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Personal reflections on the history of aperiodic crystals from early days to the state
of the art

A. JANNER, Theoretical Physics, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen,
Netherlands
(Received 00 Month 200z; in final form 00 Month 200z)

Aperiodic crystals occur as modulated, intergrowth and quasicrystal structures. Their characterization in terms of symmetries possibly
requires not only a higher-dimensional description, but also non-Euclidean transformations (like scaling). These crystallographic symme-
tries, observed in nature, have been investigated but only partially classified. Turning points in the structure determination of aperiodic
crystals are presented in historical perspective up to the present time, together with methods and programs. The WEB allows to get
more information on all that, on additional tools and on databases. An attempt to present challenges towards lines of future research
concludes the review.

1 Introduction

Lattice periodicity is the most important achievement of the theoretical and experimental investigations
during the 19. and the 20. centuries, the golden age of crystallography. Of course only the geometric
model of an ideal crystal is lattice periodic because a real crystal is always finite and has defects. It
is during the second half of the last century, that the idea of aperiodic crystal arises. At the beginning,
aperiodicity was associated with incommensurate modulation and considered by most of the people, but not
by Wigner, as one of the many small deviations observed in real crystals. I remember Wigner interrupting
my explanations on incommensurate modulated crystals by saying "What you call a crystal is not a crystal.
I know what a crystal is! I worked in crystallography.” It happened in Austin, 1987. For P.M. de Wolff
incommensurability was based on measurements by professional crystallographers. One finds a similar
attitude in Herbert Smith. In 1903 confronted with the problem of high-indices faces in the growth forms
of the mineral Calaverite (AuTe3) he does not speculates about possible experimental errors but concludes:
’One has to postulate the existence of five different but not independent lattices’ [1]. In the same paper
he also considers the possibility of ’irrational’ twinning planes. Eventually, this mineral appeared to be
modulated [2] and incommensurate [3,4]. For Shechtman also, the Bragg spots with icosahedral symmetry
observed in 1984 represented a new fundamental phenomenon [5] and not simply the effect of a multiple
twinned cubic crystal as postulated by Linus Pauling [6].

The concept of incommensurability and the relation with irrational numbers goes back to Pythagoras of
Samos, in the 5. century BC. As reported in the tenth book of the Elements of Euclid, the diagonal d and
the edge s of a square are incommensurate because the assumption that their ratio d2/s? = 2 = p?/¢? is
rational (with p, ¢ relatively prime integers) leads to a contradiction. The difficulties felt by the scientific
community in accepting incommensurability in crystals were not mathematical but due to the impressive
success of the idea that a crystal is lattice periodic. In recent years, attempts have been made to give a
general definition of ideal crystal which includes aperiodicity. One finds various working definitions, but
a general agreement has not yet been found. The fundamental question remains: Do we really know, as
Wigner claimed, what a crystal is? As I shall try to explain, the struggle is still going on.

More than an historical review what is presented is a personal view, with all the limitations implied.
Missing quotations of relevant facts and persons are not simply due to lack of space but mainly to the
frontiers of my knowledge and I apologize for this.
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2
;' 2 Description
2 Fundamental for aperiodic crystals is the notion of the n independent periodicities (required for labeling the
5 Bragg reflections h by a set of integral indices h;) given by reciprocal basis vectors a} generating by integral
6 linear combinations a Z-module M* of rank n and dimension 3. The nature of these periodicities allows to
7 distinguish between modulated, intergrowth and gquasicrystals. For modulated crystals aj, a5, a3 label the
8 main reflections of a basis (or averaged) periodic structure and the a3 . ; (for j from 1 to d) correspond to d
9 periodic deformation waves (modulations): displacive and/or compositional ones. In intergrowth crystals
10 the basis structure is spanned by more than one 3-dimensional lattice only. While in these cases the
g symmetry of M* is a 3-dimensional crystallographic point group, this is no more the case for quasicrystals.
13 All aperiodic crystals are characterized by a fairly low Euclidean symmetry in space. Their crystallo-
14 graphic nature is revealed by a description in a n-dimensional Euclidean space, the superspace. In the super-
15 space approach the indexed reflections are interpreted as the projection of Bragg reflections at the points
16 of a n-dimensional lattice 3*. The projection of ¥* into the orthogonal complement of the 3-dimensional
17 space defines a Z-module M;. Accordingly, the superspace V; is the direct sum of a 3-dimensional space
18 V' (also denoted as physical, external or parallel space) and a d-dimensional space V; (called internal or
19 orthogonal space) [7,8]. By Euclidean duality one gets the direct lattice ¥ of the symmetry translations of
20 the aperiodic crystal embedded in the superspace and by projection in the two subspaces the Z-modules
21 M and Mj, respectively. These algebraic structures allow an indexing of the Bragg reflections and of the
5:23 atomic positions, respectively, defined in the corresponding spaces. An indexing in direct space, usually
24 not considered, is emphasized in the present review.
25
26
27
28 3 Symmetry
29
30 The lattice periodicity of crystals has been accepted, even before that of the existence of atoms, on the
31 basis of the morphological restrictions imposed by the 32 crystal classes and Hatiy’s Law of Rational
32 Indices and because of the simplicity of the molecular model. In 1911 a crystal is still defined by Friedel as
33 an homogeneous mass and the crystal lattice is considered an hypothesis [9]. The symmetry groups of 3-
34 dimensional lattice periodic Euclidean patterns were well known and fully classified (the 230 space groups,
gg in particular), but without any implication for the physical nature of crystals. The situation changed
37 dramatically in 1912 with the diffraction experiment of von Laue on ZnS, which represents the begin
38 of the X-ray crystallography, codified in 1952 in the International Tables of the International Union for
39 Crystallography (IUCr). At the end of the 19. and begin of the 20. centuries, as already mentioned, the
40 morphology of the mineral Calaverite was in conflict with the Law of Rational Indices and the lattice
41 periodicity. The phenomenon of non-indexable growth faces remained a mystery till after the discovery
42 in 1964 of non-indexable Bragg reflections in v-NaCOj3 [10], which could then be interpreted in 1972 as
43 due to an incommensurate modulation described by a 4-dimensional space group [11]. Few years later the
44 higher-dimensional description of NasCOj served as model for deriving the (3+1) symmetries of an one-
32 dimensional modulated crystal depicted in the 4-dimensional space [12]. The basic idea of the superspace
47 approach was born. The formalism based on 4-dimensional space groups was then applied to periodically
48 distorted crystals in space and in space-time also [13]. Two years later the corresponding n-dimensional
49 approach has been defined together with the introduction of the (n+d)-dimensional superspace groups [14].
50 The privileged role of the physical space of the crystal required a distinction from the n-dimensional
51 crystallography, implying that the equivalence classes of the superspace groups are different from those
52 of the space groups in the same dimension. The derivation and the classification of the crystallographic
53 symmetries in the superspace then followed. The basic principles and the list of all (3+1) superspace
>4 groups are given in [7]. Yamamoto derived the (3+2) and (3+3) superspace groups. A full list of all these
gg groups can be found in his home page on the WEB (www.nims.go.jp/aperiodic/yamamoto/index.html).
57 The new conventions have been formulated by the nomenclature commission of the IUCr [15,16].
58 The diffraction patterns of quasicrystals show a new type of crystallographic symmetry: scaling invari-
59 ance. The positions of the Bragg spots of the icosahedral quasicrystal AlpgeMng.14 are invariant with
60
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3
:2L respect to a radial scaling by a factor 73, where 7 = (1 + +/5)/2 is the golden mean [17]. Discrete scaling
3 invariance by a factor 7 was already known to occur in the infinite Fibonacci sequence and as inflation
4 property of the Penrose tiling [18]. In a superspace periodic embedding of dimension (14+1) and (2+2),
5 respectively, of the corresponding Z-modules, these scaling transformations appear as hyperbolic rotations
6 leaving the lattice invariant. The circular and the hyperbolic rotational symmetries of a given lattice involve
7 different invariant metrics: a positive definite and an indefinite metric, respectively. Both are taken into
8 account by the so-called multimetrical space groups [19]. The multimetrical symmetries of the decagonal
9 quasicrystal AlygMnag could be derived [20] on the basis of the 5-dimensional structure determination of
10 Steurer [21]. Multimetrical symmetry also occurs in periodic crystals. In the case of ice, the hyperbolic
11 symmetries have implications for the occupied Wyckoff positions of the atomic structure and, macroscop-
ig ically, for the morphology of snow crystals [22]. A cubic Al — Mg crystal with 3-dimensional inflation
14 symmetry has also been found [23]. A classification of multimetrical space groups is still missing. The
15 basis for a theory of crystal diffraction which includes scaling has been given by Steurer and Haibach [24].
16 Mermin and co-workers consider a symmetry characterization of aperiodic crystals in the 3-dimensional
17 reciprocal space (in a similar way as done by Bienenstock and Ewald for periodic crystals [25]) without a
18 higher-dimensional description [26-30]. This is also possible in the direct space when the crystallographic
19 transformations are interpreted in a proper way. In the modulated case, for example, a translation in
20 the internal space corresponds to a shift in space of the modulation wave. The fivefold rotation of a
21 2-dimensional pentagonal quasicrystal is reflected in the fivefold symmetry of the Z-module M and the
5:23 superspace glide reflection of y-NaaC' O3 appears in space as a reflection combined with a half-wavelength
24 shift of the transverse modulation wave. Often a superspace symmetry corresponds in space to a local
25 Euclidean transformation applied to part of the structure only.
26 Here the attention is focused to crystallographic scaling transformations S, with scaling factor A. In
27 the 3-dimensional space one distinguishes between radial, planar and linear scaling transformations. The
28 crystallographic restriction implies that Sy transforms a lattice A into itself, or to a sublattice, or to a
29 superlattice of A [31]. Actually in the cases considered these transformations scale positions in space
30 indexed by the Z-module M. For example, the vertices of a regular pentagon are scaled by the planar
31 S_1/r> to those of the smaller pentagon obtained by joining the non-adjacent vertices to form a {5/2}
gé star pentagon, the pentagram. In the appropriate orientation the linear scaling Y7,.s, which scales by a
34 factor 1/7° the y coordinate of two adjacent vertices A and B, subdivides the pentagonal edge according
35 to the golden ratio. These scaling transformations and the fivefold rotation are crystallographic because
36 they leave invariant the pentagonal Z-module M generated by the basis a = {a1,a2,a3,a4} given by the
37 vectors a; pointing from the center to four vertices of a regular pentagon. These transformations, which
38 generate the point group of infinite order of a self-similar pentagram, appear as transformations among
39 atomic positions of the decagonal phase of the Al;s Mngs quasicrystal, as already mentioned [20,21]. This
40 is only the case for the ideal quasicrystal. In the real structure of Alyg Mnss both the lattice periodicities
j; and the scaling symmetries are broken because of the finite size and of the minimal interatomic distance,
43 respectively.
44 The historical development in crystallographic symmetry concepts is summarized in Table 1.
45
46
47
48 4 Crystal structures
49
50 In Table 2 one finds examples of crystal structures marking the arise of the concept of aperiodic crystal.
51 Few comments are given in what follows.
52 AuTe, (Calaverite). Short after the discovery in the gold mines in Calaver US at the end of the 19.
53 century, it appears that this mineral has an entangled morphology. Most of the facets could not be properly
o4 indexed. Even admitting unusually high indices larger than about 20, no single lattice allowed an inter-
22 pretation of the experimental data [1]. In 1931 the international commission of Goldschmidt (Germany),
57 Palache (US) and Peacock (Canada) charged to repeat very carefully the measurements on a fairly large
58 number of crystals, could also not solve the enigma in a proper way [32]. Eventually this mineral was found
59 to be incommensurate modulated [2-4] and in 1985 a 4-dimensional indexing fitted very nicely with the
60
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4

experimental data of 1931 [33,34].

~-Na2Co3. The Bragg reflections of the v phase of Na2C O3 could not be indexed, despite (or according
to de Wolff thanks to) the professional level of the Dutch crystallographers involved [10]. A temperature
dependent record of the positions of the diffraction spots demonstrated a continuous variation of the
satellite reflections expressed in terms of the main reflections [12]. This proved, among other symmetry
considerations [11], that any rational superstructure approximation of the modulation wave was not com-
patible with the observations. Eventually, the structure could be solved in the harmonic approximation
and in a 4-dimensional description [35]. Very recently the various phase transitions of NaaC' O3 have been
10 reinterpreted by Arakcheeva and Chapuis.

©CoO~NOUTA,WNPE

11 (TTF)7I5_,. The structure determination of this one-dimensional conductor by Johnson and Watson,
ig again two highly professional crystallographers, only allowed local symmetry elements [36]. It is the first
14 intergrowth crystal whose symmetry could be shown to have a (3+1)-dimensional superspace group sym-
15 metry. The basis structure itself, defined in terms of the two periodic subsystems of the 7T F molecules
16 and [ atoms, respectively, is incommensurate and each subsystem induces in the other subsystem incom-
17 mensurate satellite reflections [37].

18 Fey_;S (Pyrrhotite). The original idea of Yamamoto has been to apply the superspace approach to
19 a whole family of structures, to begin with the periodic case of the polytypes of SiC' and ZnS [38], going
20 on with Fe;_,O (wustite) and Aus,,Cdi_,. In the case of pyrrhotite the charge density modulation is
21 highly anharmonic [39]. These pioneering works mark the beginning of still going on fruitful investigations
5:23 of families of crystals where a single superspace group connects compounds having seemingly unrelated
o4 space group symmetries [40-42].

25 Pentaplexity. This term applies to a 2-dimensional tiling model derived by Roger Penrose for showing
26 that two tiles only suffice for cover the whole plane in a non-periodic way [18]. As a special case one gets
27 a fivefold rotational symmetry of the tiling. Key point in the proof of the aperiodicity is the inflation
28 symmetry of the tiling. By optical diffraction of the Penrose tiling, Alan Mackay obtained a pattern with
29 fivefold symmetry and sharp maxima recalling the Bragg spots of crystals [43]. At that time, fascinated by
30 the beauty of this image, I tried to interpret the whole as a 2-dimensional crystal, without succeeding. It was
31 too different from the aperiodic examples I knew. I could, however, transmit my interest to Peter Kramer
32 from Tibingen, drawing his attention to the algebraic analysis of the Penrose work by de Bruijn [44].
gi Kramer was able to obtain fundamental results in the period preceding the experimental discovery of
35 quasicrystals [45,46].

36 Al-Mn (Icosahedral phase). The intermetallic compound (Al —14-at.%-Mn) obtained by Shechtman
37 in 1984 represents the first experimental evidence of a quasicrystal [5]. The name quasicrystal has been
38 introduced short after by Levine and Steinhardt [47]. Four years later followed the 6-dimensional Fourier
39 analysis of the Al73Mng;Sig icosahedral phase [48]. In 1990 the number of known icosahedral structure
40 was already so large that new classes of icosahedral crystals may be expected to be found in the future.
41 Al-Mn (Decagonal phase). From 1985 on there is a whole stream of theoretical and experimental
42 results on quasicrystals. In particular, the decagonal quasicrystal has aperiodic planes perpendicular to the
ji rotational axis [49]. These quasiperiodic planes have structures similar to the Penrose tiling, as theoretically
45 analyzed by Ishihara and Yamamoto [50,51]. Few years later, Steurer determined the five-dimensional
46 structure of the decagonal Alyg Mngay [21,52]. The planar sections of Steurer’s refined Fourier map allowed
47 to identify the crystallographic scalings mentioned in the previous section as transformations of indexed
48 atomic positions [20]. The results of twenty years of structure research on axial symmetric quasicrystal
49 (pentagonal, octagonal, decagonal and dodecagonal ones) are reported in a recent review paper [53].

50

51

52 5 Structural determination: Methods and Programs

53

54 Table 3 gives a simplified overview of the methods and the programs having allowed to solve an incredible
gg number of aperiodic crystal structures. The importance of this endeavor can hardly be overestimated. One
57 has to be aware that at the time of de Wolff’s first determination of the incommensurate structure ~y-
58 NasCO3 the computer program available simply eliminated all diffraction data non obeying a space group
59 symmetry. Yamamoto’s REMOS of 1982 is the first program for incommensurate modulated structures
60
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5
1 based on the superspace approach and played an essential role in the acceptance of a higher-dimensional
é crystallography [54,55]. A next step in this direction is represented by the JANA program of Pet¥icek [56,57]
4 with the use, in particular, of crenel functions for occupationally modulated structures. The low density
5 elimination method by Takakura, Shiono, Sato, Yamamoto and Tsai will be the first successful method
6 for obtaining superspace electron density from X-ray diffraction data [58]. The very recent extension of
7 the charge flipping method to the superspace by Palatinus is a further very promising development [59].
8 Personally, I am looking forwards for methods and programs which will include crystallographic scaling as
9 well.
10
11
12
13 6 Concluding remarks
14
15 Much more information on the historical development of aperiodic crystallography up to the present state
16 of the art can be found on the WEB and in particular on the home page of the Special Interest Group on
17 Aperiodic Crystals (SIG) as summarized in Table 4.
18 Here attention is focussed to two problems which are expected by the author to influence future devel-
;g opments.
21 The inverse crystallographic problem. In a crystal structure determination one implicitly starts
22 from what one thinks is an ideal crystal structure, periodic or aperiodic, and more or less explicitly from the
23 corresponding possible symmetry groups. Solving the structure is the final goal. Knowing where the atoms
24 are does not mean to understand the structure, even at the geometrical level only. There are very often
25 hidden structural relations not taken into account by the symmetry groups considered, which eventually
26 can help to characterize other structures as well. This is what I call the inverse crystallographic problem,
217 where one starts from a given structure and one investigates its symmetry. Typical in this respect are the
28 non-Euclidean symmetries of a crystal.
gg The geometry problem. Considering a crystal as an Euclidean object implies that it is fully
31 characterized in terms of elements of the Euclidean geometry. According to Felix Klein’s Erlanger
32 Program of 1872, a geometry consists of a set S defining the points of the geometry and a group G of
33 transformations of the set §. A geometrical property is a property invariant under G and geometrical
34 objects are characterized by geometrical properties. In the Euclidean geometry, S is R* and G = E(n) is
35 the Euclidean group generated by translations, rotations and reflections of R". The distance d between
36 two points A, B and the size of the angle ¢ defined by three points A, B,C are Euclidean objects. If
37 n-dimensional scaling transformations Sy with scaling factor A are also admitted transformations of
38 R", one gets the similarity group S(n) and the similarity geometry. In this geometry angles are still
ig geometrical objects but only the ratio between two non-zero distances is geometrically defined. As scaling
a can occur in quasicrystals [17], in incommensurate modulated crystals [60] and even in crystals [23], one
42 should seriously consider crystallography in the context of similarity geometry. Moreover, the fact that
43 not all Euclidean transformations are crystallographic has implications on the geometrical level. The
44 question then arises about the properties of a properly defined crystallographic geometry.
45
46 How far these two problems are relevant for the future developments is hard to say at present. In the
a7 view of the author, the properties of aperiodic crystals have consequences at the fundamental level of
jg crystallography which go far beyond the present known implications of aperiodicity.
50
51
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1 Table 1. Crystallographic Symmetry Groups
2
3 Point groups Morphology Diffraction
4 32 Crystal classes (Frankenheim 1826) Crystal forms (Kepler 1611, Haiiy 1801) von Laue ZnS (1912)
5 N-fold Rotations Axial crystals and quasicrystals
(Bienenstock, Ewald 1962, Mermin et al. 1988)
6 (3+1)D Rotations Calaverite AuTes (1895-1989) v-NazCO3 (de Wolff 1964)
7 (3+3)D Rotations Dodecahedron, ... Icosahedral QCR (Shechtman 1984)
8 1D,2D,3D Scalings Quasicrystals (Elser 1985)
Cubic Al — Mg (Donnadieu, et al. 1996)
9 Scale-rotations (Steurer, Haibach 2001)
10
Space groups Structure Diffraction
11
12 3D (Fedorov 1885, Schoenflies 1891) Periodic crystals Bragg reflections
13 3D (Bienenstock, Ewald 1962) Complex weights on reciprocal lattices
3D (Mermin, et al. 1988) Gauge functions on Fourier modules
14 (3+n)D Superspace groups (1979) Modulated, Intergrowth crystals Main reflections + Satellites
15 (3+2)D Superspace groups + Scaling 5- 8- 10- 12-gonal quasicrystals 1D and 2D Scaling symmetry
16 (3+3)D Superspace groups + Scaling Icosahedral quasicrystals 3D Scaling symmetry
17 Multimetrical space groups (1991) Snow flakes (1997) Ice crystals
18
19 Table 2. Aperiodic crystals: Examples of turning points
20 . .
AuTes 1902 Non-indexable growth forms Penfield, Ford, Smith [1]
21 1931  Singular point at [5 29 -3] Goldschmidt, Palache, Peacock [32]
22 1985 4-Dimensional indexing Dam, Janner, Donnay [33,34]
23 4-NasCOs 1964 Non-indexable satellites Brouns, Visser, de Wolff [10]
24 1972  4-dimensional space group van Aalst, de Wolff [11]
25 1974 Harmonic approximation de Wolff, et al. [12]
26 2005 Additional phase transitions Arakcheeva, Chapuis
27 (TTF)7Is—4 1976  Local symmetry only Johnson, Watson [36]
1980 Incommensurate basic structure Janner, Janssen [37
28
29 SiC, ZnS 1981 Polytypes as modulated crystals Yamamoto [38]
30 Fei_gS 1982  Higher order harmonics Yamamoto, Nakazawa [39]
31 LaTi1-,03 2000 Family of modular structures Elcoro, Pérez-Mato, Withers [41]
32 Fivefold symmetry 1974  Planar tiling with inflation symmetry  Penrose [18]
1982  Optical diffraction of Penrose tiling Mackay [43]
33 Al— M 1984 1 hedral i 1 Shech Blech, Gratias, Cahn [5]
— Mn cosahedral quasicrysta. echtman, Blech, Gratias, Cahn
gg AlrzsMn21Sis 1988 6-dimensional Fourier analysis Gratias, Cahn, Mozer [48]
Decagonal Al — Mn 1988  Penrose-like quasicrystal Yamamoto, Ishihara [50,51]
-dimensional structure teurer y
36 1989  5-di ional S 21,52
37 1992 Decagrammal scaling symmetry Janner, Steurer [20,21]
38
39
40 Table 3. Methods and programs for solving aperiodic crystal structures
41 Superspace approach 1982 Yamamoto REMOS [54,55]
42 1985  Petticek JANA [56,57]
43 Direct methods 1987  Hao, Liu, Fan, et al. [61,62]
44 1993 Fan, Lam, Beurskens, van Smaalen [63]
45 Patterson method 1987  Steurer (decagonal QCR) [52,64]
46 1988  Gratias, Cahn, Mozer (icosahedral QCR) [65]
a7 Trial-and-error method 1988  Yamamoto, Ishihara [50,51]
48
49 Contrast variation 1989  Janot, De Boissieu, Dubois, Pannetier [66].
50 Maximum entropy method 1993  Steurer, Haibach, Zhang, Kek, Liick [67]
51 1997 Weber, Yamamoto [68], Haibach, Cervellino, Steurer [69].
5o 2003  Van Smaalen, Palatinus, Schneider [70]
53 Low density method 2001  Takakura, Shiono, Sato, Yamamoto, Tsai [58]
54 Atomic surface modeling 2002  Cervellino, Haibach, Steurer [71]
55 Charge flipping method 2004 Palatinus [59]
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Table 4. Special Interest Group on Aperiodic Crystals (SIG)

SIG Home page

www-xray.fzu.cz/sgip/aphome.html

Superspace groups

Yamamoto home page

Software

REMOS
JANA2000
Superspace tools
CCP4

Links

Incommensurate structures
Quasicrystals

Databases

Bilbao server
Lausanne server
Caracas home page

Research groups

A list of 23 research groups

References
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