

## Erratum: Substitutional structures in simply and multiconnected flat spaces with astrophysical applications

| Journal: | Philosophical Magazine \& Philosophical Magazine Letters |  |
| ---: | :--- | :---: |
| Manuscript ID: | TPHM-06-Jul-0266 |  |
| Journal Selection: | Philosophical Magazine |  |
| Aute Submitted by the |  |  |
| Complete List of Authors: | 25-Jul-2006 |  |
| Escudero, Juan; Universidad Poliécnica de Madrid, Ciencia y <br> Tecnologia Aplicadas.U.D.Matematicas; Universidad de Oviedo, <br> Fisica |  |  |
| Keywords (user supplied): | geometry, quasicrystals |  |
|  |  |  |
| Note: The following files were submitted by the author for peer review, but cannot be converted <br> to PDF. You must view these files (e.g. movies) online. |  |  |
| Erratum-PhilMag.tex |  |  |

# Erratum: Substitutional structures in simply and multiconnected flat spaces, with astrophysical applications 

Juan García Escudero<br>Universidad Politécnica de Madrid. Departamento de Matemáticas. EUITA Ciudad Universitaria, 28040 Madrid, Spain

Philosophical Magazine 86 (2006), 901-907
On of the paper goals was to generate aperiodic tilings for the euclidean torus with the hexagon as fundamental polygon. However through the gluing mentioned at the end of Sec. 2 (p.904) the prototile $\mu:<e^{1} a^{1} f>$ does not produce a regular hexagon but a dodecagon. For the construction of the hexagon (Fig.1(a) below) one of the correct prototiles is $\zeta:<d^{1} b^{0} f>$. First by gluing with its mirror image $\widetilde{\zeta}$ through the edge $d$ we get the equilateral triangle with edges $f, b^{1}, b^{0}, f$ and then by gluing six rotated copies of this triangle through its edge $f$ we obtain the fundamental polygon. In Fig $1(\mathrm{~b})$ the inflated tiles are obtained by applying two times the substitution rules correspondig to the inflation factor $s_{5} / s_{1}$ (see Tab. 1 in the paper) with six prototiles.

(a)


Fig.1.-(a) Identifications of opposite edges with the same arrowing form a flat torus (b) The inflated tiles $\widetilde{\zeta}$ and $\zeta$. After gluing the tiles through the edge $\phi_{5}^{2}(d)$ we get the equilateral triangle shown in (a)

