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Abstract 

 

Although the intermittent and heterogeneous nature of plastic flow has been known for 

several decades, only recently did observations performed on the surface of deformed samples 

by AFM or scanning white-light interferometry, or in the bulk by X-Ray topography, reveal 

the scale invariant character of dislocation and slip patterns emerging from collective 

dislocation interactions. This scale invariance implies that the spatial fluctuations of 

dislocation density and/or slip never vanish as one coarsens the observation scale. An 

immediate consequence is that a priori obvious concepts such as “slip bands” or dislocation 

density can be ill-defined. These detailed characterizations of the plastic flow heterogeneity 

also challenge the modelling of plasticity. 

 

Keywords 

Dislocation, dislocation density, slip line, scale invariance, long-range correlations, strain 

gradient plasticity 

 

1. Introduction 

 

Since the early days of the dislocation-related theory of plasticity [1, 2], the main 

question was to relate the microscale physics (from the crystal lattice scale, b, to the average 

distance between neighbouring dislocations, ld=1/ρ
1/2

) to the macroscale behaviour. The 

celebrated Orowan’s relation, dγ/dt = ρm〈v〉b which expresses the macroscopic strain-rate as a 

function of the density of mobile dislocations ρm and of their averaged velocity 〈v〉, is based 

on two basic micro-macro concepts : (i) the mechanistic approach and (ii) mean-field and 

averaging procedures. E.g., in the Orowan’s relation, it is implicitly assumed that averaging is 

meaningful for both v and the spatial distribution of dislocations. This coarse-graining can fail 
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for three reasons: (i) spatial long-range correlations exist for ρm, (ii) long-range correlations 

exist for v, or (iii) the distribution of v is “wild”, i.e. such that a variance cannot be defined 

and the central limit theorem cannot be applied (e.g. [3]). In other words, spatial and temporal 

fluctuations on v and ρm are too strong (more precisely, these fluctuations do not vanish 

relatively to the mean as the observation scale is coarsened). Recent works [4] showed that 

condition (iii) is often fulfilled (see below), whereas we show in this paper that conditions (i) 

and (ii) can be also encountered, thus questioning the applicability of such simple coarse-

graining procedures in plasticity. 

Since these seminal works[1, 2], the notion of dislocation density has been extensively 

used in the literature. A well-known example is the Taylor’s relation for the flow stress [5], σc 

~ Gbρ1/2
, which expresses, through a mean-field approach, the idea that the flow stress σc is 

governed by dislocation interactions. Phenomenological models formulated in terms of 

differential equations for the evolution of dislocation densities and using the Taylor’s relation 

were developed from the late 70’s to model work-hardening (e.g. [6]). As stressed by Zaiser 

and Seeger [7], those early phenomenological density-based models were unable to account 

for a rather ubiquitous (at least in the case of materials with high dislocation mobility) 

experimental fact that became apparent at the same time: the spontaneous emergence of 

strong heterogeneities in the dislocation patterns.  

Indeed, the intrinsic heterogeneous nature of slip, which emerge from the collective 

behaviour of moving dislocations, is now well-established, with dislocations tending to move 

cooperatively in groups of spatially correlated slip planes rather than individually and 

independently from each other [8]. In the spatial domain, this has been formulated by the 

concept of “slip lines” or “slip bands” revealed by a topographic analysis of the surface of 

deformed samples, a subject reviewed by Neuhauser [8] almost 25 years ago. This spatial 

heterogeneity is accompanied by intermittency, as plastic deformation takes place through 

localised “bursts” or avalanches, characterized by very large instantaneous strain-rates, 

whereas dislocations are almost immobile everywhere else [4]. Recent works showed that this 

collective dislocation dynamics is characterized by different scaling laws as well as space [9] 

and time [10] correlations. In particular, the power law distributions of dislocation velocities 

[4] question the averaging procedure used in the Orowan’s relation, as the variance of the 

distribution is ill-defined in this case (see above). 

In this paper, we first review recent advances in the experimental characterization of 

slip heterogeneity and the associated spatial correlations of dislocation densities. We show 
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that these slip patterns are characterized by scaling laws and long-ranged correlations. Then, 

we discuss the pertinence (and limitations) of classical and widely-used concepts such as slip 

bands, dislocation densities, or strain gradient plasticity. We also discuss, in this context, the 

consequences of such scale-free slip and dislocation patterns to constrain future modelling 

developments, with a focus on the recent density-based approaches. 

 

2. Heterogeneity, spatial correlations and scaling in dislocation and slip patterns 

 

 The most direct method to investigate dislocation patterns is the analysis of 

transmission electron microscopy (TEM) images. Although TEM investigations of dislocation 

structures and patterns are countless, quantitative analyses of dislocation density spatial 

correlations as well as of statistical and scaling properties are difficult and tedious, and 

therefore scarce. As this subject was reviewed by Zaiser and Seeger [7], we simply recall here 

that the emergence of fractal, scale-free dislocation arrangements has been revealed by box-

counting measurements or by the distribution of dislocation cell sizes [11-13]. These fractal 

patterns are necessarily associated with long-ranged, non periodic spatial correlations, and 

differ in this respect to random arrangements (no correlations) or to patterns with periodic 

arrangements (periodic correlations). Periodic patterns seem to be a specific feature of cyclic 

deformation (fatigue)[7], a subject not treated here. 

 A complementary, but indirect method to explore the spatial heterogeneity of 

dislocation patterns is the X-ray line profile analysis [14, 15], which allows to estimate the 

average dislocation density, 〈ρ〉, as well as the associated fluctuations quantified by the 

second-order moment of the distribution, 〈ρ
2
〉. For compressed Cu single crystals, Szekely et 

al. [15] found a good (anti)correlation between the relative dislocation density fluctuation, 

quantified by the ratio δ=〈ρ
2
〉

1/2
/〈ρ〉, and the fractal dimension of the dislocation patterns 

deduced from the distribution of cell sizes: the larger the heterogeneity, the larger the density 

fluctuation deduced from X-ray, and the smaller the fractal dimension deduced from TEM 

observations. 

 The most common method to study the spatial heterogeneity of slip and dislocation 

patterns, which was also the first developed, is the analysis of the surface of deformed 

samples. When dislocations emerge at the surface of a sample, slip steps are created. The 

heterogeneous nature of slip is then characterized by the development of roughness at the 

surface, which can be analyzed by shadowed microscopic images of sample surfaces or of 
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replicas, or, more recently and directly, by atomic force microscopy (AFM) or scanning 

interferometry [16]. In his classic paper, Neuhauser [8] reviewed the observations available at 

that time, stressed the connection between the emergence of the so-called “slip bands” and 

collective dislocation motion, but did not perform any correlation or scaling analysis.  

 Sprusil and Hnilica [17] were the first to recognize the scale invariant, fractal character 

of slip patterns in plastically deformed Cd single crystals (figure 1), an hexagonal material in 

which the stage I of deformation is characterized by single-slip plasticity along the basal 

planes. Qualitatively, scale invariance is illustrated by the similarity of the patterns whatever 

the magnification. More quantitatively, these authors measured the number of dark lines, 

identified as “slip bands”, per unit length along a line perpendicular to the basal planes, for 

each magnification, and obtained the following scaling (Figure 2): 

 

)1(~~ 11 −− DD

b lMρ   

 

where ρb is the density of slip bands (in m
-1

) along a line perpendicular to the slip planes, M 

the magnification, l the image resolution (l~1/M) and D is the fractal dimension characterizing 

the set of slip band coordinates (0 < D < 1). Sprusil and Hnilica reported a value of D≈0.5 for 

this set of points [17] (Figure 2). This fractal pattern fundamentally differs from a random, 

uncorrelated poissonian arrangement, and is an indication of long-ranged correlations. Using 

different methodologies (such as the so-called gap, yardstick or box-counting methods) 

applied on similar sets of slip band coordinates, Kleiser and Bocek [18] concluded on the 

scale invariant character of slip patterns in Cu single crystals, and reported D-values between 

0.35 and 0.7. 

 A strong limitation of these early works is that they did not resolve the elevation of the 

slip steps, which is related to the number of dislocations that glide along a given “slip band”, 

or, in other words, to the local amount of plastic strain. Recent investigations based on AFM 

or scanning white-light interferometry allowed to quantitatively analyse this surface 

roughness of plastically deformed samples [16]. The elevation fluctuations (the roughness) 

can be linked to the spatial heterogeneity of strain, i.e. to local strain gradients. Therefore, by 

nature, the dislocation arrangements revealed by this technique are associated with strain 

gradients. The local elevation gradient (the local slope) ∂z/∂x is related to the local amount of 

plastic strain εp(x) as follows [19]: 
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where z(x) is the elevation at position x along the profile. 

Nadgorny et al. [20] showed that an initially smooth surface of a KCl single crystal 

developed self-affine roughness during deformation. This self-affine scaling, documented on 

1-d profiles of the surfaces,  is expressed by: 

 

)3(~)()( Hxzxxzxz ∆∆=∆+−  

 

where ∆x is the size of the window over which the elevation difference (a proxy of the 

roughness) is measured, and H is the so-called Hurst’s exponent characterizing the self-affine 

regime. Note that a more conventional estimate of roughness, the standard deviation of 

elevation over the window, is expected to follow the same scaling law [21]. For the stage I of 

deformation characterized by single-slip and low hardening, these authors reported a self-

affine scaling over the entire available range of observation (from about 300 nm to 200 µm) 

with H ≈ 0.65 [20]. For stage II characterized by multi-slip and hardening, a small scale 

regime (H ≈ 0.7) seems to cross over to a large scale regime (H ≈ 0.5) above few tens of µm. 

When the Hurst’s exponents are larger than 0.5, this self-affine regime is the hallmark of scale 

invariance and long-ranged spatial correlations for the strain pattern, i.e. somehow for the 

dislocation density profile. Indeed, it implies that the power spectrum of the elevation profile 

z(x) scales as (e.g. [22]): 

 

)4(~)( µ
ffE
−

 

 

where f is the frequency (in m
-1

), E is the power spectrum, and the exponent µ  is related to H 

through µ=2H+1. Consequently, the gradient ∂z/∂x, which is directly linked to the local 

plastic strain (see relation (2)), is also characterized by a power law spectrum, E(f) ~ f 
-α

, 

where α = µ-2, i.e. α=0.3 for KCl single crystals during stage I. As the power spectrum is the 

Fourier transform of the auto-correlation function [22], this power law behaviour with α>0 is 

the hallmark of long-ranged spatial correlations of the plastic strain εp(x). By comparison, an 

uncorrelated pattern would be characterized by a “white noise” with α=0, i.e. µ=2 and H=0.5 
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for the integrated profile. This might be the case for the strain pattern observed towards large 

scales during stage II (H≈0.5, see above). 

 In single crystals, at least during stage I, the upper bound of scaling is set by the 

sample size. Similar roughness analyses performed on polycrystalline Cu [16] an Al-Mg 

alloys [23] revealed an auto-correlation function of the roughness profile z(x) that saturates at 

scales larger than the average grain size 〈d〉. This defines 〈d〉 as the correlation length ξ of the 

slip patterns. Towards small scales, scaling was observed down to the resolution scale of the 

analysis, i.e. down to 50 nm in the case of atomic force microscopy [16], with 0.8≤H≤ 0.92, 

i.e. 0.6≤α ≤0.84 for the power spectrum of the local strain pattern εp(x). 

 The main drawback of these roughness analyses is that, as already stressed by 

Neuhauser [8], the presence of a free surface is expected to influence the operation of 

dislocation sources and dislocations patterns near the surface. Consequently, they might not 

be representative of bulk plasticity. Recently, we performed at ESRF post-mortem 

synchrotron X-ray topography analyses of ice single crystals deformed under pure 

torsion[24]. The torsion axis was parallel to the c-axis of the samples. Hexagonal ice Ih is 

characterized by single slip plasticity along the basal planes (i.e. stage II of deformation is 

never observed), which were therefore parallel to the shear plane in these experiments. 

Although a macroscopic strain gradient is geometrically imposed from the centre of the 

cylindrical samples to the surface, no gradient is imposed along the direction perpendicular to 

the basal planes. During synchrotron X-ray topography, the diffracted intensity records the 

distortion field, in our case related to orientation contrast. For our deformed samples, it is 

related to the dislocation density at the origin of the lattice distortion, i.e. only “excess 

dislocations” [25] responsible for lattice distortion are accessible by this technique. Diffracted 

intensity variations provide a map of dislocation density fluctuations within the bulk. Figure 

3a shows an example of a diffraction pattern on the prismatic plane, with the long dimension 

corresponding to the height of the specimen, along the c-axis, while the width corresponds to 

the width of the specimen illuminated by the X-ray beam. Darker zones correspond to high 

dislocation density regions. The pattern shown on figure 3a reveals a strong heterogeneity of 

the dislocation density along a direction perpendicular to the slip planes. We analyzed this 

heterogeneity along 1-d intensity profiles of the topograph perpendicular to the basal plane 

(figure 3b), by means of a spectral analysis. We observed a power law regime for the power 

spectrum of the intensity record over the entire available scale range (bounded by the 

resolution of the analysis, 10 µm, and the sample size, ≈ 7 mm), E(f) ~ f 
-α

, with α=1.3 for all 
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the samples analyzed [24](Figure 4). As for the elevation gradients ∂z/∂x of the surfaces of 

deformed samples (see above), these power laws reveal the scale invariance of the intensity 

records, i.e. of the dislocation density arrangement along a line perpendicular to the basal 

planes, as well as the associated long-range correlations. With this X-ray topography analysis, 

as the measured intensity is a proxy of the local dislocation density, the intensity gradients 

∂I/∂x are a proxy of dislocation density gradients. The observed value of α=1.3<2 identifies 

the intensity profile as a so-called anti-persistent pattern [26], i.e. a local increase of the 

density (positive gradient) is expected, in the probabilistic sense, to be surrounded by negative 

gradients. In other words, the density gradients are anti-correlated, although the absolute 

values of the gradients remain positively correlated[24]. 

 Therefore, surface and bulk analyses of slip and dislocation patterns are both 

characterized by scale invariance and spatial long-range correlations, although the exponent α 

of the power spectrum is larger for the dislocation density patterns revealed by X-ray 

topography than those obtained for strain patterns from roughness analyses. In simpler words, 

bulk density patterns appear more correlated (less noisy) than surface strain patterns. At this 

stage, we don’t know if this difference is due to the materials analyzed, to the difference 

between bulk and surface properties, or to the fact that a dislocation density cannot be directly 

translated into a local strain, even for the single-slip plasticity under torsion studied for the ice 

samples[24]. 

   To end with this section about experimental characterization of slip patterns, one 

should mention that a 3-d analysis of dislocation avalanche locations monitored by acoustic 

emission during the creep of an ice single crystal revealed a scale-free pattern with a fractal 

dimension D=2.5, in agreement with the analyses detailed above [9]. 

 

3. Slip bands, dislocation densities, strain-gradient plasticity and modelling frameworks 

 

 The observations reported above argue for the rather ubiquitous character of spatial 

long-range correlations and scaling in dislocation and slip patterns. In single crystals, scaling 

holds from the smallest scales that can be explored by modern investigation methods (few 

tens of nm with AFM) to the scale of the sample. In polycrystalline materials, the correlation 

length ξ, i.e. the upper bound of scaling, seems to be set by the average grain size.  
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These observations question the pertinence of classical and widely-used concepts such 

as slip bands or dislocation densities, and should constrain future modelling developments of 

plasticity. 

 

Slip bands and dislocations densities 

 

The concept of “slip band” emerged naturally when the spatial heterogeneity of plastic 

flow was recognized [8]. However, this a priori simple concept is misleading when scaling is 

present. Indeed, relation (1) implies that the density of slip bands ρb is scale dependent: more 

and more slip bands per unit length appear as one increases the resolution. Any parameter 

related to ρb, such as, e.g., an average spacing between bands, has therefore to be taken with 

caution. 

Similarly, the definition of a volumic statistical dislocation density ρ implies that such 

averaging is meaningful at the scale considered, that is, the associated spatial fluctuations at 

that scale are small compared to the mean. In other words, the inevitable small scale 

heterogeneity (at the crystal lattice scale, dislocations are discrete defects) can be 

homogenised at some scale if the fluctuations vanish relatively to the mean above this scale. 

The scale invariance of the slip and dislocation patterns reported above might actually imply 

exactly the reverse. In the case of a so-called monofractal pattern, the ratio δ=〈ρ
2
〉

1/2
/〈ρ〉 (as 

well as any higher order ratio 〈ρ
q
〉

1/q
/〈ρ〉 with q>2) remains constant whatever the scale of 

observation, i.e. fluctuations never vanish and dislocation density is ill-defined. For the 

dislocation patterns revealed by X-ray topography on ice samples, a detailed analysis might 

suggest a small departure from this monofractal scaling, with a possible decrease of δ with 

increasing scale as δ ~ ∆x
-β

, with β in the range 0.05-0.1 (figure 5). These estimated β-values 

are an upper bound, as δ-values are biased (underestimated) by a finite size effect towards 

large scales. Therefore, this decrease of fluctuations towards large scale, if any, is very slow. 

In the case of strain patterns revealed by surface roughness, Zaiser [19] checked on 

KCl single crystals that the surface roughness patterns were monofractal, i.e.: 

 

)5(41,~)()(
/1/1

≤≤∀∆∆=∆+− qforqxzxxzxz H
q

q
q

q
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As the elevation gradient ∂z/∂x is related to the local amount of plastic strain εp(x) (see 

above), relation (5) implies: 

 

)6(41,~~ 1

/1

/1

≤≤∀∆
∆

∆ − qforqx
x

z H

q
q

q
q

pε  

 

, which shows that the strain fluctuations remain constant whatever the scale of observation, 

in good agreement with our analysis of dislocation density profiles.  

This situation is true up to the correlation length ξ, meaning that a statistical 

dislocation density is ill-defined whatever the scale in the case of single crystal plasticity. On 

the other hand, in polycrystals, the average grain size 〈d〉 appears as an upper bound of 

scaling. Consequently, the fluctuations vanish as one coarsens the scale above 〈d〉. Mean-field 

approaches and homogenisation procedures might therefore be adequate if the representative 

volume element includes several grains (here, we do not consider other sources of 

heterogeneity such as textures and fabrics, which could be important at scales larger than 〈d〉). 

However, a recent analysis of dislocation avalanches in polycrystalline ice [27] showed that 

spatial correlations and fractal scaling extended towards scales much larger than the grain 

size. The role of grain boundaries as barriers to dislocation and slip correlations might not be 

so straightforward [28]. We note also that in single crystals, extended scaling was essentially 

observed during stage I (in ice and KCl, see above), i.e. in a single slip configuration. During 

stage II in KCl, a crossover towards a “white noise” regime (H ≈ 0.5) was observed at scales 

around few tens of µm [20]. This could indicate a rapid decrease of the dislocation density 

fluctuations above these scales, maybe as the result of forest-type interactions in different 

planes. 

 

Strain-gradient plasticity 

 

In order to account for a size dependence on strength in plasticity laws, the strain 

gradient theory introduced the concept of geometrically necessary dislocations (GND’s), to be 

distinguished from the statistically stored dislocations (SSD’s). From Ashby [29] the later are 

supposed to accumulate in pure crystal during straining and to be responsible for the forest 

hardening, while the first are required for the compatible deformation of various parts of the 

specimen. Ashby assumed that the deformation associated with the SSD’s is spatially 
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uniform, whereas GND’s accommodate local strain-gradients, i.e. non-uniform deformation. 

In other words, the fluctuations of the SSD dislocation density, ρS, are assumed to vanish 

rapidly above the average spacing ld. Within this framework, ρS  can be considered as a 

variable characterizing  the state of deformation of the very material, while the GND density, 

ρG, is associated to “externally” imposed strain gradients. Here, we employ the term 

“external” with respect to the dislocation system itself, i.e. strain gradients imposed by 

microstructural features such as second-phase particles or grain boundaries, or imposed by the 

deformation geometry (e.g. bending tests). Such assumptions allowed to introduce a 

dependence on strain gradient, and then on a length scale, in phenomenological plasticity laws 

[30-32].  

In this strain-gradient theory of plasticity, it is therefore assumed that the deformation 

of a single-phase single crystal will be spatially homogeneous and accommodated by SSD’s 

only. This approximation about the existence of a plastically homogeneous deforming crystal 

can now be strongly questioned regarding the experimental results about dislocation 

patterning reported above. Surface measurements of dislocation induced slip steps in 

deformed single and polycrystals as well as X-ray diffraction analyses of dislocation density 

patterns revealed the emergence of strain (or dislocation density) gradients self-induced by the 

collective behaviour of dislocations. The dislocation and slip patterns observed in single 

crystals as well as in grains inside polycrystals are scale invariant, meaning that these self-

induced strain gradients exist whatever the scale of observation, within the limits of the 

scaling regime. The fact that fluctuations of dislocation density never vanish as one coarsen 

the scale (see previous section) implies that the concept of SSD’s becomes meaningless, at 

least up to the upper bound of scaling. Note that the dislocation population which 

accommodates the externally imposed gradients, i.e. the so-called GND’s in the Ashby’s 

strain gradient plasticity theory, has, by nature, no long-range stresses associated with it [29]. 

On the other hand, the dislocation pattern which spontaneously emerge from collective effects 

is associated with long-range stresses, up to the correlation length ξ. 

A geometrically necessary dislocation population can also be defined as the one 

accommodating the incompatibility of the lattice in the sense of the Nye's dislocation density 

tensor [33].  This tensor provides the net Burgers vector of all dislocation lines threading a 

given surface. This definition is more general than the original Ashby’s definition of GND’s 

[29]. Indeed, such dislocation population, also referred as "excess" dislocations [25], is, by 

nature, associated to long-ranged stresses and all kind of strain gradients, i.e. self-induced and 
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externally imposed gradients. However, the associated densities remain a scale dependant 

concept, as they are defined for a Burgers circuit of a given size.  

In the spirit of the presented experimental results, we propose to distinguish between 

“externally” imposed (see above for the definition of “external”) and self-induced strain 

gradients, and the associated dislocation populations. These self-induced gradients compete 

with the gradients externally imposed by the microstructure or by the deformation geometry. 

Below the scale where externally imposed gradients dominate, set by an average particle 

spacing, an average grain size, or the sample size, the scale invariance of dislocation 

patterning prevents from any homogenisation hypotheses, and consequently from the 

distinction between the two dislocation populations, SSD’s and GND’s (in the original 

Ashby’s framework), and the use of the strain-gradient plasticity theory. To keep using the 

concept of SSD’s and GND’s implies that a scale can be found where self-induced gradients 

become negligible compared with externally imposed gradients, as it seems to be the case for 

the average grain size in polycrystals (see above and [16, 23]). In that case, at scales well 

above ξ, the self-induced gradients average out, and the concept of SSD’s remains possible. 

The strain gradient plasticity theory is then strongly dependent on the scale at which 

homogenisation can be performed.  

 

Modelling issues   

 

As perfectly illustrated by the contributions of this special issue, the density-based 

modelling of dislocation systems and plasticity is a very active and promising field of 

research. This might appear, at first glance, somehow in contradiction with the fact that 

statistical dislocation density is ill-defined (at least scale-dependent) when scaling is present 

(see above). However, we stress again that scaling is observed up to the correlation length 

which is set by the grain size in polycrystals. The case of single crystals, where scaling holds 

up to the sample size for the observations reported above, might appear as an “ideal” case 

without obvious practical application. On the other hand, the development of 

nanotechnologies, in shrinking the structural dimensions, could raise the problem of plastic 

heterogeneity in these cases.  

Nevertheless, this emergence of scale-invariant patterns from the collective dislocation 

interactions necessarily challenges the modelling of plasticity. The key issue is, as stressed by 

Zaiser and Hochrainer [34], to achieve the transition between descriptions of plastic flow in 

terms of the dynamics of discrete dislocations (which have been successful in modelling the 
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scale invariant properties of plasticity [4]), and continuum equations formulated in terms of 

partial differential equations and boundary value problems. The key challenge is to adapt the 

classical continuum modelling framework to take into account heterogeneity and fluctuations, 

while solving boundary value problems at the macro-scale.  

A recent advance in this respect is based on the concept of “excess dislocations” 

briefly described in the previous section. It is an elegant way to propose a continuum 

framework that is able to (actually designed for) take into account internal stress fields and 

strain gradients resulting from dislocation interactions [35]. This framework, called Field 

Dislocation Mechanics (FDM) does not introduce phenomenological, ad hoc internal length 

scales to account for the observed gradients, instead incorporates physically-based length 

scales and spatial correlations due to dislocation interactions. In addition, FDM includes the 

dislocation transport equation [36], which is used as an evolution equation for the dislocation 

densities. It provides a dynamical setting for the solution of boundary value problems with 

stress and dislocation densities as state variables. When the resolution is small (of the order of 

the mean dislocation spacing), FDM is in practice only applicable to small size systems. 

However, coarse-graining is possible [25, 37]: short-range details of the internal stress field 

are smeared off but samples can be dealt with at a larger scale. It would be interesting in the 

future to test the ability of FDM to reproduce the complexity of self-induced strain gradients 

described in this paper. 

Other recent developments (e.g. [38]) are based on mesoscopic field variables (stress, 

strain, dislocation densities). The phenomenological laws describing the evolution of these 

mesoscopic variables, such as dislocation density-based hardening laws, are inspired from the 

classical macroscopic modelling framework. Here, mesoscale means above the average 

dislocation spacing  ld=1/ρ
1/2

, such that field variables can be defined, but well below the 

macroscopic scale of the deforming body [19]. In addition to these phenomenological laws, 

some randomness is introduced in the model, e.g. on the local (mesoscopic) yield stress, to 

represent the sub-mesoscopic variability arising from the fine scale dynamics of interacting 

dislocations. Although this introduction of randomness is ad hoc, its statistical characteristics, 

such as variance or correlation properties, are deduced from experiments [15] or from discrete 

dislocation simulations. This association of (i) non-linear dynamics (a local yield stress), (ii) 

long-ranged elastic stresses, and (iii) randomness, is similar to statistical models of fracture of 

disordered media (e.g. [39, 40]) that successfully model the heterogeneity and scaling 

properties of fracture patterns, although in this last case the randomness introduced is 

uncorrelated (white noise). These stochastic models of plasticity successfully reproduce 
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fluctuations, heterogeneity and scaling properties, such as the intermittency of plastic flow, or 

the spatial slip patterns described above. As an example, in the model of Zaiser and Moretti 

[38], a “surface profile” is obtained, following relation (2), by a direct integration of the strain 

pattern along a direction perpendicular to the single-slip direction. This simulated profile is 

self-affine (relation (3)) with an exponent H>0.5, i.e. the hallmark of long-ranged spatial 

correlations, in agreement with experiments. This suggests that the phenomenological laws 

(e.g. local hardening laws) introduced in the model capture the essential features of collective 

dislocation interactions, although such modelling framework introduces a characteristic length 

scale in the system (the mesoscopic scale over which field variables are defined, which 

defines a lower cut-off) whereas observations reported above argue for scale invariance from 

the nm scale to the macroscopic scale. Therefore, these approaches appear as promising 

compromises between discrete dislocation dynamics models, which computational costs are 

still much too high (especially for 3D simulations) to explore meso- to macro-scopic scales, 

and classical phenomenological models which are unable to account for heterogeneity of 

plastic flow and associated scaling laws. 

 

4. Conclusion 

Recent detailed analyses of slip and dislocation density patterns in various deformed 

materials, either performed from a roughness analysis on the samples surface, or from X-ray 

topography within the bulk, revealed the emergence during deformation of scale invariant 

patterns characterized by long-range correlations, and resulting from the collective behaviour 

of dislocations. In single crystals, scale invariance holds up to the sample size, whereas in 

polycrystals, the upper bound of scaling, i.e. the correlation length, seems to be set by the 

average grain size. This scale invariance implies that the spatial fluctuations of dislocation 

density and/or slip never vanish as one coarsens the observation scale up to the correlation 

length. An immediate consequence is that a priori obvious concepts such as “slip bands” or 

dislocation density can be ill-defined. Similarly, the concept of “statistically stored 

dislocations” introduced by the strain gradient plasticity theory has to be taken with caution in 

these cases. Instead of the separation between GND’s and SSD’s as originally defined by 

Ashby [29], we propose to distinguish between “externally imposed” and “self-induced” 

strain gradients, and the associated dislocation populations. This scale invariant heterogeneity 

of slip emerging from the population of dislocations and their elastic mutual interactions also 

challenges the dislocation density-based modelling of plasticity. Recent modelling 

developments associating phenomenological laws on mesoscopic variables, long-ranged 
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elastic stresses, and the introduction of randomness with statistical characteristics, such as 

variance or correlation properties, deduced from experiments or from discrete dislocation 

simulations, appear as promising directions. 
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Figure captions: 

 

Figure 1. Slip patterns observed on the surface of plastically deformed Cd single crystals at 

different magnifications M. (a) M = 100, (b) M = 200, (c) M = 1000, (d) M = 2000, (e) 

M = 10000, (f) M = 20000 (from [17]) 

 

Figure 2. Evolution of the number of “slip bands” N, for a given fixed length on the 

photographs, with magnification M for the slip patterns shown on figure 1. (from 

[17]). The density of “slip bands” is given by  ρb=N×M 

 

Figure 3. a) Synchrotron X-ray topograph obtained on a slice of an ice single crystal deformed 

under pure torsion (c-axis, and then torsion direction is represented). b) Intensity 

(arbitrary unit) profile obtained along this topograph. 

 

Figure 4. Fourier power spectrum of the intensity record of figure 3b. The slope α=1.3 is 

represented. The white dots are averages over bin regularly separated in logarithmic 

scale. 

 

Figure 5. Evolution of the spatial fluctuations of the dislocation density ρ, measured by the 

ratio δ, with the scale of observation, for the intensity profile of figure 3b. The 

intensity I is a proxy of ρ, so δ is determined from δ=〈ρ
2
〉∆x

1/2
/〈ρ〉∆x 
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