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Discrete tomography of Penrose model sets

MICHAEL BAAKE & CHRISTIAN HUCK∗

Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany

(v1.0 released August 2006)

Various theoretical and algorithmic aspects of inverse problems in discrete tomography of planar Penrose model sets are discussed. These
are motivated by the demand of materials science for the reconstruction of quasicrystalline structures from a small number of images
produced by quantitative high resolution transmission electron microscopy.

1 Introduction

Discrete tomography is concerned with the inverse problem of retrieving information about some discrete
object from (generally noisy) information about its incidences with certain query sets. A typical example
is the reconstruction of a finite planar point set from its line sums in a small number of directions. More
precisely, for a direction u ∈ S

1 (the unit circle), the (discrete parallel) X-ray XuF of a finite subset F of
the Euclidean plane

� 2 in direction u gives the number of points of the set on each line in
� 2 parallel to

u, i.e., XuF is the function XuF : Lu −→ � 0 := � ∪ {0}, defined by

XuF (`) := card(F ∩ ` ) =
∑

x∈`

�
F (x) ,

where Lu is the set of lines in direction u in
� 2, with obvious generalization to higher dimensions. In the

classical setting, motivated by crystals, the positions to be determined form a subset of a translate of the
square lattice � 2 or, more generally, of arbitrary lattices L in

� d, where d ≥ 2. The cases d = 2 and d = 3
are practically relevant. In fact, many of the problems in discrete tomography have been studied on � 2,
the ‘classical planar setting’ of discrete tomography; see [1–4].

In the longer run, by also having other structures than perfect crystals in mind, one has to take into
account wider classes of sets, or at least significant deviations from the lattice structure. As an intermediate
step between periodic and random (or amorphous) Delone sets (defined below), we consider systems of
aperiodic order, more precisely, of so-called model sets (or mathematical quasicrystals), which are commonly
accepted as a reasonable mathematical model for quasicrystalline structures in nature [5].

The main motivation for our interest in the discrete tomography of model sets comes from the question
how to reconstruct three-dimensional (quasi)crystals or planar layers of them from their images under
quantitative high resolution transmission electron microscopy (HRTEM) in a small number of directions.
In fact, in [6, 7] a technique called QUANTITEM (quantitative analysis of the information coming from
transmission electron microscopy) is described, based on HRTEM, which can effectively measure the num-
ber of atoms lying on lines parallel to certain directions. In particular, with the growing importance of
surface science, there is also increasing interest in additional methods for the reconstruction of planar
structures which can supplement STM approaches. At present, the measurement of the number of atoms
lying on a line can only be achieved for some crystals; see [6, 7]. However, it is reasonable to expect that
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future developments in technology will improve this situation. It seems thus timely to investigate the
mathematical foundations now.

Here, we restrict ourselves to an example, namely to the well-known class of planar model sets ΛP ⊂
� 2

that are associated with the well-known Penrose tiling, and present some results on the discrete tomography
of these sets, with an emphasis both on reconstruction and uniqueness problems. Note that proofs are
omitted; details will appear in [8, 9].

2 Penrose model sets

We always let ζ5 = e
2πi

5 , a primitive 5th root of unity in � . Then, � (ζ5) is the corresponding cyclotomic
field, an algebraic number field of degree 4 over � , and � [ζ5] is its subring of cyclotomic integers.

Remark 1 Let C5 denote the cyclic group of order 5, i.e., C5 = � /5 � . Moreover, C5 is understood to
be supplied with the discrete topology. It is well-known that every z ∈ � [ζ5] can uniquely be written as

z =
∑3

j=0 aj(z)ζj
5 , with aj(z) ∈ � . Let σ2 be the automorphism of the Galois extension � (ζ5)/ � that is

given by ζ5 7−→ ζ2
5 . Identifying

� 2 and � in the canonical way, σ2 gives rise to a map

.˜ : � [ζ5] −→
� 2 × (

� 2 × C5) ,

defined by z 7−→
(
z,

(
σ2(z),

∑3
j=0(aj(z) (mod 5))

))
. Via projection on the second factor, this induces

a map .? : � [ζ5] −→
� 2 × C5, defined by z 7−→

(
σ2(z),

∑3
j=0(aj(z) (mod 5))

)
. Then, � [ζ5]˜ is a lat-

tice in
� 2 × (

� 2 × C5), i.e., a co-compact discrete subgroup. In fact, � [ζ5]˜ is the � -span of the set
{1˜, (ζ5)˜, (ζ2

5 )˜, (ζ3
5 )˜}. Finally, note that � [ζ5]

? is dense in
� 2 × C5; see [10].

It is well known by now that model sets arise from so-called cut and project schemes, compare [12, 13].
In particular, the class of Penrose model sets (PMS) arises as follows; cf. [14].

π π
int� 2 ←−

� 2 × (
� 2 × C5) −→

� 2 × C5

∪ dense ∪ lattice ∪ dense

1–1 1–1

� [ζ5] ←→
{(

z = σ1(z),
(
σ2(z),

3∑

j=0

(aj(z) (mod 5))
)

︸ ︷︷ ︸
=z?

)
| z ∈ � [ζ5]

}

︸ ︷︷ ︸
= � [ζ5]e

←→ � [ζ5]
?

(1)

Given any subset W ⊂
� 2 × C5 with ∅ 6= W ◦ ⊂ W ⊂ W ◦ and W ◦ compact, a so-called window, and

any t ∈
� 2, we obtain a planar model set Λ(t,W ) := t + Λ(W ) relative to the above cut and project

scheme (1) by setting Λ(W ) := {z ∈ � [ζ5] | z
? ∈W}.

Let P be the convex hull of the 5th roots of unity, which is a regular pentagon centred at the origin. Set

W (1) := P , W (2) := −P , W (3) := τP and W (4) := −τP , with τ =
√

5+1
2 the golden ratio, and

WP :=

4⋃

j=1

(
W (j) × {j (mod 5)}

)
⊂

� 2 × C5 .

Moreover, for u ∈
� 2, set W u

P := (u, 0 (mod 5)) + WP , (W u
P )(j) := (u, 0 (mod 5)) +

(
W (j) × {j (mod 5)}

)

and Λu
P := Λ(W u

P ). If Λu
P is generic, i.e., if one has W u

P ∩ � [ζ5]
? = ∅, then all translates of Λu

P, meaning
the sets t + Λu

P with t ∈
� 2, are called Penrose model sets.
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Figure 1. A patch of the fivefold symmetric Penrose tiling, with the four distinct classes of vertices indicated.

Remark 2 Λ0
P is not generic, while generic examples are obtained by shifting the window, i.e., Λu

P is generic
for almost all u ∈

� 2. Joining any two points with distance 1 in a generic Λu
P by edges results in a Penrose

tiling, in particular, a tiling with two types of rhombi. See Figure 1 for a generic example; different generic
choices of u result in locally indistinguishable (LI) Penrose tilings. Note that Penrose model sets ΛP ⊂

� 2

are aperiodic, meaning that they have no translational symmetries. Penrose model sets are Delone sets,
i.e., they are uniformly discrete and relatively dense; cf. [12].

3 Problems in discrete tomography of Penrose model sets

Let ΛP be a PMS, k ∈ � and R > 0. A finite subset C of ΛP is called a convex set in ΛP when its convex
hull contains no new points of ΛP, i.e., when one has C = conv(C) ∩ ΛP. We denote by F(ΛP), F≤k(ΛP),
D<R(ΛP) and C(ΛP) the set of finite subsets of ΛP, the set of finite subsets of ΛP having cardinality ≤ k,
the set of subsets of ΛP with diameter less than R and the set of convex subsets of ΛP, respectively.

Remark 1 The uniform discreteness of Penrose model sets ΛP immediately implies the inclusion
D<R(ΛP) ⊂ F(ΛP).

Clearly, in order to obtain electron microscopy images of high resolution, one should allow only directions
which yield dense lines in Penrose model sets. These directions are clearly contained in the set of all
directions, called (ΛP − ΛP)-directions, which are parallel to a non-zero element of the difference set

ΛP − ΛP := {λ− λ′ |λ, λ′ ∈ ΛP} ⊂ � [ζ5]

of ΛP. Calling a direction u ∈ S
1 a � [ζ5]-direction when it is parallel to an element of � [ζ5] \ {0}, one has

the following result.

Proposition 3.1 If ΛP is a PMS, the set of (ΛP − ΛP)-directions equals the set of � [ζ5]-directions.

Let us indicate the main algorithmic problems in discrete tomography of Penrose model sets. For a

direction u ∈ S
1, we denote by L

� [ζ5]
u the set of elements `u of Lu that pass through a point of � [ζ5].
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Let u1, . . . , um ∈ S
1 be m ≥ 2 pairwise non-parallel � [ζ5]-directions. The corresponding consistency,

reconstruction and uniqueness problems are defined as follows.

Consistency.
Given functions poi

: Loi
−→ � 0, i ∈ {1, . . . , m}, whose supports are finite and satisfy supp(pui

) ⊂ L
�
[ζ5]

ui
,

decide whether there is a finite set F which is contained in a PMS and satisfies Xui
F = pui

, for all i ∈
{1, . . . , m}.

Reconstruction.
Given functions pui

: Lui
−→ � 0, i ∈ {1, . . . , m}, whose supports are finite and satisfy supp(pui

) ⊂ L
�
[ζ5]

ui
,

in the case that Consistency is satisfied, construct a finite set F which is contained in a PMS and satisfies
Xui

F = pui
, for all i ∈ {1, . . . , m}.

Uniqueness.
Given a finite subset F of a PMS, decide whether there is a different finite set F ′ that is also a subset of a
PMS and satisfies Xui

F = Xui
F ′, for all i ∈ {1, . . . , m}.

In general, the above problem Reconstruction can have many solutions of rather different shape.
Therefore, one is also interested in uniqueness results, e.g., the (unique) determination of the set

⋃

ΛP PMS

F(ΛP)

or suitable subsets thereof by the X-rays in a small number of � [ζ5]-directions. More precisely, we define
the concept of determination and the interactive concept of successive determination as follows. Let E be
a collection of finite subsets of

� 2 and let U ⊂ S
1 be a finite set of directions. We say that E is determined

by the X-rays in the directions of U if, for all F,F ′ ∈ E , one has

(XuF = XuF ′, ∀u ∈ U) =⇒ F = F ′ .

We say that E is successively determined by the X-rays in the directions of U = {u1, . . . , um}, if, for a given
F ∈ E , these can be chosen inductively, i.e., the choice of uj depending on all Xuk

F with k ∈ {1, . . . , j−1},
such that, for all F ′ ∈ E , one has

(XuF ′ = XuF, ∀u ∈ U) =⇒ F ′ = F .

We say that E is determined (resp., successively determined ) by m X-rays if there is a set U of m pairwise
non-parallel directions such that E is determined (resp., successively determined) by the X-rays in the
directions of U .

4 Computational complexity and uniqueness results

Let us begin with a result on computational complexity, where we apply the real RAM-model of compu-
tation, see [15]. Here, each of the standard elementary operations on reals count only with unit cost. This
leads to the following tractability result.

Theorem 4.1 When restricted to two � [ζ5]-directions, the problems Consistency, Reconstruction

and Uniqueness can be solved in polynomial time in the real RAM-model.

Remark 1 It seems to be rather obvious from the results in [3] that one cannot expect a generalization of
Theorem 4.1 to the case of three or more � [ζ5]-directions. More precisely, we expect that, when restricted
to three or more � [ζ5]-directions, the problems Consistency, Reconstruction and Uniqueness are

��� -hard.

Let us now present results dealing with the (successive) determination of finite subsets of Penrose model
sets. Though we are not interested in non- � [ζ5]-directions for practical reasons, we begin with the following
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simple result.

Proposition 4.2 If ΛP is a PMS and u ∈ S
1 is a non- � [ζ5]-direction, the class of finite subsets F(ΛP)

is determined by the single X-ray in direction u.

This last result immediately follows from the observation that, for all PMS ΛP, each line in the plane in
a non- � [ζ5]-direction passes through at most one point of ΛP, the latter being the reason for the practical
irrelevance of this result. On the other hand, the next result shows that any fixed number of X-rays in

� [ζ5]-directions does not suffice to determine the whole class of finite subsets of a fixed PMS ΛP.

Proposition 4.3 Let ΛP be a PMS and U ⊂ S
1 an arbitrary, but fixed finite set of pairwise non-parallel

� [ζ5]-directions. Then, the set F(ΛP) is not determined by the X-rays in the directions of U .

In order to obtain results on uniqueness, one has to restrict the class of finite sets under consideration.
Within the class of finite subsets of a fixed PMS ΛP with bounded cardinality, there is the following result.

Proposition 4.4 Let ΛP be a PMS and k ∈ � . Then, the set F≤k(ΛP) is determined by any set of

k + 1 pairwise non-parallel � [ζ5]-directions, while any set of 1 + blog2 kc pairwise non-parallel X-rays in

� [ζ5]-directions is insufficient for this purpose.

This last result is once again of limited relevance in practice, because typical atomic structures to be
determined comprise about 106 to 109 atoms, and, in order not to damage or even destroy the examined
structures, one has to make sure that one uses at most 4 or 5 X-rays.

Proposition 4.5 Let ΛP be a PMS and R > 0. Then, the set D<R(ΛP) is determined by two X-rays in

� [ζ5]-directions.

Though the last result seems to be more satisfactory, it is probably still pretty useless in practice. Here,
the reason is that, in general, the second � [ζ5]-direction can not be chosen in such a way that it yields dense
lines in Penrose model sets ΛP, in other words, one would have to deal with images of poor resolution. A
deeper result is the following, which deals with the class of convex subsets of a fixed PMS ΛP.

Theorem 4.6 There is a set U ⊂ S
1 of four pairwise non-parallel � [ζ5]-directions such that, for all PMS

ΛP, the set C(ΛP) is determined by the X-rays in the directions of U , while, for all PMS ΛP and any

set U ⊂ S
1 of three or less pairwise non-parallel � [ζ5]-directions, the set C(ΛP) is not determined by the

X-rays in the directions of U .

For example, the set of � [ζ5]-directions parallel to the elements of the following set U has the desired
property to determine C(ΛP) by the X-rays in its directions,

U := {(1 + τ) + ζ5, (τ − 1) + ζ5, 2τ − ζ5,−τ + ζ5} . (2)

Remark 2 By a result of Pleasants [16], these directions can yield dense lines in Penrose model sets. It
follows that, in the practice of quantitative HRTEM, the resolution coming from these directions is rather
high, which makes Theorem 4.6 look promising.

Above, we restricted the class of finite subsets of a fixed Penrose model set ΛP under consideration.
In order to obtain positive uniqueness results, a second option is to consider the interactive technique of
successive determination. One has the following positive results.

Theorem 4.7 If ΛP is a PMS, the set F(ΛP) is successively determined by two X-rays in � [ζ5]-directions,

while the set

⋃

ΛP PMS

F(ΛP)

is successively determined by three X-rays in � [ζ5]-directions.

Unfortunately, this result is again somewhat limited in practice because, in general, one can not make
sure that all the � [ζ5]-directions which are used match dense lines in Penrose model sets.
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Final remark

For further details in this spirit, we refer to [2–4,18] for the lattice case and [17,18] for cyclotomic model
sets which also provide a systematic generalization of the setting explained here for the PMS.
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