as a kind of form factor, Bragg peaks with a small Qper component having a stronger intensity. The 
1D diffraction pattern is then obtained as a projection of the 2D diffraction pattern onto the 1D parallel space.  
 
  (INSERT Figure 1 here) 
 
 Starting from this simple Fibonacci chain, there are a few modifications which have a strong influence 
onto the resulting quasiperiodic structure. The first modification, shown figure 1-b, is to increase the length of 
the atomic surface. As seen on the figure, this generates new atomic positions. Note that these new atomic 
positions can not be accounted for by a simple and systematic decoration of the L and S Fibonacci tiles. The 
second modification, shown figure 1-c, is to decorate the 2D square lattice with other atomic surfaces: besides 
the node atomic surface, two supplementary atomic surfaces have been added and are located on position 
(0.5,0) and (0,0.5) or mid-edges positions. As seen on the resulting 1D QC, new positions are again generated 
and fall at positions in the middle of the L or S segment. Finally, the atomic surfaces are not necessary ‘flat’ in 
the perpendicular directions, but can be slightly displaced along the parallel space as shown figure 1-d. This 
has been called a ‘parallel component’ of the atomic surface and results in small displacements of atoms in the 
resulting 1D QC, a situation which is important to ‘relax’ the atomic position as a function of the local 
environment. Such a parallel component was for instance observed by Lançon et al. [6] in relaxing a realistic 
i-AlMnSi model under a set of pair potential (see also [7]). Altogether we thus have shown that the high 
dimensional description of the QC is intimately related to the resulting 1D QC and local environments. The 
three important parameters describing the QC structure are thus the position of the atomic surfaces, their 
shape, and their parallel component. In the case of a multi component quasicrystal, the chemical content of 
each atomic surface needs also to be specified. 
 Let us now consider the structure determination problem. As an example we start from the structure of 
figure 1-d, shown enlarged in figure 2. Experimentally the accessible measurable quantity is the integrated 
intensity of the Bragg reflections, which is proportional to the square of the FT of the structure. The 
diffraction pattern of this 1D QC is shown figure 2 (left panel, bottom). It has been indexed with two integers 
which allows one to ‘lift’ it up in a 2D reciprocal space.  At this point one is faced with the well known phase 
problem. When phases are unknown, the only quantity which can be computed is the Patterson function 
(figure 2, right panel, bottom) obtained as the FT of the measured Bragg peak intensities. Interpreting such a 
function is in general not obvious, but for quasicrystals it allows determining the positions of the atomic 
surfaces. In some cases one can also extract some rough estimate of the size of the atomic surfaces. Recently, 
phase reconstruction methods have been proposed by several research teams: the minimum charge density [8], 
the low density elimination [9] and the charge flipping method [10]. These methods might be viewed as a 
generalisation of direct methods (although a strict proof has not been given), with as a basis the observation 
that the electron density should be positive, and that the atomic surfaces are confined in limited regions in the 
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2D space (this corresponds to the atomicity hypothesis used for 3D direct methods). As a result it is thus 
possible to directly compute the electron density in the periodic space. This is of course a tremendous 
simplification in the structure determination of QC.  
 
 INSERT FIGURE 2 ABOUT HERE  
As an example, the 2D density, as obtained by FT of the structure factors and their phases, is shown in figure 
2 (right panel, top). The three atomic surfaces located on the nodes and mid-edges of the square lattice are 
clearly visible. It is also possible to get some insight in their length. However, when compared with the initial 
structure, because of the truncation effect in the FT [11], the atomic surfaces are found to be too long. This is 
also visible on the density profile which displays a smooth cut off, instead of a sharp one. Such a smooth 
profile result in 1D QC atomic positions which appear as partially occupied, and also to unphysical ‘short’ 
distances (one is encircled in the figure 2), sometime named ‘split positions’. Of course here the solution 
should be one in which these split positions are suppressed since they do not appear in the ‘real’ structure. It is 
thus necessary to have a modelling step, with as a basis the results of the density map. This is a difficult 
problem which we will deal with in section 2.3.  
 

 2.2 Icosahedral quasicrystals 

The previous description can be generalised to the case of icosahedral quasicrystals (see [12] for an 
introduction). Icosahedral symmetry is characterised by the presence of six 5-fold axes. The diffraction 
pattern of icosahedral QCs can be indexed by the linear combination of 6 vectors pointing along the 5-fold 
axis of the icosahedron. The use of 6 integer indices thus means that the QC periodicity is restored in a 6D 
space, which is the equivalent of the 2D space introduced in section 2.1. The 6D space decomposes into two 
3D subspaces: Epar (the physical space, or external space) and Eper (or internal space). Now atomic surfaces 
are 3D objects. As an example, let us consider the Amman tiling or 3D Penrose tiling which is somehow the 
3D-icosahedral equivalent of the Fibonacci chain. It is a 3D tiling with icosahedral symmetry, constructed 
with two rhombohedra: a ‘fat’ or prolate one and a ‘thin’ or oblate one (figure 3).   
 
(INSERT FIGURE 3 ABOUT HERE)  
 
The Amman tiling can be obtained as a section of the 6D cubic lattice whose nodes are decorated with a 
triacontahedron lying in Eper, as shown figure 3. This triacontahedron is obtained as the projection of the 6D 
cube onto the perpendicular direction. Of course it is not possible to visualise at once the 6D space. However, 
rational sections of the 6D space can provide a good insight in the structure. Figure 3 (right panel) displays a 
5-fold rational section of the 6D decorated lattice. This section contains a 5-fold axis both in the parallel and 
perpendicular directions. The trace of the 6D cube is seen as a rectangle, with the (100000) axis corresponding 
to the short edge of the rectangle. The segment lines seen on this section correspond to the trace of the 
triacontahedron along its 5-fold axis. Again, the high dimensional space description is intimately related to the 
resulting 3D structure. For instance one sees that the rhombohedra edge distribution is given by the rectangle 
noted b. In fact, local order and local environments can be determined by geometrical consideration using the 
shape of the atomic surface. Such an analysis is beyond the scope of this paper, the main message being that 
there is a strong connection between the position and shape of the atomic surfaces and the local order in the 
resulting 3D QC. 
 Another useful piece of information which can be extracted from the 5-fold section, is the high 
symmetry position of the decoration in the 6D cube. Indeed the section contains the body centre site with 
coordinate 0.5(111111), noted BC on the figure, and the mide-edge (ME) site with coordinate 0.5(100000). It 
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turns out that all icosahedral phases known to date have atomic surfaces located on some of these special 
positions. 
 Following the analysis in section 2.1, the icosahedral structure is fully specified by the position and the 
shape of the atomic surfaces, with eventually their parallel component.  
  

2.3 Modeling the structure of icosahedral QCs. 

Modelling the shape of the atomic surfaces, which are 3D objects, is a complicated process. Ideally one 
should find a number of ‘reasonable’ parameters which can then be refined against diffraction data. The 
number of free parameters must be such that they are of the order 4 times smaller than the number of 
measured Bragg peak intensities. Unlike the case of incommensurate or composite structures, there is no 
‘standard’ software procedure and each case is somehow a special one.  In order to restrict the number of free 
parameters in the refinement a few hypotheses have been put forward which we briefly present in the 
following. 
 Of course, the first condition to be fulfilled is that the model reproduces correctly the atomic density 
and chemical composition observed experimentally. The second important constraint is that the resulting 3D 
QC structure does not have unphysical short distances. For instance, all Al alloys have Al-Al interatomic 
distances larger than roughly 2.3 Ǻ.  These two constraints already put severe limitations on the shape of the 
atomic surfaces but are not sufficient. 
   Constraints on the possible shapes of atomic surfaces have been proposed by Gratias and Katz, in 
trying to answer to two questions: (i) can a quasicrystal be grown from local rules. (ii) What is the constraint 
of the phason degree of freedom on atomic surfaces shape? 
  The question of the quasicrystal growth remains a fascinating problem. Understanding the way 
quasiperiodic long range order propagates is indeed intricate. A few models have been proposed so far, but 
they certainly are far from the real case. A prominent question is the one of locality: is it possible to grow a 
perfect quasicrystal only considering local growth rules or is there a long range mechanism that brings the 
information? In that respect the existence of matching rules (or local rules) has been a long standing 
discussion (see [13]). Local rules are in fact not growing rules: they only ensure that if a set of local 
environments are observed in a given structure, then the structure must be quasiperiodic. It means that the set 
of local environments is unique to the quasicrystal. Such local rules correspond for instance to the arrow 
decoration in the 2D Penrose tiling. Although local rules are not growing rules (this is easily demonstrated in 
the case of the 2D Penrose tiling), it is assumed that the growth of a quasicrystal with a restricted number of 
defects is possible using the local rules. It is certainly a necessary condition for a local growth. Katz and 
Gratias have shown that an icosahedral quasicrystal admits local rules, if the atomic surfaces which describe 
this structure are polyhedron bounded by mirror planes [14]. 
   
          INSERT FIGURE 4 ABOUT HERE 
 
 The second condition is the so called ‘closeness’ condition, related to the phason degree of freedom of 
QC structures and is illustrated figure 4 in the case of the Fibonacci chain. If the parallel space is translated 
along the perpendicular direction, a ‘new’ 1D quasicrystal is generated: the new QC can not be in general 
superimposed on the previous one, but it has the same free energy (it is in fact ‘indistinguishable’). This 
invariance of the free energy under a translation along the perpendicular space is associated with a phase shift 
in the density wave picture of the quasicrystal. In the framework of the hydrodynamic theory, this ‘phase’ 
degrees of freedom, leads to long wavelength phason modes. The effect of the Epar translation is illustrated 
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figure 4 where local rearrangements have occurred, some LS sequences being transformed in SL ones and 
vice versa.  
           If the shape of the atomic surfaces is made arbitrary, (for instance if the segment line describing the 
Fibonacci chain is made smaller, shown in the encircled region figure 4) situations might occur for which the 
translation of the cut space will make an atom ’disappear’ and ’re-appear’ far away from its initial position. 
Such a situation is unphysical and/or might be too unfavourable from the energy point of view. Katz and 
Gratias proposed that the shape of the atomic surfaces should be such, that when displayed in the high 
dimensional space their surfaces should be ’connected’ by planes parallel to the parallel space (shown as light 
grey line in the case of the Fibonacci chain figure 4, left panel): this will ensure that the physical space may 
slide, i.e. that any translation of this space creates energetically easy jump sites. The closeness condition is 
fulfilled for tilings such as the 3D Penrose one for instance. 
 With such constraints in mind Katz and Gratias proposed a set of polyhedra which should be used for 
icosahedral QC modelling [14]. Note however that combining closeness condition and chemical decoration is 
somehow extremely difficult to fulfil, so that in general models only consider the closeness condition for the 
external part of the atomic surfaces.  
 Another fruitful approach has been the comparison with a so-called rational periodic approximant. 
Indeed, if the slope of the parallel space is made rational instead of irrational, the resulting structure is 
periodic. In fact the golden mean number τ can be approximated by its successive rational approximants 1/1, 
2/1, 3/2 …, which leads to crystal approximant with a larger and larger unit cell (figure 4, right panel). Each 
rational approximant has a local order which is similar (although not identical) to the one found in the 
quasicrystal.  For instance (figure 4), the 1/1 approximant to the Fibonacci chain is a periodic stacking of LS 
whereas the 2/1 approximant is a periodic tiling of LSL, both local configurations being found in the 
Fibonacci chain. Surprisingly, it turned out that such periodic approximants have been found experimentally 
in a few icosahedral systems (AlMnSi, AlLiCu, ZnMgY and more recently CdYb).  Although approximants 
might have large unit cells, they are periodic and standard methods of crystallography can be used for their 
structure determination. Having analysed their local environment, generally in terms of atomic cluster 
packing, this knowledge can be used for QC modelling. This approach has been for instance used for the first 
models in the i-AlMnSi [15, 16] and i-AlLiCu phases [17] . One can then try to find a quasiperiodic model 
that will for instance connect the clusters in the same way and maximise the cluster density. This approach 
will be illustrated in section 3 for the i-CdYb structure determination. 
 
 INSERT FIGURE 5 ABOUT HERE 
 
 The application of such a general scheme is shown on figure 5-a, which displays the decomposition of 
one of the atomic surface used by Gratias et al. for modelling the i-AlPdMn and i-AlCuFe phase[18, 19]. The 
atomic surfaces have been designed in such a way that the number of local environments and in particular the 
cluster chemical decorations are minimised. In this case no adjustable parameter is used. An approach, closer 
to what is achieved in regular crystallography has been proposed by Yamamoto and is displayed on the figure 
5-b. This figure shows an atomic surface for the i-AlPdMn quasicrystal, in the asymmetric unit so has to 
highlight its interior (this atomic surface is similar to the one of Fig 5-a). As can be seen, the large atomic 
surface is decomposed in small subdomains. To each subdomain is assigned a set of parameters: chemical 
composition (Al, Pd, Mn or chemical disorder), a thermal parameter and a parallel shift. It turned out that this 
parallel shift is a crucial parameter for achieving a good fit [20], as already pointed out  in early i-AlMnSi 
structure determination [21].    
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3. Structure determination of the CdYb quasicrystal 

The recent discovery of the i-Cd5.7Yb [22] icosahedral phase has been a breakthrough for quasicrystal 
structure determination. Indeed this is the first stable binary quasicrystal, with a high structural quality (i.e. 
sharp Bragg reflections) and a very good Cd/Yb X-ray contrast (ZCd=48, ZYb=70). Moreover in the same 
CdYb system and for very similar chemical compositions the 1/1 Cd6Yb [23, 24] and 2/1 Cd5.8Yb cubic 
periodic approximants can be synthesised. The structure of these two phases has been solved, and can serve as 
a basis for the  parent QC structure determination [23, 24]. 

3.1 Atomic structure of the 1/1 and 2/1 approximant. 

The 1/1 and 2/1 cubic approximants have a lattice parameter equal to 15.7 Ǻ and 25.3 Ǻ (equal to τx15.7) 
respectively. Both phases can be described as a packing of a large atomic cluster. This cluster is neither of a 
Mackay type (as observed in i-AlPdMn phases), nor a Bergman type (as observed in the Frank-Kasper 
quasicrystals such as AlLiCu) but shows a new arrangement of shells (figure 6). Starting from the cluster 
centre one finds:  a Cd tetrahedron which appears in different orientations (disordered site), a Cd 
dodecahedron (20 atoms, R=4.6 Ǻ), an Yb icosahedron (12 atoms, R=5.6 Ǻ), a Cd icosidodecahedron (30 
atoms, R=6.5 Ǻ) and finally a large triacontahedron (92 atoms, R=7.6 Ǻ) with atoms sitting on the vertices 
and mid-edges. This large cluster contains 158 atoms. One should note that there is no Cd/Yb disorder as a 
result of a size effect on one hand (Yb being a larger atom than Cd) and of Cd/Yb hybridisation effect on the 
other hand, as shown by ab-initio calculations of the electronic structure of the 1/1 approximant [25]. Besides 
the central tetrahedron, which is disordered, a few atomic positions on the triacontahedron also present some 
partial occupancy.    
 
 INSERT FIGURE 6 ABOUT HERE 
 
 The large triacontahedron (TRH in the following), is packed on a BCC lattice in the 1/1 approximant. 
The TRH are linked along the 2-fold axis (b-bond, 15.7 Ǻ) by sharing a face and along the 3-fold axis (c-
bond, 13.6 Ǻ) where the two TRH interpenetrate and define an oblate rhombohedron (OR). The entire 1/1 
structure is described by the packing of interpenetrating TRH (figure 6).  The 2/1 approximant is also a 
packing of the TRH, having b- and c- bounds. However, there is a new interstitial cell defined by a decorated 
prolate rhombohedron (PR), with atoms on the vertices, along the edges and 2 atoms along the body diagonal 
(figure 6). This new cell is in fact a double Friauf polyhedron, a local environment which is characteristic of 
Frank-Kasper type structures. As expected, one finds that the 1/1 and 2/1 approximant have a similar local 
structure, with the noticeable exception of the PR. This is because the ‘coordination’ of the TRH cluster is 
different in the two approximants, with 6 b-bonds and 8 b-bonds in the 1/1 approximant, whereas in the 2/1 
approximant there are 6 b- bonds and 7 c-bonds.  Note that the clusters are significantly distorted along the 3-
fold c-bonds, and do not display a perfect icosahedral symmetry. This is for instance visible on the figure 6, 
where the triangular faces of the icosidodecahedron are not identical. Similarly, atoms on the large TRH shells 
are displaced from their ‘ideal position’, with 3-fold vertices atoms ‘pulled’ away from their ideal position, 
whereas the neighbouring mid-edges Cd atoms are ‘pushed’ inside the cluster. 
 The large TRH cluster is thus a key building block of the structure, which as shown in the following, is 
also present in the QC structure. The crystal structure analysis, will serve as a basis for the QC structure 
modelling, with a large TRH connected along b- and c-bonds and two supplementary building blocks, the OR 
and the PR, which fills remaining spaces. 
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3.2 i-Cd5.7Yb 6D structure determination.  

In order to analyze the structure of the i-YbCd5.7 phase a data collection using synchrotron X-ray diffraction 
has been carried out on the D2AM beam line at the ESRF. A single grain of the i-YbCd phase, with a cubic 
size of approximately 0.3 mm, was extracted from an ingot slowly cooled from the liquid. It was sealed under 
inert gas in a glass capillary to avoid oxidation. The incoming X-ray energy was selected by a double Si111 
monochromator and set to 20.6 keV to minimize absorption corrections. The single grain was found to be of 
very high structural quality, with a narrow mosaic spread of 0.03 °. Over five thousands unique Bragg 
reflections, with a large dynamical range of 8 orders of magnitude in intensity have been collected. The 
measured integrated intensities have been corrected for absorption. The data set contains a large number of 
reflections having a large Qperp component of their wave vector; those reflections are particularly sensitive to 
the details of the structure and are important for any comparison with a model. The space group was 
determined to be Pm35 with an icosahedral lattice constant a = 0.5689 nm.  
 In the first step, a phase reconstruction for Fourier synthesis was achieved by applying the low density 
elimination method. The obtained phases and Fourier amplitudes were used to generate the electron densities 
within the 6D unit cell of the QC [26]. The figure 7 shows different rational sections of the 6D electron 
density. Figure 7-a displays the rational section of the electron density map in a plane containing a 5-fold axis 
both in the parallel and perpendicular space (see section 2). As highlighted with ellipsoid, the electron density 
maxima are located at three special positions of the 6D unit cell: at the origin (O), mid-edge (ME) and body-
centre (BC) sites. Moreover, it is also observed that the electron density is higher on the BC sites, which 
indicates that this atomic surface represents Yb atoms, since ZCd=48 and ZYb=70.  From the different sections 
it is also possible to identify which clusters are generated in the 3D QC. This is achieved starting from the BC 
site, whose atomic surface is ‘empty’ (no electron density) in its centre. Considering figure 7-a, the two 
double arrows point to two Yb atomic surfaces at a distance of 5.6 Ǻ. This configuration is such that each 
time the cut by parallel space goes through the ‘empty’ centre, two Yb atoms are generated along the 5-fold 
axis at a distance 5.6 Ǻ from the centre. This in fact corresponds to the generation of the Yb icosahedron. A 
similar reasoning on figure 7-b, which displays a section containing a 3-fold axis both in parallel and 
perpendicular space, demonstrates that around the 6D BC site, a Cd dodecahedron with a radius of 4.2 Ǻ is 
generated. Note that in this case the atomic surface displays a significant parallel space component. Finally 
the 2-fold section (figure 7-c), demonstrates that an icosidodecahedron, with a radius 6.5 Ǻ is also generated. 
A further study also shows that the large TRH is generated. We have thus from these density maps three 
important pieces of information: the location of the atomic surfaces in the 6D space, the rough size and 
chemical composition of each of the three atomic surfaces and finally the local order in terms of clusters, 
which demonstrates that the same large TRH, as observed in the crystal approximant, also exist in the QC. 
  
 INSERT FIGURE 7 ABOUT HERE. 
 
 Going further requires a detailed modelling which is achieved using the 3 building blocks found in the 
approximants [27]. The basic principle of the modelling is to find a quasiperiodic packing of the three 
building blocks, the main one being the TRH. This TRH has to be connected by the 2-fold b- and the 3-fold c- 
bound. The guidelines of the modelling are here the comparison with the 1/1 and 2/1 approximant crystals, 
together with information gained from the QC electron density maps. We first note that the size of the ‘hole’ 
in the centre of the BC atomic surface (fig 7-a and 7-b) is in fact very close to the one of the atomic surface 
which generates the so-called 12-fold sphere packing. The 12-fold sphere packing is a subset of vertices of the 
3D Amman tiling which forms a network connected by only b- and c-bonds, as shown by Henley [28]. The 
shape of this atomic surface is a τ2 deflated ‘standard’ triacontahedron, truncated along the 5-fold axis and is 
shown in figure 8-f , together with its trace (thick grey bar) on the figure 7-a. It is thus used to generate the 
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large TRH centres, insuring their proper connectivity. The further atomic shells of the large TRH can then be 
generated by copying this atomic surface after the appropriate translations has been applied in perpendicular 
space (a similar procedure was used to model the i-AlMnSi phase [29, 30]). Because the large TRH 
interpenetrate along the 3-fold c-bond, some translated atomic surfaces also interpenetrate as shown on the 
figure 8. There is moreover some free space in between some of the TRH: it can be shown that this space can 
be filled with oblate and prolate rhombohedra. A reasonable assumption is to decorate the OR and PR 
similarly to what has been determined in the approximant. Moreover, the prolate decoration is also what is 
found in the Laves Cd2Yb phase. The corresponding ‘supplementary’ atomic surfaces fill the ‘gaps’ on the 
node and body-centre atomic surfaces, and generates the mid-edge one. The resulting atomic surfaces are 
shown figure 8, the label numbers corresponding to the different local environments generated in the resulting 
3D quasicrystal.  
  Coming back to the discussion in section 2.3, the overall shape of the three atomic surfaces seems 
quite complex, since they are not simple polyhedra (Figure 8 a-c). Indeed the node and body centre one’s are 
almost entirely ‘built up’ by the union of the same translated copy (figure 8a, b). However, the initial atomic 
surface (12-fold sphere packing centre) is bounded by mirror plane, and is a truncated triacontahedron (this 
restrict the way the triacontahedron is truncated, the Fig. 8-f shows one possibility), so that the resulting node 
and body-centre atomic surfaces are also bounded by 2-fold atomic planes and the necessary condition for 
local rules is fulfilled (note that this is only a necessary condition). The same is true for the mid-edge atomic 
surface, whose shape is such that it exactly ‘fits’ into the number 8 atomic surface, and is also bounded by 
mirror planes. Short distances are also prevented, except for the tetrahedral inner shell of the RTH, which is 
represented by a partially occupied dodecahedra (originating from atomic surfaces 2 and 7 which are not fully 
occupied). This is similar to what was achieved for the 1/1 and 2/1 atomic structure determination.  The 
closeness condition is also fulfilled at different scales. Considering the cluster centres, the atomic surface 11, 
is fulfilling such a condition: at this scale this is the large triacontahedral cluster which ‘flip’ from one 
position to another almost equivalent one. At the atomic size, this condition is also most likely fulfilled, 
although a further detailed study is required to confirm this point. For instance, the mid-edge atomic surface 
has is part 12, which is connected to the body-centre part 8. The occurrence of significant parallel component 
to some of the atomic surfaces (8 and 1) is also an important point to be taken into account. 
 In order to achieve a comparison of the model with diffraction data, each atomic surface is then 
decomposed in smaller pieces. For each small piece there is a set of parameters: chemical content, Debye-
Waller factor and parallel component. Altogether 251 parameters have been refined against the 5000 
measured integrated intensities. The overall R-factor is equal to 9.5% which is a very good result taking into 
account the large number of used data [27]. The calculated density and composition is 8.88 g/cm3 and 
Yb16.3Cd83.7, which is in excellent agreement with the available experimental data. The result of the fit is a 
very ordered 6D structure: there is no Cd/Yb disorder and only a few Cd disordered sites corresponding to the 
tetrahedron.  

3.3 Resulting 3D QC structure 

Once the 6D model is refined, an analysis of the resulting 3D QC structure can be carried out, which 
ultimately, is used for the understanding of physical properties. QCs are complex materials and one should try 
to analyse their structure with various points of view and choose the one which is most appropriate for a given 
problem. There are three ‘angles’ which are interesting in considering the 3D description of the i-CdYb phase: 
(i) inter-connected clusters, (ii) dense atomic planes and (iii) hierarchical properties.    
 The description in terms of inter-connected clusters follows from the very construction of the 6D 
model. About 93.8 % of the atoms belong to a large TRH, which displays a very strong chemical order, with 
Yb atoms sitting only on the icosahedral shell. Moreover, the TRH displays distorsions along the 3-fold 
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connections, in a way very similar to what is observed in the 2/1 and 1/1 approximant. Locally, the 
icosahedral symmetry of the clusters is thus also broken in the QC, a result which somehow goes against the 
usual assumptions. The overall icosahedral symmetry is of course warranted by the 6D construction. The 
‘connectivity’ of the clusters is also determined by the 12-fold sphere packing network. The average 
coordination number is 12 (i.e. 12 TRH are connected in average to a central one), but there are quite different 
environments. If the TRH connectivity is labelled by the number of b- and c- bonds (β,γ) around it (see [28]), 
then the most frequent arrangements are (7,5), (6,4), (7,6) and (7,7). Note that they are different from the 1/1 
(6,8) and 2/1 (6,7) TRH connectivity, showing the difference in the QC medium range order.  
 Besides the TRH, there are also other local environments, as a result of OR and PR space filling. One 
interesting configuration is one in which a complete Bergman clusters is generated. Fragment of this cluster 
are also observed, together with a combination of PR and OR tiles. They fill the remaining space in between 
the TRH. 
 
  INSERT FIGURE 9 ABOUT HERE. 
 
 A description in terms of dense planes is best achieved by computing the projected electron density on 
a 2-fold plane as shown in figure 9. As already observed for other icosahedral quasicrystals [31, 32], the 
density is not at all uniform, but is concentrated and forms dense rows along particular directions. Densest 
planes correspond to the dense lines with the largest gaps in between them. Two set of dense planes, 
perpendicular to 2-fold and 5-fold directions, are highlighted on the figure. They actually correspond to the 
two strong Bragg reflections observed on the 2-fold and 5-fold axis. Such a description in terms of dense 
planes is for instance extremely useful for the study of surfaces. 
 Finally a description in terms of a hierarchical packing of clusters is also interesting, also not so much 
used right now, in particular for the interpretation of physical properties [33]. The figure 9 (right panel) 
displays the cluster centres in a 5-fold planes. In such a plane clusters are connected by 2-fold b-bonds shown 
as thick lines. Cluster centres just below and above this plane (0.25 nm apart) are also shown: they are 
connected along c-bonds. Starting from the centre, there is a 10-fold ring, which is the trace of an 
icosisodecahedron cluster of RTH. The top left insert, displays the trace of the full cluster on the 5-fold 
planes, with a diameter of 6.8 nm. This icosidodecahedron of TRH is highlighted in a light grey disk. This 
large cluster of TRH forms itself an icosidodecahedron of ‘cluster of clusters’, as shown by the 10 fold ring 
with a radius R2. This large icosidodecahedron has dimensions increased in scale by a factor τ3, which results 
from the inflation properties of the 12-fold sphere packing. In this case the radius R2 is equal to τ3

xR1.  This 
inflation property can continue to infinity. This hierarchy most likely plays a role in the electronic and 
vibrational properties of QC’s. 
 The structure of the CdYb phase is thus the first quasicrystal for which a detailed understanding of its 
atomic structure has been achieved and can be readily used for physical properties calculations. It can also be 
used as a starting point for total energy calculations based on ab-initio calculations or using adapted 
interatomic pair potentials. Such an approach has been applied to a canonical cell model of the i-CdYb, which 
has many similar points with the above 6D model [34]. Simultaneous fitting of energy and diffraction data, as 
proposed by Henley, Mihalkovic and Widom [35, 36] might indeed be an interesting alternative when 
chemical order is difficult to assign from the experimental diffraction data alone. 
 
 

Page 10 of 26

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

4.  Phason modes. 

Up to now we have considered the QC has being a perfect one, with a diffraction pattern consisting only of 
Bragg peaks modelled by delta functions. As for periodic crystals, real quasicrystals depart from this ideal 
model (thermal vibration, dislocations, point defects…) which induces either a Bragg peak broadening or 
diffuse scattering. In this section we are interested by long wavelength excitations which are present in the 
quasicrystals. There are of course long wavelength acoustic phonons, which lead to the well known thermal 
diffuse scattering (TDS). There is however a mode, specific to aperiodic crystals and named phason mode 
which plays a particular role and which we briefly present in the following (see [37] for a review and 
references therein). We already introduced phason modes when discussing the closeness condition in section 
2.3. We have seen (figure 4) that it is possible to generate an infinite number of indistinguishable 1D 
quasicrystals by translating the parallel space cut along the perpendicular direction. This invariance of the free 
energy of the aperiodic crystal as the parallel space is displaced along the perpendicular direction, referred to 
as the ‘phason’ degree of freedom, has been analysed in the framework of the hydrodynamic theory of 
aperiodic crystals. The hydrodynamic theory predicts that new long wavelength modes, the phason modes, 
should appear in aperiodic crystals. The nature of the modes is however different for the different classes of 
aperiodic crystals. Phason modes are damped propagative modes in the case of displacive incommensurately 
modulated crystals, whereas they are purely diffusive modes in the case of quasicrystals. Phason modes are 
Goldstone like modes i.e their frequency (or the inverse of their lifetime for diffusive modes) goes to zero as 
their wavevector q goes to zero. This leads to a generalised elasticity theory of quasicrystals, which for 
icosahedral phases introduces two phason elastic constants (K1 and K2) and a phonon-phason (K3) coupling 
term. In the same way that thermal equilibrium phonon leads to a characteristic distribution of diffuse 
scattering around the Bragg reflections, long wavelength phason modes lead also to diffuse scattering. It has a 
characteristic shape and Qper dependence, which is used in trying to evidence such phason modes by diffuse 
scattering measurements. 
 
 INSERT FIGURE 10 ABOUT HERE 
 
 All icosahedral phases investigated so far display diffuse scattering in their diffraction pattern whose 
shape and intensity distribution can be explained by the presence of phason modes in the quasicrystal. The 
most detailed study on phason modes has been carried out in the i-AlPdMn phase [38-41], where both room 
and high temperature in-situ studies of the diffuse scattering have been carried out using neutron and X-ray 
scattering. The experimentally observed diffuse scattering is perfectly reproduced using only ‘phason’ like 
diffuse scattering and the two K1 and K2 elastic constants. The diffuse scattering measurement alone can not 
indicate however if phason modes are really dynamical diffusive modes or just quenched in fluctuations. 
Using coherent X-ray diffraction it was possible to demonstrate in the i-AlPdMn quasicrystal that phason 
modes are diffusive modes for temperature larger than 500°C [42], whereas fluctuations are quenched in for 
temperature below 500°C.  
 As for other quasicrystals, the diffraction pattern of the i-CdYb phase also displays some diffuse 
scattering, with a shape and an intensity dependence characteristic for the presence of phason modes. This is 
illustrated figure 10, which shows iso-intensity contour plots of the diffuse scattering: anisotropies are 
markedly different from the ones due to phonon i.e. TDS. That phason modes and the associated diffuse 
scattering are specific for quasicrystals was demonstrated by measuring the diffuse scattering in the Zn-Sc 1/1 
approximant and in the i-ZnMgSc quasicrystals [43]. These phases are isostructural to the CdYb 1/1 and i- 
phases. Figure 10 (right panel) displays the absolute scale diffuse intensity measured in the 1/1 ZnSc (dashed 
line) and the i-ZnMgSc quasicrystal (full line). There is a larger amount of diffuse scattering in the 
icosahedral phase than in the 1/1 approximant, the excess diffuse scattering being due to phason modes.  
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 Having measured the diffuse scattering on an absolute scale, it is also possible to compare different 
phases. It has been found that the diffuse scattering intensity, roughly proportional to the inverse of the K1 
phason elastic constant, is dependent on the type of icosahedral phases. For instance, the diffuse scattering 
intensity is roughly 5 time larger in the i-AlPdMn phase than in the i-ZnMgSc one (all other parameter being 
kept equal), meaning that the K1 phason elastic constant is roughly 5 time smaller in i-AlPdMn than in i-
ZnMgSc. This should have some influence on their respective physical properties, although this has not yet 
been shown theoretically or experimentally. 
 Diffuse scattering due to long wavelength phason modes is thus present in all known icosahedral 
phases. In the i-ZnMgSc and i-CdYb phases it is not possible to conclude whether the observed phason 
diffuse scattering is due to dynamical or to quenched-in phason modes. By comparison with the i-AlPdMn 
phase, where high T dynamical studies were performed, one however does not expect phason modes to be of 
dynamical origin at room temperature: in this case these are most likely quenched-in fluctuations. An in-situ 
high temperature study would thus be of great interest in these two systems. The hydrodynamic theory is only 
a continuum like theory, so that the microscopical interpretation of phason modes is still an open question. It 
certainly originates from the long range quasiperiodic order and remains a key signature of quasiperiodicity.  
 

5. Conclusion 

We have seen that the high dimensional crystallography is a powerful tool for the structure determination of 
quasicrystals. It allows to taylor atomic surfaces in tight connection with local short or medium range order. 
The most elaborate and precise structural solution to date has been obtained in the i-CdYb binary phase. Its 
structure is mainly described as a quasiperiodic packing of a large triacontahedral cluster. The TRH 
interpenetrates along the 3-fold bonds, which largely diminishes the number of so-called ‘glue’ atoms which 
are found in between the TRH. The 6D modelling leads to a very detailed description of the resulting 
structure, with chemical order, distortion of the icosahedral clusters, dense planes and hierarchical packing of 
clusters. This model thus provides a unique opportunity for a detailed calculation of physical properties and 
for the understanding of the formation and stability of quasicrystals. Finally diffuse scattering due to 
longwavelength phason modes is also observed in this i-CdYb quasicrystal. Understanding its atomistic origin 
is certainly a key point for the understanding of the way quasiperiodic long range order propagates. 
 
  
Acknowledgments:  One of us (MdB) thanks S. Francoual for enlighting discussions.  
 
 
 
Figure Captions:  

 
Figure 1: Illustration of the 2D periodic description of 1D quasiperiodic structures. a) The Fibonacci chain. 
The resulting 1D QC is shown in the box below. b) A structure in which the segment lines have been made 
longer. New atomic positions are generated. c) A structure which is obtained as a decorated square lattice. 
Atomic surfaces are located on the nodes and on the mid-edges of the square lattice. d) A structure in which 
part of the atomic surfaces have been given a parallel component: this modifies slightly the local 
environments.  
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Figure 2: Illustration of the high dimensional structure determination. The structure together with its 
diffraction pattern is shown on the left panel. The right panel displays the 2D electron density (top) and the 
2D Patterson function (bottom). The circled area highlights a ‘split’ position due to truncation effects. 
 
Figure 3: Left panel: The prolate and oblate rhombohedra of the Aman tiling. The triacontahedron which 
decorates the nodes of the 6D cubic lattice is also shown. The right panel displays a rational section 
containing a 5-fold axis in both parallel and perpendicular space. The trace of the 6D unit cell is highlighted. 
The segment lines extending in the perpendicular direction are the triacontahedra traces.  
 
Figure 4: Left: illustration of the closeness condition (see text). Right: Illustration of the relationship between 
the QC and successive periodic approximant. 
 
Figure 5: (a). Chemical decomposition of one atomic surface in the i-AlPdMn phase as proposed by 
Quiquandon  et al. [19] (b) Decomposition of the node atomic surface proposed by Yamamoto et al. in i-
AlPdMn [20]. 
 
Figure 6: Top: The successive shells of the large TRH found in the 1/1 and 2/1 CdYb approximant. From left 
to right:  Cd tetrahedron, Cd dodecahedron, Yb icosahedraon, Cd icosidodecahedron and the large 
triacontahedron (TRH) 
Bottom: packing of the TRH in the 1/1 and 2/1 approximant together with the b- (2-fold) and c- (3-fold) 
bounding. The resulting three building blocks are shown in the bottom part (from left: TRH, PR and OB 
decorated rhomboedra) 
 
Fig 7: Electron density map calculated by the low density elimination in the i-CdYb phase. (a), (b) and (c) are 
a 5-fold, 3-fold and 2-fold rational sections. In (a) the 3 atomic surfaces are encircled. The arrows in (a), (b) 
and (c) indicate the different atomic shells generated in the resulting 3D quasicrystal (see text). 
 
 
Figure 8: External shape of the node (a), body-centre (b) and  mide-edge (c) atomic surfaces of the i-CdYb 6D 
model (for simplicity the parallel component has been suppressed). (d) and (e) display the decomposition in 
the asymmetric unit of the node and body centre atomic surfaces respectively.  (f) is an enlarged part of the 
building atomic surface. The different numbers explain which parts of the ODs generate the corresponding 
atomic positions in 3D physical space. The different shells of the RTH are the following: 11 generates the 
vacant centres of RTHs: its enlarged part is shown in (f); 2 and 7, generate the partially occupied vertex 
positions of the disordered Cd4 tetrahedron. 1 generates the Cd dodecahedra; 9, the Yb icosahedra; 8, the Cd 
icosidodecahedra; 4 and 5, the vertex positions of RTHs. 12, the mid-edge positions of RTHs. The other labels 
correspond to the two other building units: 3 and 13, generate the Cd positions of vertices and mid-edges of 
the AR and OR respectively, which are not shared with the RTHs; 10, the Yb positions inside ARs. 6, vacant 
centres of stellate polyhedra. 
 
Figure 9: Left: electron density of the i-CdYb phase projected onto a 2-fold plane. Dense planes are observed 
perpendicularly to 2-fold and 5-fold axis. Right: Location of cluster centers in a 5-fold plane. The light grey 
area indicates the trace of an icosidodecahedron of TRH or ‘cluster of clusters’.  One slice of this ‘cluster of 
clusters’ is shown in the insert (top, left): there is a central TRH surrounded by a 10-fold ring of TRH (trace of 
the icosidodecahedron) and has a diameter of about 68 Ǻ. The hierarchy and inflation is highlighted by the R1 
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and R2 length scale. On the outer part of the figure there is a 10-fold ring of ‘cluster of clusters’ analogous the 
10-fold ring of TRH, but rescaled by a factor τ3.  
 
Figure 10: Left: Diffuse scattering measured in the i-CdYb phase. Isointensity contours have a specific 
anisotropy. Right: Absolute scale measurement of the diffuse scattering in the ZnSc  1/1 crystal (dashed) and 
in the i-ZnMgSc quasicrystal. There is an excess intensity due to longwavelenth phason in the quasicrystal. 
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FIGURE 3 
 

5-fold section of the 6D cube

ME BC
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FIGURE 4 
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Figure 5: 
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Figure 6 

1/1: 15.7 Å
2/1: 25.3 Å
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Figure 8. 

(a) (b) (c)

(d) (e) (f)
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Figure 9: 
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Figure 10 
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