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The phenomenology of thermal diffusion of a particle in a solvent involves the Soret 

coefficient of the particle/solvent mixture. It is usually considered that the migration velocity 

of the particle in the solvent is proportional to the Soret coefficient. I show here that this view 

is wrong because ordinary diffusion contributes to migration if the solvent is not 

homogeneous. I examine several examples (Na Cl in water, polystyrene in ethylbenzene, 

maghemite nanoparticules) to show that this contribution can be strong enough to change the 

sign of the migration velocity and vitiate the interpretation of experimental data, the 

measurement of the Soret coefficient, the comparison of experiment with theory, and inter-

experimental comparisons. 

 

Keywords: thermophoresis; thermal diffusion; Soret effect 

 

PACS: 66.10.Cb,  51.10.+y 

 

§ 1. Introduction 

 

In a binary mixture, thermodiffusion, also called thermal diffusion or the Ludwig-Soret effect, 

is the partial demixtion induced by the application of a temperature gradient. It is the relative 

transport of a species, say 1, with respect to the other one, 2. In this paper, the species 1, 

henceforth called the solute, is taken to be very dilute among a liquid or gaseous medium 

made up of molecules 2, called the solvent. The Ludwig-Soret effect has been discovered 150 

years ago in liquids [1, 2] and some 90 years ago in gases [3]. The variety of mixtures found 

in soft matter science has recently generated a number of studies [4, 5]. Thermodiffusion of 

Na Cl plays a role in the thermohaline circulation, a key ingredient in global climate warming 

models [6], and thermodiffusion of DNA could play a major role in the origin of life [7]. 
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 The local state of a binary mixture is defined by the temperature T, the pressure p and 

the mole fractions x1 = n1/n and x2 = 1 − x1 of the components (n1 and n2 are the number 

densities of species 1 and 2, in m−3 in SI unit, and n = n1 + n2 is the total density). Starting 

from a homogeneous mixture where x1 and x2 are independent of position, the gradient of 

temperature causes a transport of particles 1 relative to 2, directed along or against ∇∇∇∇T in an 

isotropic medium. Transport is phenomenologically described by the number current density 

j1 (in m−2.s−1 in SI unit). As the ensuing inhomogeneity in the solute density entails a 

diffusion contribution to the current, j1 is expressed as 

  j1 = − Dn (∇∇∇∇x1 + σT x1 ∇∇∇∇T),       (1) 

where D is the particle diffusivity and σT is called the Soret coefficient [8-10]. We assume in 

equation (1) that the species 1 is very dilute in the solvent 2, and this is why j1 is linear in x1 . 

It is also assumed that the medium is in mechanical equilibrium, i.e. at a uniform pressure p. 

Otherwise, another contribution to j1 is present, which is proportional to x1∇∇∇∇p and called the 

barodiffusion current density [8, 10]. 

 Other expressions for j1 can be found, where the mass fraction [11] or the volume 

fraction [12] is used instead of the mole fraction x1 . It is also possible to express j1 as a linear 

combination of ∇∇∇∇n1 and ∇∇∇∇T, as 

  j1 = − D ∇∇∇∇n1 − DS*
 n1 ∇∇∇∇T,       (2) 

where 

  S* = σT + β,         (3) 

and β is the coefficient of thermal expansion of the solvent (see appendix A). We also 

introduce the dimensionless coefficient 

  α = TS*.         (4) 

In water in standard conditions, Tβ = 0,075 ; in a perfect gas, Tβ = 1. The difference between 

S* and σT can be important in a gas if |α| is close to unity. It is often ignored in a liquid. 

 Thermodiffusion has been studied independently in distinct areas. When the solute 1 is 

a macromolecule, it is usual to call thermophoresis its motion in a temperature gradient, in 

analogy with electrophoresis, which is the motion of a charged solute in an electric field. 

Generally speaking, the effect for small molecules 1, or for gaseous or liquid mixtures having 

comparable proportions of 1 and 2, is called thermodiffusion, while for suspensions of 

particles in gases or in liquids, it is called thermophoresis [13-19]. Then, DS* is called the 

thermophoretic mobility, in analogy with the electrophoretic mobility, and accordingly 
_DS*

 ∇∇∇∇T is called the thermophoretic velocity. In what follows, I consider a dilute suspension 

of particles 1 in a solvent 2, and I drop the index 1. 

 The point I want to make in this paper is that the wording thermophoretic velocity is 

fallacious. It is drawn from the usual interpretation of the coefficients in a migration-diffusion 

current equation, also called advection-diffusion or convection-diffusion equation, formally 

similar to equation (2). Unfortunately, that interpretation is not valid in an inhomogeneous 
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medium, as occurs here because of the temperature non-uniformity. Stated otherwise, I want 

to show that a particle does not migrate at the velocity _DS*
 ∇∇∇∇T through the solvent. Likewise, 

the notion of an effective force _α ∇∇∇∇(kT), sometimes termed "thermal force", propelling the 

particle against (α > 0) or along (α < 0) the temperature gradient with a mobility D/kT inferred 

from the Nernst-Einstein relation, is misleading. It is drawn from viewing equation (2) as a 

forced diffusion equation [10]. The incorrectness of the identification of the migration 

velocity with _DS*
 ∇∇∇∇T is shown in § 2, which is based upon the phenomenological current 

equation only, with no appeal to any underlying theory or assumption. In § 3, I pick up three 

applications to the phenomenology of thermophoresis and the experimental determination of 

S*. Conclusions are gathered in § 4. 

 

§ 2. The migration velocity 

 

§ 2.1. Derivation of the migration velocity from the current equation 

 

Consider a statistical ensemble of particles in a vessel, and take one space dimension x for 

simplicity. (In three dimensions the calculation is similar, with Gauss's divergence theorem 

replacing the integration by parts.) The vessel boundaries are x = 0 and x = L > 0. For 

definiteness, a hot source located at x = 0− and a cold source located at x = L+ establish the 

temperature gradient dT/dx < 0 in the bulk (figure 1). 

[Insert figure 1 about here] 

 Generally speaking, the migration, or drift, velocity vd is the velocity of the centroid 

  〈x〉 = ∫ x n(x, t) dx        (5) 

of the ensemble of particles, with n being normalized to unity (∫ n(x, t) dx = 1). To obtain 

d〈x〉/dt, we use the equation of continuity, 

  
t

n

∂

∂
 + 

x

j

∂

∂
 = 0,         (6) 

expressing the local conservation of particles. Multiply equation (6) by x and integrate over x. 

Integration by parts and the vanishing of x j(x, t) at the boundaries of the vessel entail 

  d〈x〉/dt = ∫ j(x, t) dx.        (7) 

The phenomenological current equation (2) may alternatively be rewritten as 

   j = (−DS*
 

dx

dT
 + 

dx

dD ) n − 
dx

Dnd )(
 .      (8) 

The last term in (8) contributes D(L) n(L, t) − D(0) n(0, t) to the right-hand side of (7). Assume 

that n(x, t) vanishes at the vessel boundaries (the opposite case is examined in § 2.2). Then, 

  
dt

xd
 = 〈−D S*

 

dx

dT
 + 

dx

dD 〉 .       (9) 

Relation (9) shows that the sign of d〈x〉/dt is not determined by that of S* alone. The meaning 

of the second contribution to d〈x〉/dt in the right-hand side of (9) is easy to understand if we 

take, for the normalized density profile at time t, 
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  n(x, t) = 1/(xII − xI)  if  xI < x < xII ,      (10) 

and zero otherwise (it is understood that 0 < xI and xII < L). Then, at the same time t, 

  
dt

xd
 = 〈−D S*

 

dx

dT 〉 + 
ΙΙΙ

Ι

−

)(−

xx

xDxD II )(
 .      (11) 

If the diffusivity is larger on the leading edge x = xII than on the trailing edge x = xI , d〈x〉/dt 

will, algebraically speaking, exceed the average value of the "thermophoretic velocity" 
_DS*(dT/dx) over the particle distribution. No matter how large the packet is, its actual mean 

velocity d〈x〉/dt is altered by the differential spreading dD/dx, see figure 2. This is known in 

the study of stochastic processes [20-22] ¶ and has been experimentally checked in an 

inhomogeneous colloidal solution [24]. Therefore, contrary to a widespread belief, the 

positivity of S* does not imply that the particles should migrate, on the average, to the cold 

side. Finally, in the limit xI → x ← xII of a δ-peaked n(x, t), the velocity is a function of x only, 

  vd(x) = −DS*
 

dx

dT
 + 

dx

dD
 .       (12) 

It is the mean velocity of a group of particles released at a definite position x at time t. At later 

times, the centroid of the group moves at velocity vd and the group spreads about the centroid. 

[Insert figure 2 about here] 

 The spreading of the group can be obtained from the phenomenological current 

equation (2). Calculations similar to (5)-(9) throw up 

  
dt

xd 2

 − 
dt

xd
2

 = 2〈D(x)〉 + 2〈x vd(x)〉 − 2〈x〉 

dt

xd
.    (13) 

If we consider a normalized δ-peaked n at time t, n(x, t) is identical with δ(x − 〈x〉), so that (i) 

〈D(x)〉 = D(〈x〉) and (ii) the middle term in the right-hand side of (13) is 2〈x〉 〈vd(x)〉 and 

cancels the last term. As a result, the instantaneous rate of change of the variance in position is 

just 2D(x) in one dimension. Therefore D(x) retains its usual meaning of half the spreading 

rate of a packet initially located at position x, and may be thought of as the local diffusivity. 

 Assume now that the only dependence of D on position is due to T(x). Then, relation 

(12) can be rewritten as 

  vd(x) = −D (S* − 
dT

Dd ln )
dx

dT
 .       (14) 

Thus, taking into account the temperature dependence of the diffusivity is tantamount to 

subtracting d ln D/d ln T from TS* in determining the migration velocity caused by a 

temperature gradient. Section 3 will show on three specific examples that the correction to S* 

may be large enough to change its sign and/or flaw the comparison of experiment with theory 

and the consistency of different experimental methods aimed at measuring S*. 

 

                                                 
¶ The converse effect is also found, experimentally and theoretically, namely the change in the diffusivity due to 

an inhomogeneous drift velocity, in charge-carrier transport in a gas or a semiconductor subjected to a high 

electric field. Because the leading edge drifts at a slower velocity than the trailing edge, the carrier packet is 

squeezed along the direction of motion, and the longitudinal diffusivity is smaller than the transverse diffusivity. 

See [23] and references therein. 
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§ 2.2. The relationship between the migration velocity and the steady state 

 

Consider a solute such that S* > 0 and vd < 0 (we shall see in § 3.1 that Na Cl so behaves 

around 25 °C). Again, the vessel is the one depicted in figure 1. How can we reconcile the 

direction of the migration velocity with the sign of S* in the steady state ? Then, j = 0 and the 

density profile, denoted as n∞(x), obeys 

  
dx

nd ∞ln
 = −S*

dx

dT
 .        (15) 

The equation governing the profile is formally identical with that of a sedimentation 

equilibrium due to a force _α d(kT)/dx > 0. Equation (15) shows that the positivity of S* is 

tantamount to the solute preferentially concentrating in the colder region (x → L) in the final 

state. Although the concept of a position-dependent particle velocity vd(x) < 0 is still relevant 

in the steady state, it is insufficient because we are dealing with stochastic motion. In addition 

to the directed, or average, motion vd(x), making the so-called orthokinetic contribution to j 

[25], we have to take into account the fluctuations about the average, making the so-called 

perikinetic contribution to j. It is because of that contribution that, in the classic sedimentation 

equilibrium, the suspended particles reach a steady distribution although they everlastingly fall 

toward the bottom of the vessel. In the present problem, while the solute does drift toward x = 

0, its higher diffusivity as x → 0 entails a net backflow toward x = L. In this example, because 

the variation in D(x) outweighs that in n∞(x), the perikinetic contribution to j disagrees in sign 

with Fick's law holding in a homogeneous medium where D is independent of position x. 

Although the solute moves, on the average, to the hot side, much of it does not stay there 

because it diffuses farther on that side. The larger perikinetic outflow on the hot side causes 

the depletion near x = 0, consistent with S* > 0. The profile n∞(x) is determined by both the 

ortho- and perikinetic contributions to the flow, and this is why vd may be negative while 
_S*(dT/dx) is positive. 

 In the steady state, the perikinetic contribution locally balances the orthokinetic one, 

n vd(x) − d(Dn)/dx = 0 (drift without current [24]). The integral balance reads 

  dxxnxv

L

d ))(

0

(∞∫  + D(0) n∞(0) − D(L) n∞(L) = 0.     (16) 

Relation (16) replaces relation (9) which does not hold here as equation (15) prevents n∞(x) 

from vanishing at both boundaries. Relation (16) may be thought of as a bulk migration 〈vd〉 < 

0 being offset by a reflecting effect [22, 26] of the x = 0 boundary ; the reflecting effect of the 

x = L boundary enhances 〈vd〉, but it is weaker than at x = 0. 

 

§ 3. Applications 

 

 

§ 3.1. Na Cl in water 
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To show the practical implications of our relation (14), we now consider three examples of 

very different natures. The first one deals with the interpretation of S* in a solution first 

studied by Soret [2], namely the aqueous solution of Na Cl. The thermal diffusions of Na+ and 

Cl− are coupled because the solution cannot significantly deviate from local electroneutrality, 

so that one S* coefficient is used for Na Cl as a whole [8], although it is dissociated into ions. 

Similarly, the coupling of ordinary diffusions of Na+ and Cl− is reflected in a single diffusivity 

D, the so-called ambipolar diffusivity [27]. At 0.5 mol.L
_1, it is found [28] that 

thermodiffusion of Na+ and Cl− has a TS* = +0.3 at 25 °C, whose sign changes at 12 °C. To 

determine the correction implied by relation (14), we have to determine the ambipolar 

diffusivity D of Na Cl. It is given by 2/D = 1/D+ + 1/D− [27] and the ionic diffusivities D+ and 

D− can be obtained from the Nernst-Einstein relation D± = kTµ± , where µ± are the ionic 

mobilities. In water at 25 °C at standard pressure, it has been experimentally found that 

d ln µ+/dT = 0.022 K−1 for Na+ and d ln µ−/dT = 0.020 K−1 for Cl− [29]. We thus get 

d ln D/d ln T = +7.3, meaning that D ∝ T7.3, near 25 °C. This is a very strong temperature 

dependence. From relation (14), the correction to TS* is more than twenty times larger than 

TS* = +0.3, with an opposite sign. This upsets the direction of the migration of the Na+ and 

Cl− ions and the usual view held in studies of the thermohaline circulation in oceans [28]. The 

actual migration is towards the warmer temperatures. The incorrect interpretation is of no 

concern if the phenomenological equation (1) or (2) is correctly encoded in a computer 

programme. But, if physical reasoning is used, it entails qualitatively wrong conclusions. 

 More generally speaking, whenever TS* crosses the zero value, the diffusivity gradient 

changes the transition temperature from a "thermophobic" to a "thermophilic" behaviour. As a 

recent example involving proteins (top curve in figure 1 of [30]), TS* varies from −3.0 to +3.0 

as T spans the 280-310 K range, and vanishes at 290 K. The measurement of D(T) is not 

reported, but we may estimate d ln D/d ln T = 1 − d ln η/d ln T from the Stokes-Einstein formula 

D = kT/6πηR which is usually good for large-size spherical particles (η is the solvent viscosity 

and R is the radius of the particle). We get d ln D/d ln T = +8.2 in water in standard conditions. 

(It is worthy of remark that even the temperature dependence d ln D/d ln T = 7.3 of the 

diffusivity of the small-size Na+ and Cl− ions computed above is well described by this 

formula.) Then, according to our relation (14), the protein migration is thermophilic 

throughout the 280-310 K range. 

 

§ 3.2. Thermal field-flow fractionation 

 

The second application of our relation (14) is the measurement of S* through thermal field-

flow fractionation, a high-resolution technique that uses thermophoresis to separate and 

characterise objects [17, 31]. The solution flows between a hot wall and a cold wall whose 
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temperature difference is ∆T, along a direction parallel to the walls. What is measured is the 

shift ∆x of a solute injected at a definite position x, after a time ∆t has elapsed. From the 

thermophoretic velocity UT ≡ ∆x/∆t thus measured, a thermophoretic mobility is defined and 

computed as DT ≡ _UT/(∆T/∆x). Then, it is compared to a theoretical prediction of that 

mobility. The experimentally defined quantity corresponds to our −vd/(dT/dx) = DS* − dD/dT 

according to relation (14), whereas the theoretical quantity is DS*. Thus, the comparison 

between both quantities is flawed. The extent of the error depends on the values of the 

parameters. The values TS* ≈ 45 measured for polystyrene in ethylbenzene around 310 K 

(figure 9 in [31]) are not much affected by d ln D/d ln T ≈ 4.7. However, this correction (10 %) 

is larger than the correction to the velocity profile of the flow between the hot and cold walls, 

which is also due to the temperature dependence of η and is typically 4 % [32]. 

 

§ 3.3. Maghemite nanoparticules 

 

The values of D and S* of γ-Fe2O3 nanoparticules have been measured by another 

experimental method, namely forced Rayleigh scattering [12, 33] where a gradient of T is that 

of a temperature grating created by a light-intensity grating. The phenomenology of the 

method rests upon equation (6) to describe the initial rise and the subsequent relaxation of n 

following a light pulse. In equation (6), the current density is inputted with the pattern (2) in 

which D and S*, or D and DS*, are treated as adjustable parameters. The method is immune 

from the incorrect understanding of the migration velocity because the current density is not 

viewed according to the pattern (8). Values of TS* such as +12.5 (in cyclohexane) and −4.17 

(in water) were obtained (table 4 in [33]). If the same colloidal particles had been studied by 

means of thermal field-flow fractionation, values of +8.0 and −12.47 would have been 

obtained owing to relation (14). In this example, it is clear that the incorrect interpretation of 

the velocity would cause an important discrepancy between different experimental methods 

aimed at measuring S*. A contrario, we notice that values of S* consistent with those derived 

from forced Rayleigh scattering have been obtained from thermal-lens measurements [34]. 

Agreement is achieved because neither method identifies _DS*
 ∇∇∇∇T with a migration velocity. 

 

§ 4. Conclusions 

 

This paper has shown that the measure of partial demixtion σT ≈ S* and the migration velocity 

vd are not proportional to each other. They should be conceived of as distinct concepts. σT 

refers  to the static enrichment of one side relative to the other induced by ∇∇∇∇T, whereas vd is a 

dynamic quantity. Their non-proportionality is shown to be due to the inevitable temperature 

dependence of the diffusivity. What matters in the correction is not the absolute value of D, 

but its relative rate of change with T. The correction can be very important if diffusion is 
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thermally activated 
*. The reader is also warned about the semantic gap between the notions of 

transport (entified in j) and of motion (entified in dx/dt). They are linked through relation (7). 

 The conceptual confusion is strengthened in the "non-Brownian approximation" 

sometimes used in colloidal or micellar systems. That approximation consists in neglecting D, 

or the diffusion current, in a sedimentation experiment when the Péclet number assessing the 

relative importance of migration over diffusion is large [17, 25]. The limit D → 0 of a "non-

Brownian particle" is often envisaged at a large R. However, removing the Fick term in 

equation (2) suppresses the d ln D/d ln T correction in (14) and entails a wrong value of the 

sign of the migration velocity in an aqueous solution of Na Cl at 0.5 mol.L−1 at 25 °C. 

Therefore, the non-Brownian approximation should be avoided in studying thermophoresis. 

At any rate, a better approximation consists in decomposing j according to equation (8) and 

removing the total derivative, i.e. the perikinetic contribution to the flow. The latter cannot be 

dismissed in the steady state, however, as the discussion in § 2.2 has shown. More broadly 

speaking, because the Nernst-Einstein relation between D and mobility µ always holds 
# and 

because the response to a force, whether of thermal origin or not, involves the mobility µ, it is 

hazardous to put D = 0 while retaining µ in thermodiffusion studies. 

 In summary, the view of the Soret coefficient σT , or of the thermophoretic mobility 

DS*, as being proportional to a particle velocity, is erroneous. The error is rooted in the fact 

that, when a medium is inhomogeneous (owing to a temperature gradient or whatever reason), 

the coefficient of n in the phenomenological current equation does not have its usual meaning. 

This can vitiate interpretations of experiment, experimental measurements, theoretical 

calculations, comparisons of experiment with theory and cross-experimental comparisons. 

This finding should help to remove discrepancies in the physics of thermophoresis whenever 

|TσT| is not very large. 
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Appendix A 

 

To obtain equation (2), we rewrite equation (1) as 

  j1 = − D ∇∇∇∇n1 + Dx1 ∇∇∇∇n − DσT n1 ∇∇∇∇T.      (A 1) 

We notice that n = 1/v, where v = v(T, p, x1) is the volume per particle, and 

                                                 
* Unpublished data of G. Demouchy and A. Bourdon on ionic-coated maghemite nanoparticules show a D(T) 

dependence larger than expected from the temperature dependence of the solvent viscosity in the Stokes-Einstein 

formula with a T-independent radius R. The thermally activated nature of the weak acid-base equilibrium of the 

citrate ions coating the nanoparticule surface is suspected to alter the hydrodynamic radius. 
# An activity correction to D/kTµ is due in a non-ideal solution. See [10], p. 774; or [27], pp. 450-452. 

Comment [erb1]: Page: 8 
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  ∇∇∇∇v = (∂v/∂T)p, x1
 ∇∇∇∇T + (∂v/∂x1)p, T ∇∇∇∇x1 .     (A 2) 

In the right-hand side of (A 2), we recognize the coefficient of thermal expansion β = 

(1/v)(∂v/∂T)p, x1
 of the solution. Since ∇∇∇∇n = −(∇∇∇∇v)/v2, equation (A1) becomes 

  j1 = − D ∇∇∇∇n1 − Dx1 [βn ∇∇∇∇T + (∂v/∂x1)p, T (∇∇∇∇x1)/v2] − DσT n1 ∇∇∇∇T.  (A 3) 

The right-hand side of (A 3) contains a x1∇∇∇∇x1 term which is quadratic in x1 . Since we are 

interested in the limit x1 → 0, we drop that term. Similarly, in the limit x1 → 0, β is the 

coefficient of thermal expansion of the pure solvent. To first order in n1 or x1 , (A 3) yields 

equation (2). 
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Figure captions 

 

Figure 1. A binary fluid mixture is contained in a vessel bounded at x = 0 and L. 

A temperature gradient dT/dx < 0 is applied from the top (x = L) to the bottom (x = 0). 

 

Figure 2. In the thermophoresis of a finite packet, the temperature-induced gradient of 

diffusivity D (double arrow) contributes to the drift velocity vd (simple arrow). 
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A binary fluid mixture is contained in a vessel bounded at x = 0 and L. A temperature gradient  
dT/dx < 0 is applied from the top (x = L) to the bottom (x = 0). 
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In the thermophoresis of a finite packet, the temperature-induced gradient of diffusivity D (double  
arrow) contributes to the drift velocity vd (simple arrow). 
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