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Abstract

Material size effects are predicted for idealized planar micromanufactured structures, as a
consequence of the competitive contributions of strain gradient strengthening and loss of
microstructural constraints with diminishing dimensions, assuming a constant grain size.
Simulations are carried out using a 3D strain gradient crystal plasticity model which in-
trinsically accounts for the influence of differently oriented crystals within the material. By
distinguishing between different crystallographic slip boundary conditions, the influences
of surface layer passivity, internal grain boundaries and back stresses are assessed under ex-
ternally applied in-plane tension and through-thickness bending loading conditions. Anal-
yses are carried out on samples with a size that is representative of micromanufacturing
processes. The simulations reveal a competitive process between first-order constraints,
generally inducing a weakening behaviour as the number of grains decreases, and second-
order strengthening resulting from the strain gradients.

Key words: strain gradient, crystal plasticity, back stress, grain boundaries, dislocation
fields, geometrically necessary dislocations, miniaturization, MEMS, micromanufacturing

1 Introduction

With ever successive electronic device miniaturization, component dimensions are
approaching those of the underlying microstructure. This is particularly evident in
the field of Miniaturized Electro Mechanical Systems (MEMS), which are used in
applications such as tunable capacitors and pumps in micro-fluidic applications
such as lab-on-a-chip. Recently, the World Technology Evaluation Center pub-
lished a report on research and development in micromanufacturing [1], which cov-
ers length scales that are somewhat larger than those of mostMEMS applications
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but are not based on lithographic-based processes. Even within this range of compo-
nent length scales (∼ 100µm), microstructural engineering becomes increasingly
important, as the global behaviour of the metallic components may be dominated
by the response of individual grains. Clearly, this behaviour cannot be described by
a macroscopic (averaging) continuum approach that ignoresindividually oriented
grains and their boundaries. Therefore, understanding themicrostructural phenom-
ena is crucial in assessing the mechanical response of thesecomponents.

The component size and microstructural features of a typical miniaturized test sam-
ple are visible in Figure 1, which shows an FCC beam-type specimen used to ex-
perimentally quantify the microstructural characteristics of processed micromanu-
factured systems. The miniaturized component in Figure 1a,is manufactured with

(a)

(b)

Fig. 1. a) Micromanufactured sample with large through-thickness grains and a thickness
of 300µm. b) Typical orientation image map, revealing the relativecrystallographic mis-
matches between adjacent grains along the planar surface ofone of the samples.

a thickness of 300µm, with only a single through-thickness grain. The outlinesof
some of the grains are clearly visible, reflecting a typical ratio between specimen
size and grain size, which is of interest in the present work.The different orien-
tations between the constituent grains are qualitatively shown in Figure 1b. De-
pending on the processing conditions, micromanufactured components may have
an irregular crystallography with a near random or pronounced texture. The impli-
cation of the crystallographic scatter within the sample may induce a large variance
in global mechanical properties, and hence potentially unacceptable rejection rates
of individual components which fall outside the allowable tolerances. Whereas a
lot of work has been done at the submicron length scale, examining for instance the
formation of boundary layers, less is known about what impact the grain size and
number of grains have on the mechanical behaviour of micromanufactured compo-
nents. In this circumstance the ratio between the grain sizeand the component size
is a governing parameter.

In order to accurately predict the mechanical response of such miniaturized com-
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ponents, the material model must, as opposed to a continuum plasticity model,
account for the influence that individual grains have on the aggregate behaviour.
The fundamental assumption that the material behaves as a homogeneous contin-
uum is invalid as dimensions diminish and the statistical phenomenon that indi-
vidual grains dominate the component behaviour becomes increasingly important.
An appropriate point of departure for an analysis is a constitutive rate-dependent
crystal plasticity theory [2, 3] where the response of each individual crystal is in-
cluded in the definition. However, not only must the responseof each crystal be
included, but also a description of what happens at their boundaries. Internal and ex-
ternal boundaries form obstacles to crystallographic slipwhich must be overcome
with an increased applied load. Within the current materialmodel, the obstructions
at internal boundaries are taken into account by inhibitingcrystallographic slip
across the boundary through the accumulation of geometrically necessary dislo-
cations (GNDs), which are required to accommodate plastic slip gradients [4]. The
GNDs contribute to the slip system resistance, while back stresses associated with
the GND stress fields, provide kinematic hardening. The influence of the GNDs
is particularly apparent in cases which develop macroscopic strain gradients such
as shearing, torsion and bending [5, 6, 7, 8]. However, by neglecting the develop-
ment of GNDs completely, this strain-gradient crystal plasticity model reverts back
to a first-order crystal plasticity model, making this modelparticularly well suited
to examine the competitive relationship between first orderweakening and second
order strengthening when the number of grains decreases.

Experimentally, material size effects have been examined in both micro-beam bend-
ing of bars and micro-torsion of wires [9, 10]. These observations of size depen-
dence have also been predicted numerically [5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18].
However, the investigations typically involve scaling of both the geometry and the
microstructure simultaneously, confounding the influenceof the size effect. Strictly
speaking, only the external component geometry should be scaled during minia-
turization while maintaining a constant internal microstructure, as physically rele-
vant for the specimen size effect. Empirical and numerical evidences suggest that
smaller is stronger, however, this neglects contributionsdue to the weakening in-
fluence of reduced crystallographic constraints as the number of grains within the
component are reduced as in the case of micromanufactured components. This sub-
ject was advocated experimentally in [19, 20, 21, 22], and justifies an analysis in the
considered range of length scales. Using a 3D second-order strain gradient crystal
plasticity approach, this paper examines the qualitative relevance and competitive
influence between gradient strengthening and weakening, under imposed uniaxial
tension and bending with ’large’ grains and specimen dimensions in the range of
100µm to 1 mm.
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2 Strain gradient crystal plasticity material model

The adopted second-order strain gradient crystal plasticity model is next briefly
outlined, which was initially developed by Evers et al. [6, 11]. A key feature of the
model is the incorporation of both geometrically necessaryand statistically stored
dislocation densities which are used to affect the crystallographic slip resistance,
while the gradients of the GND field are used to determine the internal stress state
that acts as a dislocation induced back stress.

In order to consistently represent the different scalar, vector and tensorial quantities,
the following notation convention is pursued: scalar quantities are written in italic
symbols i.e.b, vectorial quantities are written in bold italics i.e.s

α

0
andn

α

0
, and

matrices and second tensors are written in an upright sans-serif font i.e.Fe andS,
while fourth order tensors are expressed asC. Tensorial notation is used throughout
whereby· represents an inner product and: represents the double inner product.

As a classical point of departure, the deformation gradienttensorF, is multiplica-
tively decomposed into its elastic partFe and a plastic partFp, which is visualized
in Figure 2, according to:

F = Fe · Fp (1)

The plastic contributionFp refers to the deformation from the initial reference con-
figuration to the intermediate stress-free configuration. This stress-free configura-
tion can be considered to develop from the reference configuration solely by plastic
shearing along the active slip planes of the crystal latticethrough crystallographic
slip, leaving the orientations of the slip systems unaltered. The elastic part of the
deformation tensor rotates and stretches the plastically deformed material into the
current configuration.

Reference state

Intermediate state

Current state

n
α

s
α

s
α

0

s
α

0

n
α

0

n
α

0

F = Fe · Fp

Fe
Fp

Fig. 2. Multiplicative decomposition of the deformation into a plastic and elastic part.

In Figure 2, an arbitrary slip system is labelled by a superscript α, with α =
1, 2 . . . , ns wherens is the total number of slip systems. The individual slip sys-
tems are defined according to Table 1 for an FCC crystal. In thereference state, a
slip systemα is identified by unit vectors representing the slip plane normal nα

0

and the slip directionsα
0 .
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Table 1
Slip system (α) and dislocation (ξ) indices with their corresponding normal (n

α

0
) and slip

(sα

0
) direction unit vectors for an FCC crystal.

ξ α Dislocation type s
α

0
n

α

0

1 1 edge 1√
2
[1̄10] 1√

3
(111)

2 2 edge 1√
2
[101̄] 1√

3
(111)

3 3 edge 1√
2
[01̄1] 1√

3
(111)

4 4 edge 1√
2
[1̄1̄0] 1√

3
(11̄1̄)

5 5 edge 1√
2
[101] 1√

3
(11̄1̄)

6 6 edge 1√
2
[011̄] 1√

3
(11̄1̄)

7 7 edge 1√
2
[110] 1√

3
(1̄11̄)

8 8 edge 1√
2
[1̄01] 1√

3
(1̄11̄)

9 9 edge 1√
2
[01̄1̄] 1√

3
(1̄11̄)

10 10 edge 1√
2
[11̄0] 1√

3
(1̄1̄1)

11 11 edge 1√
2
[1̄01̄] 1√

3
(1̄1̄1)

12 12 edge 1√
2
[011] 1√

3
(1̄1̄1)

13 4 or 7 screw 1√
2
[110] 1√

3
(11̄1̄) or 1√

3
(1̄11̄)

14 5 or 11 screw 1√
2
[101] 1√

3
(11̄1̄) or 1√

3
(1̄1̄1)

15 9 or 12 screw 1√
2
[011] 1√

3
(1̄11̄) or 1√

3
(1̄1̄1)

16 1 or 10 screw 1√
2
[1̄10] 1√

3
(111) or 1√

3
(1̄1̄1)

17 2 or 8 screw 1√
2
[101̄] 1√

3
(111) or 1√

3
(1̄11̄)

18 3 or 6 screw 1√
2
[01̄1] 1√

3
(111) or 1√

3
(11̄1̄)

The elastic behaviour is considered with respect to the fictitiously unloaded config-
uration defined by the plastic deformation gradient tensorFp. A hyper-elastic for-
mulation is selected where the second Piola-Kirchhoff stress tensorS is expressed
in the (elastic) Green-Lagrange strain tensorEe defined with respect to the interme-
diate configuration according to:

S = C : Ee with Ee =
1

2

(

Fe
T · Fe − I

)

(2)

with I the second order identity tensor, while the stress tensorS is defined by:

S = Fe
−1 · τ · Fe

−T with τ = Jeσ (3)

whereτ is the Kirchhoff stress tensor,σ the Cauchy stress tensor andJe = det (Fe) =
det (F) the volume change ratio while forC the fourth order isotropic elasticity ten-
sor is taken.

For a given slip systemα the resolved shear stressτα (also called the Schmid stress)
in the intermediate state can be determined through:

τα = s
α
0 · S · nα

0 (4)
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The plastic velocity gradient tensor in the intermediate configurationLp is com-
posed of the contributions over the slip systems:

Lp =
ns
∑

α=1

γ̇ α
s

α
0 n

α
0 (5)

where the summation runs over the total numberns of slip systems and wherėγα

is the yet to be determined slip rate quantity on each individual slip systemα. The
plastic velocity gradient tensor is related to the plastic deformation gradient tensor
according to:

Ḟp = Lp · Fp (6)

The connection between the single crystal kinematics and the underlying disloca-
tion density development is accomplished through a visco-plastic power-law which
relates the slip rates to the effective shear stressτ α

eff and the slip system resistance
sα according to:

γ̇ α = γ̇0

(

|τ α
eff |

sα

)1/m

exp

[

−
G0

kT

(

1 −
|τ α

eff |

sα

)]

sign(τα
eff ) (7)

with γ̇0 andm material parameters, representing the reference plastic shear rate and
the rate sensitivity, respectively.T andk are the absolute temperature and Boltz-
mann’s constant, respectively, andG0 is the thermal activation energy necessary to
activate dislocation motion. With a small value ofm (i.e. m = 0.1) γ̇α remains
negligible unless|τ α

eff | is close tosα or larger (reflecting the ’viscous’ activation of
the slip system).

The effective shear stressτ α
eff constitutes the driving force for crystallographic slip

through dislocation motion on slip systemα and is determined as the difference
between the externally imposed resolved shear stressτ α, see equation (4), and the
yet to be defined resolved back stressτ α

b according to:

τ α
eff = τ α − τ α

b (8)

The slip system resistance (sα) is a measure of the impedance of dislocation mo-
tion on the slip systems by the formation of short-range interactions between all
dislocations. Physically, dislocations are discrete loops but are represented here by
a continuous field of dislocations with either an edge or screw nature. In contrast
to more phenomenological crystal plasticity models which relate the slip resistance
to the history of the plastic shear on all slip systems, here the slip resistancesα on
slip systemα is expressed as a function of both the dislocation densitiesρ

ξ
GND and

ρ
ξ
SSD, with the superscriptξ denoting the dislocation type as labelled in Table 1.

The slip system resistance includes the contribution of both the SSDs and GNDs

6
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according to:

sα = G b

√

√

√

√

√

12
∑

ξ=1

Aαξ|ρ ξ
SSD| +

18
∑

ξ=1

Aαξ|ρ ξ
GND| (9)

whereG is the shear modulus,b the magnitude of the Burgers vector, andAαξ is a
component of an interaction matrix which represents the strength of the interactions
between slip systems as determined by Franciosi and Zaoui [23]. The six relevant
interaction coefficients corresponding to self hardening,coplanar, Hirth lock, glis-
sile junction, Lomer Cottrell lock, and cross slip are further defined by Arsenlis and
Parks [24]. Note that equation (9) incorporates edge SSDs and edge GNDs since
they are the major source of hardening in FCC, whereas screw GNDs are accounted
for as well since at least one screw population is needed to accommodate certain
strain gradients with geometrically necessary dislocations.

Internal stress formulations

Because dislocations disturb the regularity of crystal lattices they constitute a source
of internal stress. For statistically stored dislocations, which usually have a random
orientation, the net internal stress contribution will be negligibly small. However,
geometrically necessary dislocations may cause a significant internal stress state,
which can be estimated from the self-equilibrating elasticstress fields associated
with individual edge and screw dislocations [25]. The evaluation of the internal
stress was carried out by Evers et al. [6, 11] for the dislocation fields distributed on
each of the slip systems, thereby ignoring the latent contributions originating from
other slip systems. This is presently improved by considering all stress components
of all GND fields on all slip systems [5]. Through analytical integration over a
cylindrical domain with a finite radiusR, within which dislocations are considered
to contribute to the back stress, the following internal stress state can be derived for
a field of edge dislocations:

σ int
e =

GbR2

8(1 − ν)

12
∑

ξ=1

∇0ρ
ξ
GND·

[

3nξ
0s

ξ
0s

ξ
0 + n

ξ
0n

ξ
0n

ξ
0 + 4νn

ξ
0p

ξ
0p

ξ
0

−s
ξ
0s

ξ
0n

ξ
0 − s

ξ
0n

ξ
0s

ξ
0

]

(10)

while for a field of screw dislocations, the resulting internal stress can be written
as:

σ int
s =

GbR2

4

18
∑

ξ=13

∇0ρ
ξ
GND ·

[

−n
ξ
0s

ξ
0p

ξ
0 − n

ξ
0p

ξ
0s

ξ
0 + p

ξ
0s

ξ
0n

ξ
0 + p

ξ
0n

ξ
0s

ξ
0

]

(11)

wheren
ξ
0 ands

ξ
0 define the slip system normal and slip direction,p

ξ
0 = s

ξ
0 × n

ξ
0

associated with theξ dislocation listed in Table 1, and∇0 is the gradient of the

7
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dislocation density related to the reference configuration. For the screw disloca-
tions, either one of the two slip systems defined in Table 1 results in an equivalent
internal stress, and therefore the choice of the slip systemassociated with a screw
dislocation is irrelevant. A detailed assessment of different types of internal stress
formulations is given in [5].

Analogous to resolving the Schmid stress on each slip systemdefined in equation
(4), the back stress on each slip system is resolved from the dislocation induced
internal stress tensor according to:

τ α
b = −s

α
0 ·
(

σ int
s + σ int

e

)

· nα
0 (12)

where the minus sign in the right-hand side of equation (12) is introduced to provide
consistency with the definition of the back stress as introduced in equation (8). La-
tent hardening, herein defined as the hardening on a secondary slip system caused
by dislocation gradients on a primary slip system, is incorporated by summation
over ξ = 1, 2, 3, . . . , 12 for the edge dislocations andξ = 13, 14, . . . , 18 for the
screw dislocations, respectively.

Dislocation density evolution

The evolutions of the 12 edge SSD densities of an FCC material, which are required
for equation (9), are based on the balance between accumulation and annihilation
rates according to the references [6, 24, 26] and [11]:

ρ̇α
SSD =

1

b

(

1

Lα
− 2ycρ

α
SSD

)

|γ̇ α| with: ρα
SSD(t = 0) = ρα

SSD0
(13)

The accumulation rate (first term in the right-hand side of equation (13)) is gov-
erned by the average dislocation segment length of mobile dislocations (SSDs) on
systemα, denoted byLα, which is directly related to the current dislocation state
according to:

Lα =
K

√

12
∑

ξ=1
Hαξ|ρξ

SSD| +
18
∑

ξ=1
Hαξ|ρ ξ

GND|

(14)

In this expression the dimensionless coefficientsHαξ, represent the mutual immo-
bilization between dislocations of different slip systems, structured analogously to
the coefficientsAαξ introduced in equation (9), yet with different values. Further-
more, the annihilation rate (second term in the right-hand side of equation (13)) is
controlled by the critical annihilation lengthyc, a material parameter characterizing
the average distance between dislocations of opposite signs which triggers spon-
taneous neutralization. Note that equation (13) does not imply that GNDs are not
mobile. Individual dislocations cannot discriminate between being SSD or GND.

8
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In fact, the GND fraction of the total dislocation population is determined geomet-
rically. Nevertheless, GNDs do contribute to the production of SSDs, as clearly
expressed by equation (14).

Gradients in the plastic deformation within crystalline materials give rise to so-
called geometrically necessary dislocations in order to restore lattice continuity in
the crystals. With the knowledge of the crystalline orientation in relation to the plas-
tic deformation gradient, the type of dislocation needed topreserve this continuity
can be determined.

Considering one of the slip systems, only slip gradients in the plane of the slip
system give rise to an incompatibility that will lead to GNDs. Slip gradients in the
direction of the slip will be accommodated by edge dislocations while gradients
in the slip plane perpendicular to the slip direction inducescrew dislocations. The
relationship between the gradient (with respect to the undeformed reference con-
figuration) of the plastic slipγ α on a slip systemα (with α = ξ = 1, 2, . . . , 12 for
FCC material) and the associated edge GND density takes the following form, see
Ashby [4]:

ρ
ξ
GND = ρ

ξ
GND0

−
1

b
∇0γ

ξ · s ξ
0 (15)

where an initial value of the GND density has been introducedto account for ini-
tially present geometrical lattice distortions (i.e. at small angle grain boundaries,
see Evers et al. [11]). The screw GND densities forξ = 13, 14, . . . , 18, due to slip
gradients can effectively be written as:

ρ
ξ
GND = ρ

ξ
GND0

+
1

b
(∇0γ

α1 · pα1

0 + ∇0γ
α2 · pα2

0 ) (16)

with α1 andα2 indicating the two slip systems associated with each screw GND,
as listed in Table 1.

Finite element implementation

In order to systematically compute an approximate solutionof the entire set of
strongly non-linear and coupled equations for an arbitrarygeometry and boundary
conditions, the previously described strain gradient crystal plasticity framework
is implemented within the finite element method at the integration point level. A
mixed formulation is thereby used, in which both displacement fields and GND
fields are discretized. Each integration point describes the enriched constitutive re-
sponse of the lattice within the integration point volume, whereby individual grains
consist of a number of finite elements.

As apparent from equations (15) and (16) the spatial variation of the crystallo-
graphic slip throughout the domain sets the GND densities, moreover, the evo-
lution of the crystallographic slip rates (equation (7)) requires knowledge of the

9
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GND densities through the crystallographic resistance (equation (9)) and the inter-
nal stress (equations (10) and (11)). GND densities are therefore incorporated as a
field variable, from which all relevant quantities can be determined along with the
solution for the displacement field. Therefore, the 18 GND densities are treated as
nodal unknowns in a similar manner as the 3 displacements, increasing the number
of nodal degrees of freedom to 21. Essentially, the stress equilibrium equations,
here formulated in terms of the first Piola-Kirchhoff stresstensor (nominal stress)
denoted byP, and the GND density equations (15) and (16) constitute the basis to
determine the unknown degrees of freedom.

The incremental calculation of the material model at the integration point level
involves a number of steps which are outlined below. Input tothe material model
from the global FE solution are the estimates of the deformation gradient tensor
F∗ and the GND densities, both to be determined from the currentestimates of the
nodal degrees of freedom and interpolation at the integration points through the
element shape functions. Not only does the material model return the associated
integration point values ofP∗ andγ∗α, but also the tangent moduli. Further details
of the FEM solution can be found in the references [5, 11], where only 2D solutions
were considered.

• Starting from an estimate for the incremental slip ratesγ̇∗α, determine the plastic
part of the deformation gradient tensorF∗

p by integrating equation (6) to yield
F
∗
p = (I + ∆t Lp) · Fpt whereFpt denotes the deformation gradient tensor at the

end of the previous (converged) increment and∆t is the current time step.
• With F∗

p, and the current deformation gradient tensorF∗, determine the associated
elastic deformation gradient tensorF∗

e with equation (1). Subsequently compute
the second Piola-Kirchhoff stress tensorS∗ using equation (2). Use this result
to determine the resolved shear stressesτ ∗α on the slip systemsα by applying
equation (4).

• Determine the first Piola-Kirchhoff stress tensorP∗ according to:

P
∗ = τ ∗ · F∗(−T ) = F

∗
e · S

∗ · F∗
e · F

∗(−T ) = F
∗
e · S

∗ · F∗
p
(−T ) (17)

where it is recalled that the second Piola-Kirchhoff stresstensorS∗ was related
to the intermediate configuration while the first Piola-Kirchhoff stress tensorP∗

is defined with respect to the undeformed reference state.
• Determine the dislocation induced internal stress tensorsfrom the GND density

fields defined by the nodal valuesρ∗ξ
GND using the equations (11) and (10) and

then calculate the back stressesτ ∗α
b on the slip systems with equation (12). From

τ ∗α andτ ∗α
b determine the effective shear stresses with equation (8).

• Estimateρ
∗ξ
SSD by integrating equation (13), and together withρ

∗ξ
GND, the slip

system resistances,s ∗α, can be calculated from equation (9).
• Evaluate the right-hand side of the slip law equation (7). The results will deviate

from the previous slip rate estimatesγ̇ ∗α, the differences of which are used to
correct the current iterative state. As long as the convergence norm is not yet
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reached, a next iteration step (restarting the procedure from the beginning) is
executed.

3 3D dislocation field analyses for micromanufactured samples

Finite element models examining the competitive influence between strain gradi-
ent strengthening and mutual grain constraints are considered under conditions of
in-plane tension and out-of-plane pure bending. These models aid in understand-
ing size effects in metallic material where the crystallographic texture along with
surface and grain boundaries influence the macroscopic behaviour, as observed ex-
perimentally.

To examine the constraining influence of differently oriented neighbouring grains
qualitatively, FEM models were constructed to represent flat beam-like miniatur-
ized components with varying width and thickness, but composed of identically
shaped brick-like crystals. The material parameters for the models are representa-
tive of copper and adopted from the references [5, 11]. The grains were arranged
to form a rectangular volume extending 10 crystals in lengthwith variable widths
and thicknesses as shown in Figure 3. The configuration with only a single row
of crystals (Figure 3a) models the performance of a miniaturized strut-like compo-
nent, while the configuration with seven rows of crystals (Figure 3e) approaches
a macroscopic plate-like geometry. Note that all samples have only a single grain
across the thickness, consistent with the processed specimens shown in Figure 1.
Since each crystal has a unique randomly selected crystallographic orientation, the
grain boundaries between adjacent grains impose deformation constraints by ob-
structing plastic slip due to the mismatch of the mutual slipsystems. Hence, the
model with a single row of crystals (Figure 3a) has the least amount of constraint
while a successively greater number of crystals in the widthdirection increases the
constraint caused by neighbouring grains. The rectangularmicrostructures have di-
mensions of 100µm in both the length and width directions, but with thicknesses
ranging from 75 to 300µm. The response from one of these microstructures is com-
pared to the response from a configuration with randomly shaped grains in order
to assess the influence of the use of regularly shaped grains within the structure.
The randomly shaped model (Figure 3f) has 49 individual grains and dimensions
similar to the 500µm model (Figure 3d) with five cubic grains in the width direc-
tion. The cubic shaped grains are represented by 27 brick elements as shown in
Figure 3 with either linear, selectively reduced integration brick elements (hex8)
or quadratic brick elements (hex27), depending on the applied loading conditions.
Linear brick elements (with selectively reduced integration to prevent locking) are
used for the tensile models while quadratic brick elements are used to accurately
capture the through-thickness bending, but uses a limited number of elements. A
previous mesh sensitivity study [27] revealed that a limited influence of the mesh
density for similarly sized elements under both bending andtension loading condi-
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tions. This relative mesh insensitivity is not surprising given that the model equa-
tions share a common structure with some continuum gradientplasticity models
which have also been shown to be largely mesh-independent aswell.

Displacement boundary conditions are specified for the nodes lying at both ends of
the major axes, adequately prescribing the external loading conditions, including
suppression of rigid body motion without additional (transverse) constraints. The
tensile models utilize a constant thickness of 100µm but with variable widths,
while the out-of-plane bending models utilize the specimenwith a constant width of
300µm (represented by the configuration as shown in Figure 3c) butwith variable
thicknesses.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. a–e) Regular planar MEMS models with only single through thickness grains and
variable widths used in the tensile simulations while f) presents a more realistic grain struc-
ture. The bending simulations are based on the mesh shown in c), but with variations in the
thickness dimension.

To properly incorporate grain boundaries, grains are modelled as separate volumet-
ric domains. Along the coinciding grain boundaries, doublenodes are introduced
to represent the mutual grain boundary. The displacement degrees of freedom of
these double nodes are always mutually tied to preserve kinematic compatibility,
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while the GND degrees of freedom are uncoupled to allow for different dislocation
densities at either side of the boundary. The plastic slip between grains is assumed
to be fully obstructed which forces GNDs to accumulate at both adjacent grain
boundaries. Where grain boundaries coincide with the specimen outer surface two
different conditions are represented, suppressed plasticslip (modelling a hard ox-
ide layer on the specimen surface) or free plastic slip (inducing a vanishing GND
density at the specimen surface). By either inhibiting or permitting crystallographic
slip in the specimen surface normal direction, upper and lower (stiffness) bounds
of the specimen response are obtained. Additionally, to realize an absolute lower
bound for reference purposes, calculations are also performed with a standard first-
order crystal plasticity approximation without any gradient effects (in which all
GND effects are ignored).

For each model geometry, a random selection of grain orientations, sampled from
a random texture was taken, which was repeated at least five times in order to
quantitatively assess the influence of grain statistics on the macroscopic behaviour.
Emphasis in the analysis is on (1) the 3D effects; (2) the influence of competing
size effects at the considered (coarse) scale; (3) a qualitative assessment of the
constraints at internal and external boundaries.

3.1 The tensile case

0 0.02 0.04 0.06 0.08 0.1
Applied strain (%)

0

10

20

30

40

50

E
ng

in
ee

rin
g 

S
tr
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(M
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a)

Cubic microstructure
Irregular shaped microstructure

Fig. 4. The grey region represents the range of response curves for five sets of cube shaped
microstructures as visualized in Figure 3d, showing the influence of different selections of
grain textures. Lying within the scatter of these results the response is plotted for a model
with the non-regular microstructure shown in Figure 3f.

The results from 5 tensile samples (with differently oriented grains) are represented
through their stress-strain curves for both the regular (cubic grains, Figure 3d) and
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the non-regularized (Figure 3f) microstructural models, see Figure 4. Crystallo-
graphic slip is constrained at both internal grain boundaries and external specimen
boundaries. Since the response of the non-regular configuration falls within the
scatter of the responses of the regular cubic crystal models, the result appears to
be hardly dependent of the crystal shape, and for the remainder of this paper, cubic
shaped crystals will therefore be used. Beyond the initial linear part, the stress-
strain curves during yielding diverge throughout a small range of stresses related to
the statistical selection of grain orientations.

Inspired by the experimental results found in [22] and related comments in [28],
two competing mechanisms that influence the size dependent behaviour are exam-
ined in detail, whereby the size of the grains in the microstructure is kept con-
stant. As the dimensions of the structure diminish (accomplished by reducing the
widths of the specimen), macroscopic deformation gradients are accentuated, while
reversely, the deformation constraint imposed by the grainboundaries at adjacent
grains decreases with decreasing dimensions. The influenceof the grain boundaries
are examined for the above defined cubic microstructures subjected to an applied
tensile strain of 0.1%. This applied macroscopic strain exceeds the physically in-
trinsic yield strain by a factor four, at which point, grainswhich are favourably
oriented for slip will have endured at least some crystallographic slip. The stresses
at an applied strain of 0.1% are compared in Figure 5 for the considered range
of model widths (Figure 3) and the two previously outlined crystallographic slip
boundary conditions. Furthermore, the standard crystal plasticity result is shown as
well (no GNDs). Error bars representing 99% confidence intervals were obtained
from the different model texture variants and represent theexpected scatter (mind
the scaling on the vertical axis) due to different crystallographic grain orientations.

In spite of the relative large scales investigated, the influence of the crystallographic
slip boundary conditions along the internal and external grain boundaries remains
visible in the responses, presented by three almost parallel curves. The upper and
lower curve represent the two extremes of the crystallographic slip boundary con-
ditions, i.e. completely obstructed crystallographic slip across the grain boundary
(leading to the highest stress response) and standard first-order crystal plasticity
(which eases crystallographic slip at the grain boundaries, inducing the weakest
response), respectively. An intermediate response is generated by assuming that
the outer boundaries are free surfaces while restricting crystallographic slip at all
internal grain boundaries, leading to a corresponding net decrease in the total num-
ber of GNDs compared to the fully restricted case. Localizedstrain gradients be-
tween adjacent grains develop, which increase the local GNDdensities, thereby
contributing to an increase slip resistance. The overall back stress contribution is
less pronounced.

The influence of the specimen width, while maintaining a constant microstruc-
ture with grain dimensions of 100×100×100 µm, is also evident from Figure 5.
For specimens exceeding 300µm in width, the two upper curves are expected to
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approach a macroscopic, near size independent response, while widths less than
300 µm predict a reduction in flow strengths (at 0.1% strain). The origin of this
size dependence is the decreasing interaction between neighbouring grains as the
number of grains across the width decreases. With only a single grain across the
width, there is no crystallographic constraint (in width direction). With an increas-
ing number of grains, the number of constraints continues toincrease until the
macroscopic (plate-like) behaviour is reached. This trends holds for all cases, even
though the first-order prediction will naturally predict a smaller stress (compared
to the second-order predictions) because of the weaker grain boundary constraints.
The error bars associated with each point correspond to the 99% confidence in-
tervals associated with the multiple simulations for each specimen width. While
the sample sizes were insufficiently large to generate statistical significant obser-
vations, they provide an indication of the relative influence of the grain sampling
statistics. The error bar magnitudes over the range of widths investigated suggests
that the limited number of grains across the specimen bears little influence on the
scatter of the results. However, the number of grains in the length of the specimen
does not change, and it seems that this is the dominant factorcontributing to the er-
ror bars in Figure 5. Note that, the orientation of individual grains also contributes
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Fig. 5. Macroscopic tensile stresses at 0.1% strain comparing the influence of the crystal-
lographic boundary conditions. The error bars represent 99% confidence intervals obtained
for different local crystallographic orientations.

to the weakening trend observed in Figure 5, which simply results from the fact that
the behaviour in a single cross-section is governed by a single grain rather than by
an aggregate. The first-order effect and the second-order effect jointly contributed
to the weakening effect predicted, where less grains and less grain boundaries are
the physical origins.
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3.2 The bending case

While back stresses were found to contribute little to the macroscopic tensile re-
sponse, they substantially do contribute under pure bending where a significant
strain gradient develops. In the following, the configuration according to Figure
3c is subjected to bending. Varying the specimen thickness between 75 to 300µm
by scaling the mesh in the thickness direction, generates a range of macroscopic
through-thickness strain gradients which definitely have an impact on the normal-
ized applied bending moments as plotted in Figure 6. In this figure, the normalized
bending moments (scaled by the surface parameterWT 2 with W the width andT
the thickness of the specimen) at an applied strain of 0.1% (at the outer fibre) are
plotted versus the thickness. Unlike the macroscopic tensile responses plotted in
Figure 5, the three different crystallographic boundary conditions appear to diverge
with diminishing specimen thickness. When the crystallographic no slip boundary
conditions across the grain boundaries are relaxed (along the specimen outer sur-
face only, or overall) by specifying no GND accumulation on these boundaries, the
models predict a slight decreasing trend with decreasing model thickness similar
to the response in the tensile case. However, when the crystallographic slip is sup-
pressed across all grain boundaries, including a passivating surface layer, the mod-
els predict an increasing normalized bending moment with decreasing thickness.
This increased normalized bending moment results from the increasing through-
thickness strain gradients in case of a diminishing thickness dimension. For the
bending case, the first-order effect (weakening due to the reduction of grains) works
opposite to the second-order effect (strengthening due to strain gradients). Depend-
ing on the local microstructural configuration, the overalltrend may either show
weakening or strengthening upon reducing the specimen size.

4 Discussion

The simulations presented highlight the importance of utilizing a material model
capable of including the influence of second-order gradients for the simulation of
the mechanical behaviour of micromanufactured components. While the simula-
tions are qualitative in nature as they lack experimental verification, they indicate a
range of geometrical sizes where first- and second-order effects will compete, lead-
ing to the trends observed in the present analysis. Disregarding the second-order
gradients effects is found to lead to underestimating predictions of the macroscopic
forces required during plastic deformation. The simulations also indicate that size
effects in the examined range of scales are not only dependent on the external di-
mensions, but also on the ratio of the grain size with respectto the specimen size
and the presence of macroscopic strain gradients.

The strengthening effect due to strain gradients results primarily from the back
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Fig. 6. Normalized bending moments computed from regular microstructure MEMS mod-
els with variable thicknesses at an applied strain of 0.1% atthe level of the outer fibres.
The three curves are related to the different crystallographic slip boundary conditions at the
grain boundaries.

stresses associated with the GNDs required to satisfy lattice continuity. During
monotonic loading, these back stresses will continue to resist plastic deformation
by effectively reducing the driving force for crystallographic slip, however, the op-
posite is true when the loading direction is reversed. In that case, the back stresses
associated with the dislocations will augment the driving force, producing the clas-
sic Bauschinger effect [5]. Therefore, the mechanical analysis of thin micromanu-
factured components subjected to strong strain gradients will have to include both
isotropic and kinematic hardening mechanisms to accurately predict the mechani-
cal behaviour.

By maintaining a constant grain size during the miniaturization simulations, de-
crease of the external dimensions also reduces the number ofconstituent grains that
make up that part. This reduction in the number of crystals introduces a weakening
effect due to the loss of crystallographic constraints between adjacent grains. This
loss of constraints is adequately captured by a first-order crystal plasticity models,
where the statistical influence of the total number of grainswithin a component
is naturally accounted for. However, this weakening trend would not be captured
using a conventional continuum plasticity model since the possibility to include
the heterogeneity associated with individual grains of a crystalline material fails.
Similarly, second-order continuum models that don’t account for the contribution
of individual grains such as [29] would also fail to capture this weakening trend
with diminishing dimensions. However, by incorporation ofthe influence of strain
gradients within a crystal plasticity framework, the resulting effect of concurrent
strengthening and weakening can be described.
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5 Conclusions

Simulations using a strain-gradient crystal plasticity formulation of MEMS-like
structures have been performed to examine the competition between first order
weakening and gradient strengthening. The analysis focused on:

• A three-dimensional description of micromanufactured samples with a limited
number of grains in a cross-section.

• A strain gradient crystal plasticity approach with an enriched back stress descrip-
tion that accounts for the internal dislocation induced stresses.

• A particular range of length scales for which a competition between first-order
and second-order effects may be expected.

• The different sources that contribute to size effects: statistical effects, internal
constraints (grain boundaries), external constraints andthe externally applied
load (possibly inducing macroscopic strain gradients).

More specifically the simulations revealed:

• In the presence of large macroscopic strain gradients, strain gradient strengthen-
ing dominates, requiring a greater applied load to overcomethe increased inter-
nal back stresses associated with the GNDs in accordance with other researchers
[5, 6, 9, 10, 11, 15].

• When macroscopic strain gradients are avoided, such as during uniaxial tension,
the loss of microstructural constraints between adjacent grains dominates, result-
ing in a weakening trend with decreasing dimensions (miniaturization).

• The outer surface passivity has an obvious influence on the macroscopic be-
haviour of miniaturized components, especially when they are subjected to load-
ing cases which induce large strain gradients.

• As dimensions diminish, a better qualitative agreement with the mechanical be-
haviour of micromanufactured parts (with a limited number of grains) are only
possible on the basis of an enhanced crystal plasticity description, which ac-
counts for the crystallographic orientations and volumes of each composing grain
and in which GND-driven strain gradient strengthening is included in the slip re-
sistance and the back stress calculation.
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