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Dielectric and thermal relaxation in the energy landscape

U. Buchenau∗ , R. Zorn, M. Ohl and A. Wischnewski

Institut für Festkörperforschung, Forschungszentrum Jülich

Postfach 1913, D–52425 Jülich, Federal Republic of Germany

(April 30, 2006; revised July 21, 2006)

We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye
and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains
qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage
is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The
energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once
more demonstrated on the basis of literature data for salol.

1 Introduction

Broadband dielectric spectroscopy [1] is the most versatile method to study the flow process in molecular
liquids. However, the quantitative nature of the relation between dielectric signal (i.e. molecular reorienta-
tion) and shear flow is not yet clear. The classical Debye picture and its extension to viscoelasticity [2, 3]
considers the molecule as a small sphere with a hydrodynamic radius rH immersed in the viscoelastic
liquid. It predicts a slow dielectric decay, about a factor of fifty slower than the mechanical shear stress
decay. The measured dielectric decay is on the average a factor of ten faster than this Debye prediction [4].
A thorough quantitative analysis of dielectric and shear data in seven glass formers [5, 6] showed a gen-
eral qualitative agreement with the Gemant-DiMarzio-Bishop extension [2, 3] of the Debye scheme, but
a rather poor quantitative fit. Very recently, an alternative to the Debye model and its extensions was
proposed [7], which gave a much better fit for glycerol [1,8] and propylene carbonate [9] data. The proposal
was based on the growing evidence for the identity of thermal and dielectric relaxation functions [7,11–13]
(dielectric hole burning experiments [14, 15] even suggest that dynamically distinct domains in the liquid
are associated with a time constant characterizing both the dielectric and the thermal behavior).

The present paper begins with a reminder of the textbook introduction to dielectrics [10] in terms of the
decay of the dielectric polarization after a switch-off of the electric field. In the Debye scheme, the decay of
the dielectric polarization is due to the rotational diffusion of the molecules with a Debye-Stokes-Einstein
diffusion constant. But one can easily generalize the formalism to other decay mechanisms. In particular,
we consider the recent proposal [7] of an initial and a retarded part of the flow process. We show that
one must expect such a division in the energy landscape picture. The thermal relaxation sees both the
initial and the retarded final part of the process. The equality of thermal and dielectric relaxation times
is understandable in terms of an energy landscape argument. The equality itself is checked for salol, using
literature data.

∗Corresponding author. Email: buchenau-juelich@t-online.de

Philosophical Magazine
ISSN 1478-6435 print/ISSN 1478-6443 online c© 200x Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/1478643YYxxxxxxxx

Page 1 of 13

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2 Theoretical basis

In SI units, the electrostatic equations read

D0 = ε0ε(0)E0 = ε0E0 + P0, (1)

where ε0 is the vacuum permittivity, E0 is the electric field, D0 is the displacement field and P0 is the
polarization per unit volume. E0, D0 and P0 are vectors, so the static dielectric constant ε(0) is a second
rank tensor. Here, however, we limit ourselves to isotropic liquids or glasses, so ε(0) reduces to a scalar.
Similarly, we neglect the conductivity contribution, assuming that it can be simply subtracted.

The electrostatic equations are generalized to frequency-dependent equations [10]

D(ω) = ε0ε(ω)E(ω) = ε0E(ω) + P (ω) (2)

with frequency-dependent fields and dielectric constant, respectively. Thus one has

ε(ω) = 1 +
1

ε0

P (ω)

E(ω)
. (3)

The next step introduces a useful simplification for ε∞, the dielectric constant at infinite frequency.
Since one is mainly interested in the relaxation in the frequency range below 100 GHz, one considers all
processes above this frequency as immediate processes. This includes the electronic polarizability (time
scale 10−15 seconds) as well as the vibrational contributions (time scale 10−12 seconds), so

ε∞ = n2 + ∆εvib, (4)

where n is the refractive index and ∆εvib is the contribution of the vibrations (molecular librations) to the
dielectric constant. Since this contribution is nonzero, one expects ε∞ > n2 in a reasonable fit (this is in
fact a main problem of the Gemant-DiMarzio-Bishop extension [2, 3] of the Debye scheme [5]).

Consider an electric field E0 staying constant from t = −∞ until t = 0. At time zero, the field is switched
off (Fig. 1). The Fourier transform of this field reads

E(ω) = −
i

ω
E0. (5)

Figure 1. Polarization decay after switch-off of the electric field at time zero.
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For such a field, the polarization has a constant value

P0 = (ε(0) − 1)ε0E0 (6)

for times t < 0. At t = 0, the polarization drops instantaneously to P0 − P∞, where

P∞ = (ε∞ − 1)ε0E0 (7)

At t > 0, P (t) decays with

P (t) = (P0 − P∞)Φ(t), (8)

where Φ(t) is a function which begins with 1 at time zero and drops to zero at infinite time.
If one compares this dielectric polarization decay with the mechanical shear stress decay,

one finds a fundamental difference. After switching off the electric field, the polarization
decays without any externally applied force. In the mechanical case, one applies a small
external shear strain at time zero, keeps the strain constant and one observes the decay
of the shear stress. The mechanical shear stress decay is described in linear response by a
time-dependent shear modulus G(t). The dielectric case is different. In order to describe it
in terms of a time-dependent dielectric constant, one needs to go to the opposite case of Fig.
1, switching the electric field on at time zero and watching the rise of ε(t) from ε∞ to ε0 with
the function 1 − Φ(t). As a consequence, if one wants to compare decay with decay in order
to see which quantity decays faster, one needs to compare the mechanical modulus with
the dielectric susceptibility and not with any dielectric modulus, at variance with a recent
proposal [5]. We come back to this point after the treatment of the Gemant-DiMarzio-Bishop
relation [2, 3].

The Fourier transform P (ω) of P (t) is given by

P (ω) = −
i

ω
P0 + (P0 − P∞)F[Φ(t > 0)], (9)

where F[Φ(t > 0)] denotes the Fourier transform of the decay function Φ(t).
Inserting eqs. (5) and (9) into eq. (3), one gets

ε(ω) = 1 +
1

ε0

(

P0

E0
+

P0 − P∞

E0
iωF[Φ(t > 0)]

)

. (10)

The relation between Φ(ω) and Φ(t) is the same as the one between G(ω) and G(t)

Φ(ω) ≡ −iωF [Φ(t > 0)] = ω

∫

∞

0
Φ(t)(sin ωt + i cos ωt)dt. (11)

Φ(ω) is a complex function which is 1 for infinite frequency and decreases to zero as the frequency goes to
zero.

With this definition, and inserting eqs. (6) and (7) into eq. (10), we arrive at the final result

ε(ω) − ε∞
ε(0) − ε∞

= 1 − Φ(ω). (12)

The Debye decay mechanism is the rotational diffusion of the molecules, with the diffusion constant

Page 3 of 13

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

given by the Debye-Stokes-Einstein equation

Dtrans =
kBT

6πηrH

=
4

3
r2
HDrot, (13)

where Dtrans is the translational diffusion constant of the molecule and Drot is its rotational diffusion
constant. rH is the hydrodynamic radius of the molecule (note that the hydrodynamic Debye-Stokes-
Einstein equation is in principle derived for larger objects than a single molecule). For continuous rotational
diffusion, the relaxation time for the Legendre polynomials is

τL,rot =
1

L(L + 1)Drot

, (14)

where L is the order of the Legendre polynomial. For the dielectric signal, L = 1, one obtains the Debye
relaxation time

τD =
4πηr3

H

kBT
. (15)

The decay function for the dielectric polarization is a single exponential (Debye process)

Φ(t) = exp(−t/τD) (16)

which leads to the well-known Debye equation

ε(ω) − ε∞
ε(0) − ε∞

=
1

1 + iωτD

. (17)

To extend the Debye equation to viscoelasticity [2,3], one replaces the static viscosity η by a frequency-
dependent function η(ω), which is in turn related to the frequency-dependent shear modulus G(ω)

iωη(ω) = G(ω) ≡ G∞g(ω). (18)

Here G∞ is the infinite frequency shear modulus and g(ω) is a normalized function like Φ(ω), going from
zero to 1 with increasing frequency.

The ratio between viscosity and infinite frequency shear modulus defines the Maxwell time

τM =
η

G∞

, (19)

the characteristic shear relaxation time.
If we replace the viscosity η in the τD of the right hand side of the Debye equation by the expression of

eq. (18), we get the Gemant-DiMarzio-Bishop expression

1

1 + (4πG∞r3
H/kBT )g(ω)

≡
1

1 + crg(ω)
, (20)

which contains the dimensionless ratio cr between the Debye relaxation time τD and the Maxwell time τM .
The Gemant-DiMarzio-Bishop expression, eq. (20), does not approach zero for infinite frequency as the

Debye expression in eq. (17), because the molecule is still able to turn in a balance between the torques
exerted by the electric field and the finite restoring force of the sheared elastic medium, respectively. In
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fact, one has in this case

∆εvib =
ε(0) − n2

1 + cr

. (21)

Thus ∆εvib is already taken into account, and the Gemant-DiMarzio-Bishop equation [2,3] takes the form

ε(ω) − n2

ε(0) − n2
=

1

1 + crg(ω)
. (22)

With a hydrodynamic radius of 0.2 nm, a G∞ of 2 GPa and a temperature of 200 K one calculates
cr = 50, so one expects a small vibrational component and nearly two decades difference between τD

and the Maxwell time. The first of these expectations is in fact found, but the second fails by an average
factor of ten [4, 5, 7, 16].

Note that the failure is only in the factor and not in the temperature dependence. Unlike the transla-
tional diffusion, which decouples from the viscosity below some critical temperature [16–18], the rotational
relaxation time follows essentially the temperature dependence of the viscosity over the whole temperature
range.

On the basis of the Gemant-DiMarzio-Bishop equation (22), it has been recently argued [5] that one
should compare G(ω) with 1/(ε(ω)−n2), the so-called ”rotational modulus”. This is true if the equation is
valid; it is not true if one has a different decay mechanism of the dielectric polarization. Take, for instance,
the Debye model of eq. (17). The true relaxation peak lies at 1/τD in ε(ω) as it should, but shifts with
varying ∆εvib in the rotational modulus 1/(ε(ω) − n2).

An alternative to the Debye-Gemant-DiMarzio-Bishop scheme is a recent proposal [7] for the structural
relaxation in the energy landscape [20] (for a review of the energy landscape concept see [21]) The proposal
is based on the experimental finding [13] of two time scales in the undercooled liquid. The faster one is
the shear stress decay, described by g(ω). The slower one is the decay of the structural potential energy,
seen in dynamic heat capacity measurements or in transient grating experiments [19].

To understand this behavior, let us assume that the shear stress decay occurs via thermally activated
processes in the energy landscape [20, 21], without specifying the exact nature of the thermally activated
processes. They might be ”flow by shoving” [22] or some other mechanism [23]; for our purpose, it suffices to
assume that the shear decay happens by repeated passages of the system from one minimum of the energy
landscape to another. The energy landscape picture provides a natural explanation for the dynamical
heterogeneity seen in numerous experiments [24]. One can show that an initial and a retarded part of the
flow process follow from the energy landscape concept under reasonable assumptions.

To see this, consider two structural rearrangements occurring in different parts of the sample. Each of
them can be characterized by an asymmetric double-well potential in the corresponding configurational
coordinate, leading from one potential energy minimum to the other. Since the two structural rearrange-
ments are far apart on a microscopic scale, the two minima of the first structural rearrangement change
only slightly by a jump in the other double-well.

In a macroscopic sample, there is a very large number of possible structural rearrangements. Each of

Figure 2. Spring model for the decay of the structural potential energy of an undercooled liquid.
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them is a local process, and each of them influences every other one.
The consideration shows that one has two relaxation times in each double-well potential, a lifetime of

the population of the two minima and a lifetime of the double-well potential itself. For the latter one, the
Maxwell time is crucial, because it sets a lower boundary for the time scale on which the core region of the
relaxation can change its shape. If the core region can change its shape, the core relaxation can disappear
or make way for a different relaxation. This relaxation life time is not determined by a single jump, but by
the joint effect of all the other relaxations in the sample, a diffusional motion through phase space. The
dielectric data seem to see this final relaxation time. In fact, the dielectric relaxation time in glycerol and
OTP is close to the spin-echo relaxation time at the first sharp diffraction peak [7], the decay time of the
short range order.

Naturally, the energy landscape itself does not change in time; nevertheless, we believe that the concept
of a decay of a local double-well potential, for simplicity assumed to be the same for each double-well
in the system, catches an essential feature of the motion of the system in the fixed energy landscape.
Qualitatively, such a picture is also compatible with NMR findings [25] in toluene and glycerol, showing a
small number of larger-angle rotational jumps (attributable to the hopping part) and a larger number of
small-angle rotational jumps of the molecules (attributable to the diffusional part).

The final part of the equilibration is not (or maybe only partially) seen in the stress decay, because it
can only happen after the stress decay. As long as there is still some appreciable shear rigidity, higher
and higher barriers are jumped over in order to equilibrate the remaining average stress to zero. This
mechanism determines the Maxwell time, and a corresponding Maxwell barrier. Roughly speaking, the
part of the motion through phase space due to the initial change of conditions changes from hopping to
diffusion after the Maxwell time. If an energy barrier is higher than the Maxwell barrier, it is not jumped
over, but it flows away.

Here, we follow ref. [7] in assuming that the retarded part of the process can be described as the decay
of an energy stored in a harmonic spring rG∞ in series with a time-dependent spring G(t) (see Fig. 2).
The lower r, the more retarded is this final stage of the equilibration. r is the ratio of the energy stored in
G(t) to the one stored in the harmonic spring, which does only decay by flowing over into the spring G(t).

Note that not the structural potential energy itself decays, but its difference to an average temperature-
dependent value determined by the entropy of the inherent structure of the energy landscape. Our assump-
tions imply that the difference between the potential structural energy of a given minimum of the energy
landscape and the average value has always the ratio r between its harmonic part and its long-range stress
component.

In the decay of the structural potential energy of the undercooled liquid, one expects to see both the initial
hopping and the final diffusion. The previous paper [7] took only this second retarded action into account.
But naturally one has to take the initial process into account as well. Each jump in an asymmetric double-
well changes the structural potential energy. This forces one to introduce an additional dimensionless
parameter f , the fraction of the structural potential energy which equilibrates via the initial hopping. In
a globally connected energy landscape [21], this parameter f would be one, but in a real energy landscape
it is expected to be considerably smaller.

We assume that this initial part has the same time dependence as the shear modulus G(t). Then the
Fourier transform of the normalized decay function of the structural potential energy is

Φ(ω) = fg(ω) + (1 − f)
1 + r

1 + r/g(ω)
, (23)

where g(ω) = G(ω)/G∞.
If the dielectric polarization has indeed the same time dependence as the structural potential energy

difference, we have to insert this Φ(ω) into eq. (12) and obtain

ε(ω) − ε∞
ε(0) − ε∞

= f(1 − g(ω)) + (1 − f)
1 − g(ω)

1 + g(ω)/r
. (24)

Experimentally, one finds the loss peak of the dielectric constant close to the one of the heat capacity
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[7, 11–13, 32]. In fact, one can argue that the electric field introduces an imbalance between the different
structural realizations of the undercooled liquid at the given temperature. If one mirrors the sample at
a plane perpendicular to the electric field, one gets a state with the same structural potential energy,
but with opposite electric dipole moment. These two states have the same energy in the absence of the
electric field, but a different energy in the electric field. Thus the switch-off of the field leaves an imbalance
in the structural entropy. It should equilibrate by the same mechanism as the imbalance introduced by
a temperature jump. On the basis of this argument, one understands the coincidence of the dielectric
relaxation time with the dynamic heat capacity and the transient grating one.

If the decay mechanism of the dielectric polarization is not the diffusion of a single molecule, but the
passage from one of the minima of the energy landscape to another, one needs no longer distinguish
between the internal field at the molecule and the externally applied field, because the externally applied
field acts directly on the electric dipole moment difference of the two minima; all interaction effects are
already included in this dipole moment difference. The complicated many-body problem of a system of
interacting electric dipoles [10] enters only via the temperature dependence of ε(0).

It is interesting to consider the limiting cases of very small and very large r in the retarded term of
eq. (24). For very small r, the denominator dominates the behavior and we approximate the Gemant-
DiMarzio-Bishop case of eq. (22). For very large r, the harmonic spring is like a rigid connection and the
relaxation peaks of G(ω) and ε(ω) become identical. Note that this limit can never be attained by the
Gemant-DiMarzio-Bishop extension of the Debye scheme. There, it corresponds to the limit of very small
cr, in which the relaxation peak disappears, leaving only the vibrational component.

3 Dielectric, thermal and rotational relaxation times in salol

For the comparison of dielectric and thermal relaxation times, we add a new example, salol (glass tem-
perature 213 to 217 K, mode coupling critical temperature 255 to 265 K), to the three examples glycerol,
propylene carbonate and OTP discussed in the previous work [7]. All measured relaxation times are com-
pared to the Maxwell time, calculated from fits of the infinite frequency shear modulus and of the viscosity.
The infinite frequency shear modulus is taken from light scattering Brillouin data. As it turns out, it is
better to use longitudinal sound wave data, relating the transverse sound velocity vt to the longitudinal vl

by vl/vt ≈ 1.8. The mistake of this approximation is small on the scale of factors of ten considered here.
The advantages are (i) the longitudinal infinite frequency sound velocity is much more easily determined
(ii) one has data up to the highest temperatures. To take an example, G∞ from transverse Brillouin OTP
data [26] extrapolates to zero at 348 K (not at 308 K as stated erroneously in the previous paper), while
one still has data to compare up to 380 K.

In salol, the density follows the relation [27]

ρ = 1451.6 − 0.857T (25)

with ρ in kg/m3 and T in Kelvin. The longitudinal infinite frequency sound velocity [28]

vl = 2400

(

Tg

T

)0.88

m/s (26)

with the glass transition temperature Tg = 218K. With our recipe for the ratio vl/vt, this yields

G∞ = 2.2

(

Tg

T

)1.96

GPa. (27)

The viscosity [29–31] is parametrized in terms of two overlapping Vogel-Fulcher laws

log η = log η0i +
Bi

T − T0i

(28)
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with i = 1 and i = 2, respectively. The first of these two is valid below a temperature T1, the second
above a temperature T2 ≤ T1. Between T2 and T1, one takes a linear interpolation between the two to
ensure continuity. For salol, log η01 = −36.9 and log η02 = −3.68 (η in Pas), B1 = 7500 K and B2 = 151
K, T01 = 59 K and T02 = 225 K, T1 = 256 K and T2 = 248 K.

Figure 3 compares dielectric [32, 33], heat capacity [32] and transient grating [35] relaxation times to
rotational relaxation times extracted from longitudinal Brillouin light scattering data [34]. The times were
either recalculated [36] or refitted in terms of a Kohlrausch function exp(−(t/τKWW )β).

Fig. 3 contains no mechanical shear relaxation times, but one knows that these have to lie below the
Maxwell time, because for a shear modulus following the Kohlrausch function exp(−(t/τshear)

β)

τshear

τMaxwell

=
β

Γ(1/β)
. (29)

Usually, β lies between 0.4 and 0.6, so the ratio should be between one third and two thirds; the shear
Kohlrausch relaxation time should be a factor 1.5 to 3 shorter than the Maxwell time.

Fig. 3 shows once again that the rotational times keep close to the entropy relaxation times in the
heat capacity and in the transient grating measurements, thus supporting the proposed energy landscape
mechanism for the relaxation of the molecular orientation. In principle, the transient grating measurements
should also be evaluated in the Ansatz of Pick and Dreyfus [37, 38], because the signal comes from a
grating of both temperature and local molecular orientation. However, an experimental separation [39]
of the contributions demonstrated again the equality of the two relaxation functions within experimental
error.

Note that the method developed by Dreyfus and Pick [37, 38] to determine rotational relaxation times

Figure 3. Kohlrausch-Williams-Watts relaxation times in salol, normalized to the Maxwell time as described in the text. Symbols:
pluses dielectric [32]; crosses dielectric [33]; full triangles heat capacity [32]; full diamonds rotational relaxation times extracted from

Brillouin light scattering [34]; full circles transient grating data [35].
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from light scattering Brillouin data seems to work remarkably well. According to their Ansatz, one should
see the second Legendre polynomial. For continuous rotational diffusion, their relaxation times should be
a factor of three smaller than the dielectric ones. One does not see this factor of three; the two sets of
data are remarkably close to each other over ten decades in relaxation time, even making the same wiggles
compared to the Maxwell time. In the energy landscape mechanism, one does not expect the factor three;
there, it depends on the jump angle distribution which can be different for different glass formers [21,25].

The marked temperature dependence of the ratio between rotational relaxation time and Maxwell time
indicates a temperature dependence of the retardation parameter r in eq. (24). The rise at low temperature
is also seen in glycerol and in propylene carbonate [7]. The salol kinks at 260 and 240 K have been also
seen in the ”Stickel plot” [33] of the dielectric data (a plot of the inverse square root of the temperature
derivative of the peak frequency versus temperature, where one sees the deviations from a perfect Vogel-
Fulcher behavior).

From the point of view of the mode coupling theory [40], the kink at 260 K should mark the crossover
from an energy landscape behavior below Tc to simple liquid behavior above. But Fig. 3 shows that the
separation of time scales persists into the liquid domain in salol. This time scale splitting is not the two-
stage scenario of the mode-coupling theory, because both time scales move together with the Maxwell
time. In fact, in ref. [41] this time scale splitting was also observed for propylene carbonate and discussed
in terms of the mode coupling theory. The α-process of the theory was not attributed to the slower, but
to the faster process.

4 Summary

The textbook relation between dielectric polarization decay and dielectric constant is applied to the simple
Debye case, to its extension to viscoelasticity and to a newly proposed energy landscape mechanism. Data
in salol show once again the equality of dielectric and structural relaxation times, supporting the energy
landscape mechanism.

We thank Catherine Dreyfus and Robert Pick for helpful discussions.
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[40] W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992)
[41] A. Brodin, M. Frank, S. Wiebel, G. Shen, J. Wuttke and H. Z. Cummins, Phys. Rev. E 65, 051503 (2002)

Page 10 of 13

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Page 11 of 13

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Page 12 of 13

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Page 13 of 13

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


