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A diffusion-controlled mullite formation reaction model being based on tracer diffusivity data of aluminium, silicon and oxygen

Introduction

Mullite is one of the most widely studied ceramic materials. This is due to its high thermal and chemical stability, good thermal shock behaviour and high creep resistance, which makes mullite a promising candidate for many high-temperature applications [1]. The crystal structure of mullite can be described as a modified defect structure of sillimanite (Al 2 O 3 •SiO 2 ). Sillimanite consists of edge-sharing aluminium-oxygen octahedral chains which are interconnected by double chains of ordered SiO 4 and AlO 4 tetrahedra. In mullite, the AlO 4 -SiO 4 -sequence is almost random [2] and there exists a certain amount of structural oxygen vacancies. The composition of mullite can be expressed as Silicon ions occupy tetrahedral sites only.

Sintering, grain growth, creep and all types of reconstructive reaction processes are strongly controlled by atomic diffusion. Therefore, the diffusivities of oxygen and silicon in single crystalline 2/1-mullite have been carefully determined in previous work using the rare natural isotopes 18 O and 30 Si as tracer isotopes [3], [4]. Secondary Ion Mass Spectrometry (SIMS) was applied to analyse the depth distribution of the tracer isotopes after the diffusion annealing. Recently, we applied the SIMS technique also to measure the diffusivity of aluminium in single crystalline 2/1-mullite using the pseudo-stable isotope 26 Al [5] so that we can now present a complete set of tracer diffusivity data ( 18 O, 30 Si, 26 Al) of all components of the mullite structure. Based on the results of these tracer diffusivity studies a reaction model for the diffusion controlled mullite formation is discussed in the following.

Experimental data

For all tracer diffusion experiments single crystalline 2/1 mullite disks (≈ 1 mm thick) cut perpendicular to [010] and [001] were used to measure the tracer diffusivities along the crystallographic b and c axes. The single crystals were synthesized by Dr. W. Walraffen (Univ. Bonn, Germany) using the Czochralski technique. Details of the crystal growth procedure were published by Guse and Mateika [6]. The b and c axes are very different from a crystallographic point of view, because the mullite structure consists of chains of edge-sharing AlO 6 octahedra running parallel to the crystallographic c axis. These AlO 6 chains are cross-linked by (Al, Si)O 4 tetrahedra forming double chains, which also run parallel to c [1]. Therefore, a pronounced anisotropy of the diffusivities of the constituents could not be excluded a priori. However, all experimental tracer diffusivity data display virtually no orientation-dependent variation. The slight difference between b and c axes falls into the estimated error range of ± 30 % of diffusion data gained by the method of SIMS depth profiling. Therefore, all evaluated Arrhenius relations represent average values deduced from the diffusivity measurements along the two axes. Since structural arrangements along the a and b axes are very similar in mullite, tracer diffusivities parallel to both directions should also be in a comparable range. So it may be justified to consider tracer diffusivities of the components to be isotropic in mullite.

• Oxygen tracer diffusion

Oxygen diffusion is well studied in many oxides because it can be measured relatively simply by gas/solid exchange experiments [7]. We performed 18 O isotope exchange experiments on single crystalline 2/1-mullite samples [3] and obtained the following Arrhenius relation: (1) In 3/2-mullite, Ikuma et al. [8] evaluated the 18 O tracer diffusivity indirectly on micrometer size single crystals by measuring the concentration of 18 O 2 in the gas phase: (2)

      ± - × = - + - RT mol /
• Silicon tracer diffusion In contrast to oxygen, the measurement of silicon diffusivities in oxides is much more difficult. The complications arise from the fact that the natural tracer isotope 30 Si has a relatively high natural abundance of about 3.1 %. This circumstance limits the useful diffusion length and requires a deposition technique that allows to prepare very smooth 30 Si containing layers on the surface of the specimen. A detailed description of the experimental procedure is given in [4]. The following Arrhenius relation was obtained for the diffusivity of 30 (3)

• Aluminium tracer diffusion

Aluminium has no natural tracer isotopes and there are only a few aluminium diffusion data in the literature measured by means of the radiotracer isotope 26 Al [9]- [13]. The reason is that two difficulties are encountered with this radiotracer. Firstly, 26 Al is artificial and causes very high production costs, and secondly, it has a half-life time of 7.4×10 5 years with a very low specific activity which makes it difficult to apply classical radiotracer methods [12]. The application of SIMS avoids the problems related to the radioactivity measurement, reduces the necessary amount of 26 Al per experiment considerably, and yields a much higher spatial resolution. A detailed description of the measurement of the 26 Al diffusivity in 2/1-mullite by means of the SIMS technique is given in [5]. For the diffusivity of 26 Al in single crystalline 2/1-mullite we obtained the following Arrhenius relation: (4) [Insert Fig. 1 about here] Fig. 1 shows our measured tracer diffusivities ( 18 O, 26 Al, 30 Si) in single crystalline 2/1-mullite and the 18 O diffusivity in single crystalline 3/2-mullite measured by Ikuma et al. [8]. There is only a small difference between the 18 O diffusivity in 2/1-mullite and 3/2-mullite. One observes that the diffusivity of 30 Si is much lower than the diffusivity of 18 O and 26 Al. Jaoul et al. [14] and Andersson et al. [15] measured 30 Si diffusivities in single crystalline forsterite Mg 2 SiO 4 along three crystallographic directions. Both observed that in this silicate, too, silicon diffuses more slowly than oxygen and found no significant anisotropy of the diffusion coefficients. It is assumed that the strong covalent bond within the SiO 4 tetrahedron is an explanation for the low diffusivity of silicon. Furthermore, one observes from Fig. 1 that the diffusivity of 26 Al is comparable to the diffusivity of 18 O. Le Gall et al. [12] reported a similar result for the diffusivities of 26 Al and 18 O in single crystalline α-Al 2 O 3 .

      ± - × = - + - RT mol /
The solid points in Fig. 1 constant, k, of diffusion-controlled mullite formation, intensively investigated by Aksay et. al [16], [17]. The quoted authors used diffusion couples made from sapphire and aluminiumsilicate glasses of 10.9, 22.8, and 42.2 wt % Al 2 O 3 . These binary glasses are in equilibrium with mullite at 1678°C, 1753°C, and 1813°C. Thus, sapphire-glass diffusion couples of these compositions at the corresponding annealing temperatures could be used to study the growth kinetics of mullite as an intermediate phase without solution of mullite in the liquid glass phase. The thickness of the mullite layer increased linearly with the square root of time, indicating that the growth mechanism is diffusion-controlled. The results of Aksay's experiments are outlined in Table 1.

[Insert Table 1 about here] The dashed lines in Fig. 1 are extrapolated tracer diffusivity data from lower temperatures. This means, we know the tracer diffusivities of all components of mullite and the question arises how the measured parabolic growth constants are related to our measured tracer diffusivities. To answer this interesting question we will propose a reaction model for the diffusion-controlled mullite formation in the next chapter.

Reaction model

Sung [18] proposed a diffusion-controlled reaction model which is based on the assumption that the oxygen mobility is much lower than the mobility of the cations in mullite. Our tracer diffusion experiments show, however, that silicon is the slowest species compared to oxygen and aluminium in single crystalline 2/1-mullite. This is most probably also valid for 3/2mullite (s. [8] for the diffusivity of 18 O in 3/2-mullite, which is virtually identical to the oxygen diffusivity in 2/1-mullite, as shown in Fig. 1). We will use our experimental observation to derive a more realistic reaction model which is schematically represented in Fig. 2.

[Insert Fig. 2 Because of the low silicon tracer diffusivity we neglect Si 4+ ion fluxes and consider a formation mechanism where Al 2 O 3 is transported by Al 3+ and O 2-ion fluxes through the mullite layer. The fluxes are described by a coordinate system which is fixed to the phase boundary I. Such a coordinate system becomes applicable when one cation has a much lower mobility than other species [19]. The intrinsic drift velocity, dξ/dt, describes the drift velocity of phase boundary II relative to phase boundary I. A simple, but fundamental, relation between the Al 3+ and O 2-fluxes in Fig. 2 is given in the absence of space charges 0 j 2 j 3 2 3 O Al = --+ (5) In the literature (p. 229 in [20]) one finds the concept of a molecular flux,

β α B A j
, and a molecular diffusion coefficient,

β α B A D
, which is used to express the fact that the process takes places as if an entity

β α B A
of fixed composition (a "molecule" or better a "formula unit") were migrating. The condition for a molecular flux of Al 2 O 3 is

3 j 2 j j 2 3 3 2 O Al O Al - + = = (6)
where j i is the flux of the ion i (Al 3+ , O 2-). Equation ( 6) ensures the composition to remain constant and is identical to equation ( 5) which excludes any build-up of space charge. That is, one can describe the two coupled Al 3+ and O 2-ion fluxes by a single molecular flux of Al

2 O 3 dx d RT D c j 3 2 3 2 3 2 3 2 O Al O Al O Al O Al µ - = (7) 
were c is the molecular concentration, D the molecular (ambipolar) diffusion coefficient and µ the molecular chemical potential of Al 2 O 3 in the solid mullite layer. In ceramics the term ambipolar diffusion coefficient is preferred as it implies the fact of the migration of coupled charges (p. 232 in [20] or p. 238 in [21]). For the ambipolar diffusion coefficient of Al 2 O 3 in equation ( 7) one gets after a lengthy calculation (see appendix A.1)

- + + = 2 3 3 2 O Al O Al D 3 D 2 D 1 ( 8 
)
where D i is the diffusion coefficient of the ion i (Al 3+ , O 

dx d RT D c j v 3 2 3 2 3 2 3 2 3 2 O Al O Al O Al O Al O Al µ - = = (9) 
Since the forces (

dx / d 3 dx / d 2 dx / d 2 3 3 2 O Al O Al - + µ + µ = µ
) are small on the atomic length scale, diffusion coefficients established under equilibrium conditions (i.e., vanishing forces) can be used to describe the drift of the ions (p. 107 in [22]).

The relation of the self diffusion coefficients, D i , of the ions in equation ( 8) to our measured tracer diffusivities, i * D , is given by

i i * i * D f D =
, where i * f is the so-called correlation factor (p. 97 in [20]). Correlation factors for self diffusion are calculated for different diffusion mechanisms and crystal structures and are often in the order of 1 (p. 98 in [20]). Therefore, we can calculate the ambipolar diffusion coefficient of Al 2 O 3 in a first order approximation by

our measured tracer diffusivities D 3 D 2 D f 3 D f 2 D 1 + ≅ + = (10) 
Correlation effects diminish the effectiveness of atomic jumps ( 1 f i * ≤ ) in diffusional random motion (p. 110 in [22]), that is, ambipolar diffusion coefficients calculated by our tracer diffusivities are lower limits.

To calculate the parabolic growth constant, k, it is assumed that the ion fluxes are quasi-steady which means that during a specific time interval the fluxes can be considered to be constant in space. Because the concentration of Al 2 O 3 is practically constant inside the mullite layer the drift velocity of Al 2 O 3 is also practically independent of x. Separating variables and integrating equation ( 9) between the phase boundaries I and II results in (p. 168 in [22])

∫ µ - = ξ ) II ( ) I ( O Al O Al O Al 3 2 3 2 3 2 d D RT 1 v (11)
where ξ is the thickness of the mullite layer. The drift velocity of phase boundary II relative to phase boundary I is equal to the average drift velocity of the Al 2 O 3 molecules, To integrate the right hand side of equation (12) we must know the dependence of the ambipolar diffusion coefficient on the chemical potential which requires the application of an appropriate defect model.

Aksay et al. [17] used diffusion couples with sapphire and aluminium-silicate glasses at different temperatures. For every temperature, the Al 2 O 3 concentration of the binary glass was chosen so that the glass phase was in equilibrium with the mullite phase. That is, any growth of the mullite layer requires Al 2 O 3 to be transported through the mullite layer from the sapphire sample side. This transport is enabled by a flux of freely migrating defects which are formed during the mullite formation reaction. We assume that during the reaction of "SiO 2 " from the binary glass with "Al 2 O 3 ", which is located on regular sites in the mullite structure, aluminium vacancies and oxygen vacancies are formed according to the following reaction (applying the Kröger-Vink notation)

13 2 6 O Al O Al 2 O Si Al V 9 V 6 O 9 Al 6 SiO 2 + + ′ ′ ′ = + + • • × × (13)
where Al 6 Si 2 O 13 is 3/2-mullite. If local defect equilibrium is assumed one gets from equation ( 13) the defect equilibrium constant

2 SiO 9 V 6 V d 2 O Al a a a K • • ′ ′ ′ = ( 14 
)
where a i is the activity of the species i (SiO 2 , aluminium vacancies, oxygen vacancies).

Furthermore, we assume that the dilution of the vacancies is sufficient to express activities by concentrations,

[ ] V a V ≅ . Using the condition for electroneutrality, [ ] [ ] • • = ′ ′ ′ O Al V 2 V 3
, one gets from equation ( 14) a dependence of the vacancy concentration from the SiO 2 activity 

- • •       ≡ α α = α = ′ ′ ′ (15) 
If the diffusivity of aluminium ions is proportional to the concentration of aluminium 

I O Al O Al 2 2 3 2 3 2 a a D D         = (16)
where the superscript I denotes values at the phase boundary I. Inserting equation ( 16) into equation (12) gives after some calculations (see appendix A.2)

5 n with ) D D ( n k I O Al II O Al 3 2 3 2 = - = (17) 
where the superscripts I and II denote values of the ambipolar diffusion coefficient at the corresponding phase boundaries in Fig. 2.

Discussion

The calculations in chapter 3 show that the parabolic growth constant, k, is proportional to the difference of the ambipolar diffusion coefficients of Al 2 O 3 at the phase boundaries (see equation ( 17)) where the calculated proportional constant, n, depends on the applied defect model and is 5 for the proposed one (equation ( 13)). It is interesting to note that only the difference of the absolute values of the ambipolar diffusion coefficients plays a role for the diffusion controlled growth kinetics of the reaction layer (mullite). The absolute values of the ambipolar diffusion coefficients of Al 2 O 3 at both phase boundaries are determined by the freely migrating defects which are formed during the mullite formation reaction. Equation ( 17) would be the most direct way to calculate parabolic growth constants from diffusivity data. However, this procedure requires the same defect chemistry to be valid for the entire composition range of mullite and it requires the measurements of the two diffusion constants.

Because diffusivity measurements are often only possible at one of the two interfaces it is useful to express equation ( 17) by

R D k I O Al 3 2 ∆ = (18) 
with the dimensionless factor

I O Al I O Al II O Al 3 2 3 2 3 2 D D D n R - = ∆ (19) 
where we have assumed that the ambipolar diffusion coefficient of Al 

D

. The advantage of this notation will, however, become obvious in the development given below.

The diffusivities at the interfaces are proportional to the freely migrating defects at the interfaces so that one gets for the dimensionless factor ∆R (considering equations ( 15) and ( 16))

I O I O II O I Al I Al II Al ] V [ ] V [ ] V [ n ] V [ ] V [ ] V [ n R • • • • • • - = ′ ′ ′ ′ ′ ′ - ′ ′ ′ = ∆ ( 20 
)
As ∆R is proportional to the relative change of the concentrations of the transporting defects it can be calculated from our proposed defect model (see appendix A.3) a is the activity of SiO 2 in the aluminium-silicate melt at phase boundary II.

        -         ∆ - = ∆ 1 RT 15 G exp ) a ( 5 R
In the absence of any plausible defect model one could assume, as a first approximation, a constant diffusion coefficient,

II O Al I O Al O Al 3 2 3 2 3 2 D D D = =
, which allows the simplest integration of the right hand side of equation (12). This gives

0 I O Al 0 R D k 3 2 ∆ = (22) 
with the dimensionless factor ∆R 0

I O Al II O Al O Al O Al 0 3 2 3 2 3 2 3 2 and RT R µ - µ = µ ∆ µ ∆ = ∆ (23)
where the superscripts I and II denote values of the chemical potential of Al 2 O 3 at the corresponding phase boundaries in Fig. 2 The dimensionless factors ∆R 0 and ∆R for the 3/2-mullite formation from the oxides are calculated in Table 2 for experimental temperatures used by Aksay et. al [17] (see Table 1). It is obvious that both factors are practically equal in this temperature range. Comparing equations ( 18) and ( 22) through the ratio ( ) 

) a ln( 3 2 RT 3 G 1 RT 15 G exp a 5 R R k k ) II ( SiO O Si Al r O Si Al r 15 2 ) II ( SiO 0 0 2 13 2 6 13 2 6 2 + ∆ -         -         ∆ - = ∆ ∆ = o o (25 
D if n R n R 0 ≈ ∆ ≈ ∆ ( 26 
)
where n is a correct number evaluated from a correct defect model. Considering equations (23) and (19) we can express relation (26) by

constant D if D D D RT n I i I i II i i ≈ - ≈ µ ∆ ( 27 
)
where i = Al the mullite formation are significantly higher than our measured bulk tracer diffusivities.

Grain boundary tracer diffusivities of mullite are known for the 18 O isotope only [23]. In the grain boundaries a much higher 18 O diffusivity (up to a factor of 10 

- + = ( 28 
)
where D is the bulk diffusivity, D gb the grain boundary diffusivity, g the volume fraction of grain boundaries, and s the grain boundary segregation factor (s = 1 for self-diffusion).

Assuming a similar enhancement (a factor of 10 (p. 206 in [26]). Assuming an average grain boundary width δ = 1 nm one gets corresponding cubic grain sizes from 10 µm to 2 µm.

This explanation is plausible, however, the larger discrepancy at higher temperatures is somewhat contradictory to conventional thinking about grain boundary effects (i.e., the relative contribution from grain boundary diffusion is often larger at lower temperatures).

Another explanation could be impurity effects on diffusion, even with relatively pure starting materials. For example, one observes a scatter band of about one order of magnitude for measured oxygen diffusivities in nominally undoped α-Al 2 O 3 which is mainly explained by impurities which induce extrinsic point defects and affect the diffusion process [27].

Furthermore, we have assumed that the influence of the Si/Al ratio does not strongly affect the diffusion process. This assumption is based on the low value of the Gibbs free energy of formation of mullite and on the resulting close agreement of the oxygen diffusivity data obtained for (single crystalline) 2/1-mullite and 3/2-mullite (see also [28] for further discussion) but is open to debate for the aluminium diffusivity.

This discussion shows that the parabolic growth rates calculated from our measured bulk tracer diffusivity data of oxygen and aluminium define at least a lower limit of the on the basis of (extrapolated) bulk diffusion data and the experimentally determined rate constants is about half an order of magnitude, which clearly supports our model, taking into account that the details of the growth experiment (impurity concentrations etc.) are not fully evident from the literature.

Summary

An essential result of our tracer diffusivity studies in single crystalline 2/1-mullite is the very low diffusivity of 30 Si compared to the diffusivities of 26 
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Appendix A

For the following derivations it is assumed that local thermodynamical equilibrium is maintained within the reaction layer and also at the phase boundaries I and II, so that the following equilibrium condition is valid

3 2 2 3 O Al O 3 Al 2 = + - + (29) 3 2 2 3 O Al O Al 3 2 µ = η + η - + ( 30 
)
where η is the electrochemical potential of electrically charged particles (Al 3+ , O 2-) and µ is the chemical potential of the uncharged particle (Al 2 O 3 ). The chemical reaction equation of the 3/2-mullite formation from the oxides is given by

13 2 6 3 2 2 O Si Al O Al 3 SiO 2 = + (31) 
The reaction equilibrium constant, K r , can be written as [29] or [30],

        ∆ - = = RT G exp a a a K
o i f G ∆ tabulated in
o o o o 2 3 2 13 2 6 13 2 6 SiO f O Al f O Si Al f O Si Al r G 2 G 3 G G ∆ - ∆ - ∆ = ∆ (33)
The activity of 3/2-mullite is 1 in the mullite layer so that equation (32) yields ( ) ( )

o 13 2 6 3 2 2 O Si Al r O Al SiO G a ln RT 3 a ln RT 2 ∆ = + (34) 
A.1 Derivation of equation ( 8)

The fluxes of aluminium and oxygen ions are given by

dx d RT D c j 3 3 3 3 Al Al Al Al + + + + η - = dx d RT D c j 2 2 2 2 O O O O - - - - η - = (35)
where c i , D i and η i are the concentration, the diffusion coefficient and the electrochemical potential of the ion i (Al 3+ , O 2-), respectively [31]. The gradient of the electrochemical potentials can be expressed by

dx d F 3 dx d dx d 3 3 Al Al ϕ + µ = η + + dx d F 2 dx d dx d 2 2 O O ϕ - µ = η - - (36) 
where F is the Faraday constant and ϕ the electrical potential. The condition for electroneutrality, equation (5), is used to eliminate the unknown term F×dϕ/dx from the flux equations.

- - + + - - - + + + + µ - µ - = ϕ 2 2 3 3 2 2 2 3 3 3 O O Al Al O O O Al Al Al D c 4 D c 9 dx d D c 2 dx d D c 3 dx d F (37)
Inserting equation (37) into the flux equations ( 35)-(36) and respecting equation ( 5) and (30) one gets for the ion fluxes 

- - + + - - + + + × ≡ 2 2 3 3 2 2 3 3 3 2 O O Al Al O O Al Al O Al D c 4 D c 9 D c D c cD (39)
By equation ( 7) an ambipolar diffusion coefficient was defined. Comparing equations ( 6), (7) and (38) one concludes that the ambipolar diffusion coefficient is given by The factor ∆R is defined by equation (18). Considering equations ( 45) and ( 16) gives

- + + - - + + = = 2 3 3 2 3 2 3 2 2 3 3 2 3 2 3 2 O Al O Al Al O O Al O Al O Al O Al O Al D ) c / c ( 4 
) D D ( 5 ) a ( ) a ( ) a ( D 5 k I O Al II O Al 15 / 2 I SiO 15 / 2 II SiO 15 / 2 I SiO I O Al 3 2 3 2 2 2 2 3 2 - = - = (45) 
        - = ∆ 1 ) a ( ) a ( 5 R 15 / 2 I SiO 15 / 2 II SiO 2 2 (46)
At interface I the activity of Al 2 O 3 is 1 (see Fig. 2) so that one can calculate the activity of SiO 2 at interface I using equation ( 34) 

        ∆ = RT 15 G exp ) a (

A.4 Derivation of equation (24)

The activity of Al 2 O 3 is 1 at interface I and

II O Al 3 2 a
at interface II (see Fig. 2) so that one gets from equation ( 43) for the difference of the chemical potential

) a ln( RT II O Al I O Al II O Al O Al 3 2 3 2 3 2 3 2 = µ - µ = µ ∆ (48) 
Considering equation (34) one gets equation (24). Table 2 Parabolic growth rates calculated from the measured tracer diffusivities of aluminium and oxygen using equations ( 10), ( 18) and ( 21) (compare with experimental data in Table 1). The activity of SiO 2 at phase boundary II, II SiO 2 a , was approximated by the molar fraction of SiO 2 in the aluminium-silicate melt. The free energy,

F
o 13 2 6 O Si Al r G ∆
, for the formation of 3/2-mullite from the oxides was calculated with equation (33) using thermochemical data from [29]. The dimensionless factor of first approximation, ∆R 0 , was calculated by equations ( 23), (24).

T RT 

o 13 2 6 O Si Al r G ∆ II SiO 2 a ∆R 0 ∆R 3 2 O Al D calc k calc exp k / k °C kJ
Al 2 O 3 SiO 2 -Al 2 O 3 melt 3Al 2 O 3 •2SiO 2 Al 3+ O 2- x x = 0 solid solid liquid (I) (II) x = ξ µ I Al 2 O 3 µ II Al 2 O 3

Introduction

Mullite is one of the most widely studied ceramic materials. This is due to its high thermal and chemical stability, good thermal shock behaviour and high creep resistance, which makes mullite a promising candidate for many high-temperature applications [1]. The crystal structure of mullite can be described as a modified defect structure of sillimanite

(Al 2 O 3 •SiO 2 )
. Sillimanite consists of edge-sharing aluminium-oxygen octahedral chains which are interconnected by double chains of ordered SiO 4 and AlO 4 tetrahedra. In mullite, the AlO 4 -SiO 4 -sequence is almost random [2] and there exists a certain amount of structural oxygen vacancies. The composition of mullite can be expressed as

x 10 x 2 2 IV x 2 2 VI 2 O ) Si Al ( Al - - +
where x indicates the amount of missing oxygen with respect to sillimanite and VI and IV indicate sixfold (octahedral) and fourfold (tetrahedral) coordination of aluminium ions.

Silicon ions occupy tetrahedral sites only.

Sintering, grain growth, creep and all types of reconstructive reaction processes are strongly controlled by atomic diffusion. Therefore, the diffusivities of oxygen and silicon in single crystalline 2/1-mullite have been carefully determined in previous work using the rare natural isotopes 18 O and 30 Si as tracer isotopes [3], [4]. Secondary Ion Mass Spectrometry (SIMS) was applied to analyse the depth distribution of the tracer isotopes after the diffusion annealing. Recently, we applied the SIMS technique also to measure the diffusivity of aluminium in single crystalline 2/1-mullite using the pseudo-stable isotope 26 Al [5] so that we can now present a complete set of tracer diffusivity data ( 18 O, 30 Si, 26 Al) of all components of the mullite structure. Based on the results of these tracer diffusivity studies a reaction model for the diffusion controlled mullite formation is discussed in the following. double chains, which also run parallel to c [1]. Therefore, a pronounced anisotropy of the diffusivities of the constituents could not be excluded a priori. However, all experimental tracer diffusivity data display virtually no orientation-dependent variation. The slight difference between b and c axes falls into the estimated error range of ± 30 % of diffusion data gained by the method of SIMS depth profiling. Therefore, all evaluated Arrhenius relations represent average values deduced from the diffusivity measurements along the two axes. Since structural arrangements along the a and b axes are very similar in mullite, tracer diffusivities parallel to both directions should also be in a comparable range. So it may be justified to consider tracer diffusivities of the components to be isotropic in mullite.

Experimental data

• Oxygen tracer diffusion

Oxygen diffusion is well studied in many oxides because it can be measured relatively simply by gas/solid exchange experiments [7]. We performed 18 O isotope exchange experiments on single crystalline 2/1-mullite samples [3] and obtained the following Arrhenius relation:

¡ ¢ £ ¤ ¥ ± - × = - + - RT mol / kJ ) 21 433 ( exp s m 10 ) 71 . 3 ( D 2 5 13 3 1 / 2 O 18 (1)
In 3/2-mullite, Ikuma et al. [8] evaluated the 18 O tracer diffusivity indirectly on micrometer size single crystals by measuring the concentration of 18 O 2 in the gas phase: (2)

¦ § © ± - × ± = - RT mol /

• Silicon tracer diffusion

In contrast to oxygen, the measurement of silicon diffusivities in oxides is much more difficult. The complications arise from the fact that the natural tracer isotope 30 Si has a relatively high natural abundance of about 3.1 %. This circumstance limits the useful diffusion length and requires a deposition technique that allows to prepare very smooth 30 Si containing layers on the surface of the specimen. A detailed description of the experimental procedure is given in [4]. The following Arrhenius relation was obtained for the diffusivity of 30 Si in single crystalline 2/1-mullite: two difficulties are encountered with this radiotracer. Firstly, 26 Al is artificial and causes very high production costs, and secondly, it has a half-life time of 7.4×10 5 years with a very low specific activity which makes it difficult to apply classical radiotracer methods [12]. The application of SIMS avoids the problems related to the radioactivity measurement, reduces the necessary amount of 26 Al per experiment considerably, and yields a much higher spatial resolution. A detailed description of the measurement of the 26 Al diffusivity in 2/1-mullite by means of the SIMS technique is given in [5]. For the diffusivity of 26 Al in single crystalline 2/1-mullite we obtained the following Arrhenius relation:

      ± - × = - + - RT mol / kJ )
      ± - × = - + - RT mol / kJ ) 33 517 ( exp s m 10 ) 2 . 9 ( D 2 3 92 4 . 8 1 / 2
Al 26 (4) [Insert Fig. 1 about here] Fig. 1 shows our measured tracer diffusivities ( 18 O, 26 Al, 30 Si) in single crystalline 2/1-mullite and the 18 O diffusivity in single crystalline 3/2-mullite measured by Ikuma et al. [8]. There is only a small difference between the 18 O diffusivity in 2/1-mullite and 3/2-mullite. One observes that the diffusivity of 30 Si is much lower than the diffusivity of 18 O and 26 Al. Jaoul et al. [14] and Andersson et al. [15] measured 30 Si diffusivities in single crystalline forsterite Mg 2 SiO 4 along three crystallographic directions. Both observed that in this silicate, too, silicon diffuses more slowly than oxygen and found no significant anisotropy of the diffusion coefficients. It is assumed that the strong covalent bond within the SiO 4 tetrahedron is an explanation for the low diffusivity of silicon. Furthermore, one observes from Fig. 1 that the diffusivity of 26 Al is comparable to the diffusivity of 18 O. Le Gall et al. [12] reported a similar result for the diffusivities of 26 Al and 18 O in single crystalline α-Al 2 O 3 .

The solid points in Fig. 1 at higher temperatures are experimental data of the parabolic growth constant, k, of diffusion-controlled mullite formation, intensively investigated by Aksay et. al [16], [17]. The quoted authors used diffusion couples made from sapphire and aluminiumsilicate glasses of 10.9, 22.8, and 42.2 wt % Al 2 O 3 . These binary glasses are in equilibrium with mullite at 1678°C, 1753°C, and 1813°C. Thus, sapphire-glass diffusion couples of these compositions at the corresponding annealing temperatures could be used to study the growth kinetics of mullite as an intermediate phase without solution of mullite in the liquid glass 1.

[Insert Table 1 about here] The dashed lines in Fig. 1 are extrapolated tracer diffusivity data from lower temperatures. This means, we know the tracer diffusivities of all components of mullite and the question arises how the measured parabolic growth constants are related to our measured tracer diffusivities. To answer this interesting question we will propose a reaction model for the diffusion-controlled mullite formation in the next chapter.

Reaction model

Sung [18] proposed a diffusion-controlled reaction model which is based on the assumption that the oxygen mobility is much lower than the mobility of the cations in mullite. Our tracer diffusion experiments show, however, that silicon is the slowest species compared to oxygen and aluminium in single crystalline 2/1-mullite. This is most probably also valid for 3/2mullite (s. [8] for the diffusivity of 18 O in 3/2-mullite, which is virtually identical to the oxygen diffusivity in 2/1-mullite, as shown in Fig. 1). We will use our experimental observation to derive a more realistic reaction model which is schematically represented in Fig. 2.

[Insert Fig. 2 [20] or p. 238 in [21]). For the ambipolar diffusion coefficient of Al 2 O 3 in equation ( 7) one gets after a lengthy calculation (see appendix A.1)

- + + = 2 3 3 2 O Al O Al D 3 D 2 D 1 ( 8 
)
where D i is the diffusion coefficient of the ion i (Al 3+ , O 2-) which is related to the random thermal motion of the ions. In diffusional transport the random thermal motion is superposed on a drift resulting from field forces like the gradient of the chemical potential. Using equation ( 7) one gets for the average drift velocity of Al

2 O 3 dx d RT D c j v 3 2 3 2 3 2 3 2 3 2 O Al O Al O Al O Al O Al µ - = = (9) 
Since the forces (

dx / d 3 dx / d 2 dx / d 2 3 3 2 O Al O Al - + µ + µ = µ
) are small on the atomic length scale, diffusion coefficients established under equilibrium conditions (i.e., vanishing forces) can be used to describe the drift of the ions (p. 107 in [22]). 

Correlation effects diminish the effectiveness of atomic jumps ( 1 f i * ≤ ) in diffusional random motion (p. 110 in [22]), that is, ambipolar diffusion coefficients calculated by our tracer diffusivities are lower limits.

To calculate the parabolic growth constant, k, it is assumed that the ion fluxes are quasisteady which means that during a specific time interval the fluxes can be considered to be constant in space. Because the concentration of Al 2 O 3 is practically constant inside the mullite layer the drift velocity of Al 2 O 3 is also practically independent of x. Separating variables and integrating equation ( 9) between the phase boundaries I and II results in (p. 168 in [22])

∫ µ - = ξ ) II ( ) I ( O Al O Al O Al 3 2 3 2 3 2 d D RT 1 v ( 11 
)
where ξ is the thickness of the mullite layer. The drift velocity of phase boundary II relative to phase boundary I is equal to the average drift velocity of the Al 2 O 3 molecules,

3 2 O Al v dt / d = ξ
, so that one calculates the parabolic growth constant, k, by separating variables and integrating equation ( 11)

∫ µ - = ξ = ) II ( ) I ( O Al O Al 2 3 2 3 2 d D RT 1 t 2 k ( 12 
)
To integrate the right hand side of equation ( 12) we must know the dependence of the ambipolar diffusion coefficient on the chemical potential which requires the application of an appropriate defect model. 

V 6 V d 2 O Al a a a K • • ′ ′ ′ = ( 14 
)
where a i is the activity of the species i (SiO 2 , aluminium vacancies, oxygen vacancies).

Furthermore, we assume that the dilution of the vacancies is sufficient to express activities by concentrations,

[ ] V a V ≅ . Using the condition for electroneutrality, [ ] [ ] • • = ′ ′ ′ O Al V 2 V 3
, one gets from equation ( 14) a dependence of the vacancy concentration from the SiO 2 activity

15 / 1 d 5 / 3 15 / 2 SiO O 15 / 2 SiO Al K 3 2 with a 2 3 ] V [ and a ] V [ 2 2 - • •       ≡ α α = α = ′ ′ ′ (15) 
If the diffusivity of aluminium ions is proportional to the concentration of aluminium 

I O Al O Al 2 2 3 2 3 2 a a D D         = ( 16 
)
where the superscript I denotes values at the phase boundary I. Inserting equation ( 16) into equation (12) gives after some calculations (see appendix A.2)

5 n with ) D D ( n k I O Al II O Al 3 2 3 2 = - = (17) 
where the superscripts I and II denote values of the ambipolar diffusion coefficient at the corresponding phase boundaries in Fig. 2. 

Discussion

The calculations in chapter 3 show that the parabolic growth constant, k, is proportional to the difference of the ambipolar diffusion coefficients of Al 2 O 3 at the phase boundaries (see equation ( 17)) where the calculated proportional constant, n, depends on the applied defect model and is 5 for the proposed one (equation ( 13)). It is interesting to note that only the difference of the absolute values of the ambipolar diffusion coefficients plays a role for the diffusion controlled growth kinetics of the reaction layer (mullite). The absolute values of the ambipolar diffusion coefficients of Al 2 O 3 at both phase boundaries are determined by the freely migrating defects which are formed during the mullite formation reaction. Equation ( 17) would be the most direct way to calculate parabolic growth constants from diffusivity data. However, this procedure requires the same defect chemistry to be valid for the entire composition range of mullite and it requires the measurements of the two diffusion constants.

Because diffusivity measurements are often only possible at one of the two interfaces it is useful to express equation ( 17) by

R D k I O Al 3 2 ∆ = (18) 
with the dimensionless factor

I O Al I O Al II O Al 3 2 3 2 3 2 D D D n R - = ∆ ( 19 
)
where we have assumed that the ambipolar diffusion coefficient of Al . The advantage of this notation will, however, become obvious in the development given below.

The diffusivities at the interfaces are proportional to the freely migrating defects at the interfaces so that one gets for the dimensionless factor ∆R (considering equations ( 15) and ( 16)) a is the activity of SiO 2 in the aluminium-silicate melt at phase boundary II.

I O I O II O I Al I Al II Al ] V [ ] V [ ] V [ n ] V [ ] V [ ] V [ n R • • • • • • - = ′ ′ ′ ′ ′ ′ - ′ ′ ′ = ∆ (20) 
        -         ∆ - = ∆ 1 RT 15 G exp ) a ( 5 R
In the absence of any plausible defect model one could assume, as a first approximation, a constant diffusion coefficient,

II O Al I O Al O Al 3 2 3 2 3 2 D D D = =
, which allows the simplest integration of the right hand side of equation ( 12). This gives

0 I O Al 0 R D k 3 2 ∆ = (22) 
with the dimensionless factor ∆R 0

I O Al II O Al O Al O Al 0 3 2 3 2 3 2 3 2 and RT R µ - µ = µ ∆ µ ∆ = ∆ (23) 
where 

[Insert Table 2 about here]

The dimensionless factors ∆R 0 and ∆R for the 3/2-mullite formation from the oxides are calculated in Table 2 for experimental temperatures used by Aksay et. al [17] (see Table 1). It is obvious that both factors are practically equal in this temperature range. Comparing equations ( 18) and ( 22) through the ratio . Therefore, our proposed defect model does practically not improve the agreement between the experimental data and the calculated parabolic growth rates in this temperature range, so that it is not meaningful to try a quantitatively validation of this model. It is, however, extremely useful to discuss this phenomenon from a more general point of view. The derivation of the factor of first approximation, ∆R 0 , starts with the assumption that the (chemical) diffusion coefficient, D, in the reaction layer is practically constant and we assume, of course, that the calculated parabolic growth rate is practically correct, which implies the approximate relation

constant D if n R n R 0 ≈ ∆ ≈ ∆ ( 26 
)
where n is a correct number evaluated from a correct defect model. Considering equations (23) and (19) we can express relation (26) by

constant D if D D D RT n I i I i II i i ≈ - ≈ µ ∆ (27) 
where i = Al 2 O 3 for the proposed mullite formation reaction. Such a relation holds for all formation reactions which can be treated mathematically in the same formal manner. 18). This term was calculated by equation (10) using our measured bulk tracer diffusivities. As we mentioned above the use of tracer diffusivities, and neglecting correlation effects, will result principally in a lower limit value of the diffusivity term in equation (18). Furthermore, grain boundary diffusion has to be considered to explain why the diffusivities of the oxygen ions and the aluminium ions during the mullite formation are significantly higher than our measured bulk tracer diffusivities.

The right hand side of relation (27) corresponds to the relative change of the diffusivity across the mullite layer. That is, the assumption that the diffusion coefficient in

Grain boundary tracer diffusivities of mullite are known for the 18 O isotope only [23]. In the grain boundaries a much higher 18 O diffusivity (up to a factor of 10 4 ) was observed than in the bulk. The amount of Al 2 O 3 which is transported through the grain boundaries is proportional to the volume fraction of grain boundaries in the mullite layer. Therefore, an effective diffusion coefficient can be calculated by the Hart-Mortlock equation [24][25]

D ) g s 1 ( D g s D gb eff - + = ( 28 
)
where D is the bulk diffusivity, D gb the grain boundary diffusivity, g the volume fraction of grain boundaries, and s the grain boundary segregation factor (s = 1 for self-diffusion).

Assuming a similar enhancement (a factor of 10 (p. 206 in [26]). Assuming an average grain boundary width δ = 1 nm one gets corresponding cubic grain sizes from 10 µm to 2 µm.

This explanation is plausible, however, the larger discrepancy at higher temperatures is somewhat contradictory to conventional thinking about grain boundary effects (i.e., the relative contribution from grain boundary diffusion is often larger at lower temperatures). Another explanation could be impurity effects on diffusion, even with relatively pure starting materials. For example, one observes a scatter band of about one order of magnitude for measured oxygen diffusivities in nominally undoped α α α α-Al 

Summary

An essential result of our tracer diffusivity studies in single crystalline 2/1-mullite is the very low diffusivity of 30 Si compared to the diffusivities of 26 Al and 18 O, which are almost equal.

Based on this observation we propose a diffusion-controlled mullite formation model which assumes that the growth kinetics of a mullite layer is controlled by the diffusion of aluminium The reaction of SiO 2 with Al 2 O 3 on regular sites in the mullite structure requires the formation of aluminium vacancies and oxygen vacancies (equation ( 13)). Based on this defect model we derive equation (17) to calculate the parabolic growth constant of mullite formation.

However, the direct application of this equation requires the proposed defect model to be valid in the whole mullite layer and necessitates the measurement of tracer diffusivities at the two interfaces. Therefore, we write equation ( 17) into the form of equation ( 18 For the following derivations it is assumed that local thermodynamical equilibrium is maintained within the reaction layer and also at the phase boundaries I and II, so that the following equilibrium condition is valid

3 2 2 3 O Al O 3 Al 2 = + - + (29) 3 2 2 3 O Al O Al 3 2 µ = η + η - + ( 30 
)
where η is the electrochemical potential of electrically charged particles (Al 3+ , O 2-) and µ is the chemical potential of the uncharged particle (Al 2 O 3 ). The chemical reaction equation of the 3/2-mullite formation from the oxides is given by

13 2 6 3 2 2 O Si Al O Al 3 SiO 2 = + (31) 
The reaction equilibrium constant, K r , can be written as tabulated in [29] or [30],

        ∆ - = = RT G exp a a a K
£ £ £ £ 2 3 2 13 2 6 13 2 6 SiO f O Al f O Si Al f O Si Al r G 2 G 3 G G ∆ - ∆ - ∆ = ∆ ( 33 
)
The activity of 3/2-mullite is 1 in the mullite layer so that equation (32) yields

( ) ( ) ¤ 13 2 6 3 2 2 O Si Al r O Al SiO G a ln RT 3 a ln RT 2 ∆ = + (34)
A.1 Derivation of equation ( 8)

The fluxes of aluminium and oxygen ions are given by dx d RT D c j By equation ( 7) an ambipolar diffusion coefficient was defined. Comparing equations ( 6), (7) and (38) one concludes that the ambipolar diffusion coefficient is given by A.2 Derivation of equation ( 17)

- + + - - + + = = 2 3 3 2 3 2 3 2 2 3 3 2 3 2 3 2 O Al O Al Al O O Al O Al O Al O Al O Al D ) c / c ( 4 
By definition the chemical potential of Al 2 O 3 is given by ) a ln( RT (45)

A.3 Derivation of equation (21)

The factor ∆R is defined by equation (18). Considering equations ( 45) and (16) gives

        - = ∆ 1 ) a ( ) a ( 5 R 15 / 2 I SiO 15 / 2 II SiO 2 2 (46)
At interface I the activity of Al 2 O 3 is 1 (see Fig. 2) so that one can calculate the activity of SiO 2 at interface I using equation ( 34) 

        ∆ = RT 15 G exp ) a (

A.4 Derivation of equation (24)

The activity of Al , for the formation of 3/2-mullite from the oxides was calculated with equation (33) using thermochemical data from [29]. The dimensionless factor of first approximation, ∆R 0 , was calculated by equations ( 23), (24).

T RT This paper compiles all data of our tracer diffusivity studies in single crystalline 2/1-mullite.

As tracers we used the rare stable isotopes 18 O and 30 Si and the artificial pseudo-stable isotope 26 Al. Secondary Ion Mass Spectrometry was applied to analyse the depth distribution of the tracer isotopes after the diffusion annealing. An essential result of our tracer diffusivity studies was the very low diffusivity of 30 Si compared to the diffusivities of 26 

Introduction

Mullite is one of the most widely studied ceramic materials. This is due to its high thermal and chemical stability, good thermal shock behaviour and high creep resistance, which makes mullite a promising candidate for many high-temperature applications [1]. The crystal structure of mullite can be described as a modified defect structure of sillimanite

(Al 2 O 3 •SiO 2 )
. Sillimanite consists of edge-sharing aluminium-oxygen octahedral chains which are interconnected by double chains of ordered SiO 4 and AlO 4 tetrahedra. In mullite, the AlO 4 -SiO 4 -sequence is almost random [2] and there exists a certain amount of structural oxygen vacancies. The composition of mullite can be expressed as

x 10 x 2 2 IV x 2 2 VI 2 O ) Si Al ( Al - - +
where x indicates the amount of missing oxygen with respect to sillimanite and VI and IV indicate sixfold (octahedral) and fourfold (tetrahedral) coordination of aluminium ions.

Silicon ions occupy tetrahedral sites only.

Sintering, grain growth, creep and all types of reconstructive reaction processes are strongly controlled by atomic diffusion. Therefore, the diffusivities of oxygen and silicon in single crystalline 2/1-mullite have been carefully determined in previous work using the rare natural isotopes 18 O and 30 Si as tracer isotopes [3], [4]. Secondary Ion Mass Spectrometry (SIMS) was applied to analyse the depth distribution of the tracer isotopes after the diffusion annealing. Recently, we applied the SIMS technique also to measure the diffusivity of aluminium in single crystalline 2/1-mullite using the pseudo-stable isotope 26 Al [5] so that we can now present a complete set of tracer diffusivity data ( 18 O, 30 Si, 26 Al) of all components of the mullite structure. Based on the results of these tracer diffusivity studies a reaction model for the diffusion controlled mullite formation is discussed in the following. double chains, which also run parallel to c [1]. Therefore, a pronounced anisotropy of the diffusivities of the constituents could not be excluded a priori. However, all experimental tracer diffusivity data display virtually no orientation-dependent variation. The slight difference between b and c axes falls into the estimated error range of ± 30 % of diffusion data gained by the method of SIMS depth profiling. Therefore, all evaluated Arrhenius relations represent average values deduced from the diffusivity measurements along the two axes. Since structural arrangements along the a and b axes are very similar in mullite, tracer diffusivities parallel to both directions should also be in a comparable range. So it may be justified to consider tracer diffusivities of the components to be isotropic in mullite.

Experimental data

• Oxygen tracer diffusion

Oxygen diffusion is well studied in many oxides because it can be measured relatively simply by gas/solid exchange experiments [7]. We performed 18 O isotope exchange experiments on single crystalline 2/1-mullite samples [3] and obtained the following Arrhenius relation:

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ± - × = - + - RT mol / kJ ) 21 433 ( exp s m 10 ) 71 . 3 ( D 2 5 13 3 1 / 2 O 18 (1) 
In 3/2-mullite, Ikuma et al. [8] evaluated the 18 O tracer diffusivity indirectly on micrometer size single crystals by measuring the concentration of 18 O 2 in the gas phase: (2)

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ± - × ± = - RT mol /

• Silicon tracer diffusion

In contrast to oxygen, the measurement of silicon diffusivities in oxides is much more difficult. The complications arise from the fact that the natural tracer isotope 30 Si has a relatively high natural abundance of about 3.1 %. This circumstance limits the useful diffusion length and requires a deposition technique that allows to prepare very smooth 30 Si containing layers on the surface of the specimen. A detailed description of the experimental procedure is given in [4]. The following Arrhenius relation was obtained for the diffusivity of 30 Si in single crystalline 2/1-mullite: (3)

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ± - × = - + - RT mol / kJ )

• Aluminium tracer diffusion

Aluminium has no natural tracer isotopes and there are only a few aluminium diffusion data in the literature measured by means of the radiotracer isotope 26 Al [9]- [13]. The reason is that two difficulties are encountered with this radiotracer. Firstly, 26 Al is artificial and causes very high production costs, and secondly, it has a half-life time of 7.4×10 5 years with a very low specific activity which makes it difficult to apply classical radiotracer methods [12]. The application of SIMS avoids the problems related to the radioactivity measurement, reduces the necessary amount of 26 Al per experiment considerably, and yields a much higher spatial resolution. A detailed description of the measurement of the 26 Al diffusivity in 2/1-mullite by means of the SIMS technique is given in [5]. For the diffusivity of 26 Al in single crystalline 2/1-mullite we obtained the following Arrhenius relation:

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ± - × = - + - RT mol / kJ ) 33 517 ( exp s m 10 ) 2 . 9 ( D 2 3 92 4 . 8 1 / 2
Al 26 (4) [Insert Fig. 1 about here] Fig. 1 shows our measured tracer diffusivities ( 18 O, 26 Al, 30 Si) in single crystalline 2/1-mullite and the 18 O diffusivity in single crystalline 3/2-mullite measured by Ikuma et al. [8]. There is only a small difference between the 18 O diffusivity in 2/1-mullite and 3/2-mullite. One observes that the diffusivity of 30 Si is much lower than the diffusivity of 18 O and 26 Al. Jaoul et al. [14] and Andersson et al. [15] measured 30 Si diffusivities in single crystalline forsterite Mg 2 SiO 4 along three crystallographic directions. Both observed that in this silicate, too, silicon diffuses more slowly than oxygen and found no significant anisotropy of the diffusion coefficients. It is assumed that the strong covalent bond within the SiO 4 tetrahedron is an explanation for the low diffusivity of silicon. Furthermore, one observes from Fig. 1 that the diffusivity of 26 Al is comparable to the diffusivity of 18 O. Le Gall et al. [12] reported a similar result for the diffusivities of 26 Al and 18 O in single crystalline α-Al 2 O 3 .

The solid points in Fig. 1 at higher temperatures are experimental data of the parabolic growth constant, k, of diffusion-controlled mullite formation, intensively investigated by Aksay et. al [16], [17]. The quoted authors used diffusion couples made from sapphire and aluminiumsilicate glasses of 10.9, 22.8, and 42.2 wt % Al 2 O 3 . These binary glasses are in equilibrium with mullite at 1678°C, 1753°C, and 1813°C. Thus, sapphire-glass diffusion couples of these compositions at the corresponding annealing temperatures could be used to study the growth kinetics of mullite as an intermediate phase without solution of mullite in the liquid glass 1.

[Insert Table 1 about here] The dashed lines in Fig. 1 are extrapolated tracer diffusivity data from lower temperatures. This means, we know the tracer diffusivities of all components of mullite and the question arises how the measured parabolic growth constants are related to our measured tracer diffusivities. To answer this interesting question we will propose a reaction model for the diffusion-controlled mullite formation in the next chapter.

Reaction model

Sung [18] proposed a diffusion-controlled reaction model which is based on the assumption that the oxygen mobility is much lower than the mobility of the cations in mullite. Our tracer diffusion experiments show, however, that silicon is the slowest species compared to oxygen and aluminium in single crystalline 2/1-mullite. This is most probably also valid for 3/2mullite (s. [8] for the diffusivity of 18 O in 3/2-mullite, which is virtually identical to the oxygen diffusivity in 2/1-mullite, as shown in Fig. 1). We will use our experimental observation to derive a more realistic reaction model which is schematically represented in Fig. 2.

[Insert Fig. 2 about here] Because of the low silicon tracer diffusivity we neglect Si 4+ ion fluxes and consider a formation mechanism where Al 2 O 3 is transported by Al 3+ and O 2-ion fluxes through the mullite layer. The fluxes are described by a coordinate system which is fixed to the phase boundary I. Such a coordinate system becomes applicable when one cation has a much lower mobility than other species [19] ) are small on the atomic length scale, diffusion coefficients established under equilibrium conditions (i.e., vanishing forces) can be used to describe the drift of the ions (p. 107 in [22]). Correlation effects diminish the effectiveness of atomic jumps ( 1 f i * ≤ ) in diffusional random motion (p. 110 in [22]), that is, ambipolar diffusion coefficients calculated by our tracer diffusivities are lower limits.

To calculate the parabolic growth constant, k, it is assumed that the ion fluxes are quasisteady which means that during a specific time interval the fluxes can be considered to be constant in space. Because the concentration of Al 2 O 3 is practically constant inside the mullite layer the drift velocity of Al 2 O 3 is also practically independent of x. Separating variables and integrating equation ( 9) between the phase boundaries I and II results in (p. 168 in [22])

∫ μ - = ξ ) II ( ) I ( O Al O Al O Al 3 2 3 2 3 2 d D RT 1 v ( 11 
)
where ξ is the thickness of the mullite layer. The drift velocity of phase boundary II relative to phase boundary I is equal to the average drift velocity of the Al 2 O 3 molecules,

3 2 O Al v dt / d = ξ
, so that one calculates the parabolic growth constant, k, by separating variables and integrating equation ( 11)

∫ μ - = ξ = ) II ( ) I ( O Al O Al 2 3 2 3 2 d D RT 1 t 2 k ( 12 
)
To integrate the right hand side of equation (12) we must know the dependence of the ambipolar diffusion coefficient on the chemical potential which requires the application of an appropriate defect model. 

V 6 V d 2 O Al a a a K • • ′ ′ ′ = ( 14 
)
where a i is the activity of the species i (SiO 2 , aluminium vacancies, oxygen vacancies).

Furthermore, we assume that the dilution of the vacancies is sufficient to express activities by concentrations,

[ ] V a V ≅ . Using the condition for electroneutrality, [ ] [ ] • • = ′ ′ ′ O Al V 2 V 3
, one gets from equation ( 14) a dependence of the vacancy concentration from the SiO 2 activity 

- • • ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ≡ α α = α = ′ ′ ′ (15) 
If the diffusivity of aluminium ions is proportional to the concentration of aluminium 

I O Al O Al 2 2 3 2 3 2 a a D D ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ( 16 
)
where the superscript I denotes values at the phase boundary I. Inserting equation ( 16) into equation (12) gives after some calculations (see appendix A.2)

5 n with ) D D ( n k I O Al II O Al 3 2 3 2 = - = (17) 
where the superscripts I and II denote values of the ambipolar diffusion coefficient at the corresponding phase boundaries in Fig. 2. 

Discussion

The calculations in chapter 3 show that the parabolic growth constant, k, is proportional to the difference of the ambipolar diffusion coefficients of Al 2 O 3 at the phase boundaries (see equation ( 17)) where the calculated proportional constant, n, depends on the applied defect model and is 5 for the proposed one (equation ( 13)). It is interesting to note that only the difference of the absolute values of the ambipolar diffusion coefficients plays a role for the diffusion controlled growth kinetics of the reaction layer (mullite). The absolute values of the ambipolar diffusion coefficients of Al 2 O 3 at both phase boundaries are determined by the freely migrating defects which are formed during the mullite formation reaction. Equation ( 17) would be the most direct way to calculate parabolic growth constants from diffusivity data. However, this procedure requires the same defect chemistry to be valid for the entire composition range of mullite and it requires the measurements of the two diffusion constants.

Because diffusivity measurements are often only possible at one of the two interfaces it is useful to express equation ( 17) by

R D k I O Al 3 2 Δ = (18) 
with the dimensionless factor

I O Al I O Al II O Al 3 2 3 2 3 2 D D D n R - = Δ (19) 
where we have assumed that the ambipolar diffusion coefficient of Al . The advantage of this notation will, however, become obvious in the development given below.

The diffusivities at the interfaces are proportional to the freely migrating defects at the interfaces so that one gets for the dimensionless factor ΔR (considering equations ( 15) and ( 16))

I O I O II O I Al I Al II Al ] V [ ] V [ ] V [ n ] V [ ] V [ ] V [ n R • • • • • • - = ′ ′ ′ ′ ′ ′ - ′ ′ ′ = Δ ( 20 
)
As ΔR is proportional to the relative change of the concentrations of the transporting defects it a is the activity of SiO 2 in the aluminium-silicate melt at phase boundary II.
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In the absence of any plausible defect model one could assume, as a first approximation, a constant diffusion coefficient,

II O Al I O Al O Al 3 2 3 2 3 2 D D D = =
, which allows the simplest integration of the right hand side of equation ( 12). This gives

0 I O Al 0 R D k 3 2 Δ = (22) 
with the dimensionless factor ΔR 0 

I O Al II O Al O Al O Al 0 3 2 3 2 3 2 3 2 and RT R μ - μ = μ Δ μ Δ = Δ (23) 
[Insert Table 2 

about here]

The dimensionless factors ΔR 0 and ΔR for the 3/2-mullite formation from the oxides are calculated in Table 2 for experimental temperatures used by Aksay et. al [17] (see Table 1 
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where n is a correct number evaluated from a correct defect model. Considering equations (23) and (19) we can express relation (26) by

constant D if D D D RT n I i I i II i i ≈ - ≈ μ Δ (27) 
where i = Al 2 O 3 for the proposed mullite formation reaction. Such a relation holds for all formation reactions which can be treated mathematically in the same formal manner.

The right hand side of relation ( 27) corresponds to the relative change of the diffusivity across the mullite layer. That is, the assumption that the diffusion coefficient in the reaction layer is

practically constant is fulfilled if RT n i < μ Δ
. This case is generally more likely at higher temperatures and reactions with low Gibbs free energy of formation (e.g the considered mullite formation from the oxides). One has then R R 0 Δ ≈ Δ and can calculate the parabolic growth constant by the simple equation (22). The application of a defect model does practically not improve the calculated parabolic growth constants in the considered temperature range so that it becomes difficult to prove a proposed defect model quantitatively from experimentally determined parabolic growth constants. 18). This term was calculated by equation (10) using our measured bulk tracer diffusivities. As we mentioned above the use of tracer diffusivities, and neglecting correlation effects, will result principally in a lower limit value of the diffusivity term in equation (18). Furthermore, grain boundary diffusion has to be considered to explain why the diffusivities of the oxygen ions and the aluminium ions during the mullite formation are significantly higher than our measured bulk tracer diffusivities.

F

Grain boundary tracer diffusivities of mullite are known for the 18 O isotope only [23]. In the grain boundaries a much higher 18 O diffusivity (up to a factor of 10 

- + = ( 28 
)
where D is the bulk diffusivity, D gb the grain boundary diffusivity, g the volume fraction of grain boundaries, and s the grain boundary segregation factor (s = 1 for self-diffusion).

Assuming a similar enhancement (a factor of 10 [26]). Assuming an average grain boundary width δ = 1 nm one gets corresponding cubic grain sizes from 10 µm to 2 µm.

This explanation is plausible, however, the larger discrepancy at higher temperatures is somewhat contradictory to conventional thinking about grain boundary effects (i.e., the relative contribution from grain boundary diffusion is often larger at lower temperatures).

Another explanation could be impurity effects on diffusion, even with relatively pure starting materials. For example, one observes a scatter band of about one order of magnitude for measured oxygen diffusivities in nominally undoped α-Al 2 O 3 which is mainly explained by impurities which induce extrinsic point defects and affect the diffusion process [27].

Furthermore, we have assumed that the influence of the Si/Al ratio does not strongly affect the diffusion process. This assumption is based on the low value of the Gibbs free energy of formation of mullite and on the resulting close agreement of the oxygen diffusivity data obtained for (single crystalline) 2/1-mullite and 3/2-mullite (see also [28] for further discussion) but is open to debate for the aluminium diffusivity.

This discussion shows that the parabolic growth rates calculated from our measured bulk tracer diffusivity data of oxygen and aluminium define at least a lower limit of the experimentally observed growth rates. With the exception of the mullite formation data set at the highest temperature (1813 °C) the discrepancy between parabolic rate constants calculated on the basis of (extrapolated) bulk diffusion data and the experimentally determined rate constants is about half an order of magnitude, which clearly supports our model, taking into account that the details of the growth experiment (impurity concentrations etc.) are not fully evident from the literature.

Summary

An essential result of our tracer diffusivity studies in single crystalline 2/1-mullite is the very low diffusivity of 30 Si compared to the diffusivities of 26 

Appendix A

For the following derivations it is assumed that local thermodynamical equilibrium is maintained within the reaction layer and also at the phase boundaries I and II, so that the following equilibrium condition is valid 

The reaction equilibrium constant, K r , can be written as tabulated in [29] or [30],

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ Δ - = = RT G exp a a a K
o o o o 2 3 2 13 2 6 13 2 6 SiO f O Al f O Si Al f O Si Al r G 2 G 3 G G Δ - Δ - Δ = Δ (33) 
The activity of 3/2-mullite is 1 in the mullite layer so that equation (32) yields By equation (7) an ambipolar diffusion coefficient was defined. Comparing equations ( 6), (7) and (38) one concludes that the ambipolar diffusion coefficient is given by A.2 Derivation of equation ( 17)

- + + - - + + = =
By definition the chemical potential of Al 2 O 3 is given by ) a ln( RT The factor ΔR is defined by equation (18). Considering equations (45) and ( 16) gives , for the formation of 3/2-mullite from the oxides was calculated with equation (33) using thermochemical data from [29]. The dimensionless factor of first approximation, ΔR 0 , was calculated by equations ( 23), (24). 

  the amount of missing oxygen with respect to sillimanite and VI and IV indicate sixfold (octahedral) and fourfold (tetrahedral) coordination of aluminium ions.

  at higher temperatures are experimental data of the parabolic growth

  calculates the parabolic growth constant, k, by separating variables and integrating equation(11) 

  free energy for the formation of 3/2-mullite from the parent oxides and II SiO 2

  is the activity of component i (Al 6 Si 2 O 13 , Al 2 O 3 , SiO 2 ) and free energy of formation of 3/2-mullite from the oxides which can be calculated by the free energy of the formation from elements,

  one derives equation(8). Considering equation (6) and equation (41) one concludes particles (Al 2 O 3 , Al 3+ , O 2-) considered in the proposed mullite formation model migrate with the same drift velocity, v.A.2 Derivation of equation (17)By definition the chemical potential of Al 2 O 3 is given by
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 183 Derivation of equation(21) 

  47) into equation (46) gives equation(21).
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 12 Fig.1Compilation of our measured tracer diffusivities ( 18 O,26 Al,30 Si) in single crystalline 2/1-mullite. Ikuma et al.[8] measured the18 O diffusivity in single crystalline 3/2mullite. Also shown are data of the parabolic growth constant, k, of mullite formation measured by Aksay et al.[17] via high-temperature diffusion couple experiments.
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For

  all tracer diffusion experiments single crystalline 2/1 mullite disks (≈ 1 mm thick) cut perpendicular to [010] and [001] were used to measure the tracer diffusivities along the crystallographic b and c axes. The single crystals were synthesized by Dr. W. Walraffen (Univ. Bonn, Germany) using the Czochralski technique. Details of the crystal growth procedure were published by Guse and Mateika [6]. The b and c axes are very different from a crystallographic point of view, because the mullite structure consists of chains of edge-sharing AlO 6 octahedra running parallel to the crystallographic c axis. These AlO 6 chains are cross-linked by (Al, Si)O 4 tetrahedra forming

  thickness of the mullite layer increased linearly with the square root of time, indicating that the growth mechanism is diffusion-controlled. The results of Aksay's experiments are outlined in Table

  about here]Because of the low silicon tracer diffusivity we neglect Si 4+ ion fluxes and consider a formation mechanism where Al 2 O 3 is transported by Al 3+ and O 2-ion fluxes through the mullite layer. The fluxes are described by a coordinate system which is fixed to the phase boundary I. Such a coordinate system becomes applicable when one cation has a much lower mobility than other species[19]. The intrinsic drift velocity, dξ/dt, describes the drift velocity of phase boundary II relative to phase boundary I. A simple, but fundamental, relation between the Al 3+ and O 2-fluxes in Fig.2is given in the absence of space charges the literature (p. 229 in[20]) one finds the concept of a molecular flux, used to express the fact that the process takes places as if an entity β α B A of fixed composition (a "molecule" or better a "formula unit") were migrating. The condition for a molecular flux of Al 2 is the flux of the ion i (Al 3+ , O 2-). Equation (6) ensures the composition to remain constant and is identical to equation (5) which excludes any build-up of space charge. That is, one can describe the two coupled Al 3+ and O 2-ion fluxes by a single molecular flux of Al 2 the molecular concentration, D the molecular (ambipolar) diffusion coefficient and µ the molecular chemical potential of Al 2 O 3 in the solid mullite layer. In ceramics the term ambipolar diffusion coefficient is preferred as it implies the fact of the migration of coupled charges (p. 232 in

  the self diffusion coefficients, D i , of the ions in equation (8) to our measured tracer diffusivitiesso-called correlation factor (p. 97 in[20]). Correlation factors for self diffusion are calculated for different diffusion mechanisms and crystal structures and are often in the order of 1 (p. 98 in[20]). Therefore, we can calculate the ambipolar diffusion coefficient of Al 2 O 3 in a first order approximation by our

2 D

 2 2 O 3 at phase boundary I corresponds to our calculated ambipolar diffusion coefficient of Al 2 O 3 from the measured tracer diffusivity data. The disadvantage of this notation is that it seems to suggest that I O Al 3and the dimensionless factor, ∆R, are independent terms, with the wrong implication that k is proportional to the absolute value of I

  from our proposed defect model (see appendixA.3) 

  free energy for the formation of 3/2-mullite from the parent oxides and II SiO 2

  the superscripts I and II denote values of the chemical potential of Al 2 O 3 at the corresponding phase boundaries in Fig. 2 and the subscript 0 indicates values of a first approximation. The difference of the chemical potential of Al 2 O 3 at both phase boundaries can be calculated by means of the Gibbs free energy of formation of 3/2-mullite from the oxides and the activity of SiO 2 in the aluminium-silicate melt at phase boundary II (see appendix A.4).

  that the reason for this observation is the low value of the Gibbs free

2 O 3 which

 23 is mainly explained by impurities which induce extrinsic point defects and affect the diffusion process[27]. Furthermore, we have assumed that the influence of the Si/Al ratio does not strongly affect the diffusion process. This assumption is based on the low value of the Gibbs free energy of formation of mullite and on the resulting close agreement of the oxygen diffusivity data obtained for (single crystalline) 2/1-mullite and 3/2-mullite (see also[28] for further discussion) but is open to debate for the aluminium diffusivity.This discussion shows that the parabolic growth rates calculated from our measured bulk tracer diffusivity data of oxygen and aluminium define at least a lower limit of the experimentally observed growth rates. With the exception of the mullite formation data set at the highest temperature (1813 °C) the discrepancy between parabolic rate constants calculated on the basis of (extrapolated) bulk diffusion data and the experimentally determined rate constants is about half an order of magnitude, which clearly supports our model, taking into account that the details of the growth experiment (impurity concentrations etc.) are not fully evident from the literature.

  ions. The two ionic fluxes can be described by a single molecular (ambipolar) flux of Al 2 O 3 which transports Al 2 O 3 through the mullite layer and reacts with SiO 2 to mullite. The ambipolar flux of Al 2 O 3 is enabled by freely migrating defects which are formed during the mullite formation reaction.

  ) by the definition of a dimensionless factor, ∆R, and assume that the ambipolar diffusion coefficient of Al 2 O 3 at interface I corresponds to the ambipolar diffusion coefficient of Al 2 O 3 calculated from our tracer diffusivity data. The factor, ∆R, is then calculated by means of the proposed defect model (see equation(21)).Further, it is demonstrated that because of the fairly low value of the Gibbs free energy of formation of mullite the ambipolar diffusion coefficient of Al 2 O 3 in the mullite layer is practically constant.To calculate the parabolic growth rate of mullite formation we need the ambipolar diffusion coefficient of Al 2 O 3 in the mullite layer which can principally be calculated from the diffusion coefficients of aluminium and oxygen (equation (8)). Neglecting correlation effects we calculate the ambipolar diffusion coefficient of Al 2 O 3 from our measured tracer diffusivity data (equation (10)). The results of this calculation are compiled in Table2 andshow that our calculated values are about a factor of 5 lower than the measured values by Aksay et al. [17], at least below 1750 °C. Taking into account typical experimental errors in layer growth experiments this fairly small discrepancy supports our reaction model. Our calculated values thus define a lower limit of the parabolic growth rate. Acknowledgement Financial support from Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.The comments of an anonymous reviewer helped to improve the manuscript.

  is the activity of component i (Al 6 Si 2 O 13 , Al 2 O 3 , SiO 2 ) and free energy of formation of 3/2-mullite from the oxides which can be calculated by the free energy of the formation from elements,

  where c i , D i and η i are the concentration, the diffusion coefficient and the electrochemical ion i (Al 3+ , O 2-), respectively[31]. The gradient of the electrochemical potentials can be expressed by the Faraday constant and ϕ the electrical potential. The condition for electroneutrality, equation(5), is used to eliminate the unknown term F×dϕ/dx from the flux equations. equation (37) into the flux equations (35)-(36) and respecting equation (5) and(30) 

  Thus, all particles (Al 2 O 3 , Al 3+ , O 2-) considered in the proposed mullite formation model migrate with the same drift velocity, v.

  47) into equation (46) gives equation(21).

  Al and18 O, which are almost equal. Based on this observation we propose a reaction model for the diffusion-controlled mullite formation in the solid state, which assumes that the growth kinetics of a mullite layer is mainly controlled by the diffusion of aluminium ions and oxygen ions.

For

  all tracer diffusion experiments single crystalline 2/1 mullite disks (≈ 1 mm thick) cut perpendicular to [010] and [001] were used to measure the tracer diffusivities along the crystallographic b and c axes. The single crystals were synthesized by Dr. W. Walraffen (Univ. Bonn, Germany) using the Czochralski technique. Details of the crystal growth procedure were published by Guse and Mateika [6]. The b and c axes are very different from a crystallographic point of view, because the mullite structure consists of chains of edge-sharing AlO 6 octahedra running parallel to the crystallographic c axis. These AlO 6 chains are cross-linked by (Al, Si)O 4 tetrahedra forming

  thickness of the mullite layer increased linearly with the square root of time, indicating that the growth mechanism is diffusion-controlled. The results of Aksay's experiments are outlined in Table

  . The intrinsic drift velocity, dξ/dt, describes the drift velocity of phase boundary II relative to phase boundary I. A simple, but fundamental, relation between the Al 3+ and O 2-fluxes in Fig.2is given in the absence of space charges the literature (p. 229 in[20]) one finds the concept of a molecular flux, used to express the fact that the process takes places as if an entity β α B A of fixed composition (a "molecule" or better a "formula unit") were migrating. The condition for a molecular flux of Al 2 is the flux of the ion i (Al 3+ , O 2-). Equation (6) ensures the composition to remain constant and is identical to equation (5) which excludes any build-up of space charge. That is, one can describe the two coupled Al 3+ and O 2-ion fluxes by a single molecular flux of Al 2 the molecular concentration, D the molecular (ambipolar) diffusion coefficient and μ the molecular chemical potential of Al 2 O 3 in the solid mullite layer. In ceramics the term ambipolar diffusion coefficient is preferred as it implies the fact of the migration of coupled charges (p. 232 in[20] or p. 238 in[21]). For the ambipolar diffusion coefficient of Al 2 O 3 in equation (7) one gets after a lengthy calculation (see appendix A.1) is the diffusion coefficient of the ion i (Al 3+ , O 2-) which is related to the random thermal motion of the ions. In diffusional transport the random thermal motion is superposed on a drift resulting from field forces like the gradient of the chemical potential. Using equation (7) one gets for the average drift velocity of Al 2

  the self diffusion coefficients, D i , of the ions in equation (8) to our measured tracer diffusivitiesso-called correlation factor (p. 97 in[20]). Correlation factors for self diffusion are calculated for different diffusion mechanisms and crystal structures and are often in the order of 1 (p. 98 in[20]). Therefore, we can calculate the ambipolar diffusion coefficient of Al 2 O 3 in a first order approximation by our
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 2 2 O 3 at phase boundary I corresponds to our calculated ambipolar diffusion coefficient of Al 2 O 3 from the measured tracer diffusivity data. The disadvantage of this notation is that it seems to suggest that I O Al 3and the dimensionless factor, ΔR, are independent terms, with the wrong implication that k is proportional to the absolute value of I

  from our proposed defect model (see appendixA.3) 

  free energy for the formation of 3/2-mullite from the parent oxides and II SiO 2

  where the superscripts I and II denote values of the chemical potential of Al 2 O 3 at the corresponding phase boundaries in Fig. 2 and the subscript 0 indicates values of a first approximation. The difference of the chemical potential of Al 2 O 3 at both phase boundaries can be calculated by means of the Gibbs free energy of formation of 3/2-mullite from the oxides and the activity of SiO 2 in the aluminium-silicate melt at phase boundary II (see appendix A.4).

  η is the electrochemical potential of electrically charged particles (Al 3+ , O 2-) and μ is the chemical potential of the uncharged particle (Al 2 O 3 ). The chemical reaction equation of the 3/2-mullite formation from the oxides is given by

  is the activity of component i (Al 6 Si 2 O 13 , Al 2 O 3 , SiO 2 ) and free energy of formation of 3/2-mullite from the oxides which can be calculated by the free energy of the formation from elements,

  where c i , D i and η i are the concentration, the diffusion coefficient and the electrochemical ion i (Al 3+ , O 2-), respectively[31]. The gradient of the electrochemical potentials can be expressed by the Faraday constant and ϕ the electrical potential. The condition for electroneutrality, equation(5), is used to eliminate the unknown term F×dϕ/dx from the flux equations. equation (37) into the flux equations (35)-(36) and respecting equation (5) and(30) 

  particles (Al 2 O 3 , Al 3+ , O 2-) considered in the proposed mullite formation model migrate with the same drift velocity, v.

A. 3

 3 Derivation of equation(21) 

  interface I the activity of Al 2 O 3 is 1 (see Fig.2) so that one can calculate the activity of SiO 2 at interface I using equation (34) 47) into equation (46) gives equation(21).A.4 Derivation of equation (24)The activity of Al 2 O 3 is 1 at interface I and II equation (34) one gets equation(24).
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Fig. 1

 1 Fig.1Compilation of our measured tracer diffusivities ( 18 O,26 Al,30 Si) in single crystalline 2/1-mullite. Ikuma et al.[8] measured the18 O diffusivity in single crystalline 3/2mullite. Also shown are data of the parabolic growth constant, k, of mullite formation measured by Aksay et al.[17] via high-temperature diffusion couple experiments.

Fig. 2

 2 Fig. 2 Schematic representation of the reaction model for the mullite formation. Al 2 O 3 is transported through the solid mullite layer by means of intrinsic Al 3+ and O 2-ion fluxes and reacts to 3/2-mullite with SiO 2 from the aluminosilicate melt which is in equilibrium with mullite. The chemical potential of Al 2 O 3 decreases across the mullite layer, the limiting values are I O Al 3 2 μ in α-Al 2 O 3 and II O Al 3 2 μ in the aluminosilicate melt.

  2-) which is related to the random thermal motion of the ions. In diffusional transport the random thermal motion is superposed on a drift resulting from field forces like the gradient of the chemical potential. Using equation(7) one gets for the average drift velocity of Al 2 O 3
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  and the subscript 0 indicates values of a first approximation. The difference of the chemical potential of Al 2 O 3 at both phase boundaries

	∆	µ	Al	2	O	3	=	∆	r	G	3 Al 6 Si o	2	O 13	-	3 2	RT	ln(	a	II SiO	2	)	(24)
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  Al and18 O, which are almost equal. The results of this calculation are compiled in Table2and show that our calculated values are about a factor of 5 lower than the measured values by Aksay et al.[17], at least below 1750 °C. Taking into account typical experimental errors in layer growth experiments this fairly small discrepancy supports our reaction model. Our calculated values thus define a lower limit of the parabolic growth rate.

	Based on this observation we propose a diffusion-controlled mullite formation model which assumes that the growth kinetics of a mullite layer is controlled by the diffusion of aluminium ions and oxygen ions. The two ionic fluxes can be described by a single molecular (ambipolar) flux of Al 2 O 3 which transports Al 2 O 3 through the mullite layer and reacts with F o r
	SiO 2 to mullite. The ambipolar flux of Al 2 O 3 is enabled by freely migrating defects which are formed during the mullite formation reaction. P
	The reaction of SiO 2 with Al 2 O 3 on regular sites in the mullite structure requires the formation e
	of aluminium vacancies and oxygen vacancies (equation (13)). Based on this defect model we derive equation (17) to calculate the parabolic growth constant of mullite formation. However, e r
	the direct application of this equation requires the proposed defect model to be valid in the whole mullite layer and necessitates the measurement of tracer diffusivities at the two R interfaces. Therefore, we write equation (17) into the form of equation (18) by the definition e of a dimensionless factor, ∆R, and assume that the ambipolar diffusion coefficient of Al 2 O 3 at interface I corresponds to the ambipolar diffusion coefficient of Al 2 O 3 calculated from our tracer diffusivity data. The factor, ∆R, is then calculated by means of the proposed defect v i e model (see equation (21)). Further, it is demonstrated that because of the fairly low value of the Gibbs free energy of w
	formation of mullite the ambipolar diffusion coefficient of Al 2 O 3 in the mullite layer is practically constant. To calculate the parabolic growth rate of mullite formation we need the ambipolar diffusion coefficient of Al 2 O 3 in the mullite layer which can principally be calculated from the diffusion O n l
	coefficients of aluminium and oxygen (equation (8)). Neglecting correlation effects we y
	calculate the ambipolar diffusion coefficient of Al 2 O 3 from our measured tracer diffusivity

15 data (equation (
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Table 1

 1 Experimental conditions and data for sapphire-equilibrium-melt runs[17], where t is the annealing time, ξ is the mullite layer thickness, and k exp the experimental
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  Aluminium has no natural tracer isotopes and there are only a few aluminium diffusion data in the literature measured by means of the radiotracer isotope26 Al[9]-[13]. The reason is that
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  sapphire sample side. This transport is enabled by a flux of freely migrating defects which are formed during the mullite formation reaction. We assume that during the reaction of "SiO 2 " from the binary glass with "Al 2 O 3 ", which is located on regular sites in the mullite structure, aluminium vacancies and oxygen vacancies are formed according to the following reaction Si 2 O 13 is 3/2-mullite. If local defect equilibrium is assumed one gets from equation

	(applying the Kröger-Vink notation)																
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Aksay et al.

[17] 

used diffusion couples with sapphire and aluminium-silicate glasses at different temperatures. For every temperature, the Al 2 O 3 concentration of the binary glass was chosen so that the glass phase was in equilibrium with the mullite phase. That is, any growth of the mullite layer requires Al 2 O 3 to be transported through the mullite layer from the

the reaction layer is practically constant is fulfilled if

  

	∆	µ	i <	n	RT	. This

case is generally more likely at higher temperatures and reactions with low Gibbs free energy of formation (e.g the considered mullite formation from the oxides). One has then

  

	R R 0 ∆ ≈ ∆	and can calculate

the parabolic growth constant by the simple equation (22). The application of a defect model does practically not improve the calculated parabolic growth constants in the considered temperature range so that it becomes difficult to prove a proposed defect model quantitatively from experimentally determined parabolic
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conflict with relation (27) which is based on the assumption that the diffusion coefficient in the reaction layer is approximately constant. This case is generally more likely at lower temperatures and reactions with high Gibbs free energy of formation. It is then not reasonable to assume a constant diffusion coefficient to integrate equation (12), so that an appropriate defect model is necessary to calculate parabolic growth constants.

  

	The measured parabolic growth rates of 3/2-mullite are by a factor of 4 to 17 larger (see the
	ratio	k	exp k /	calc	in Table 2) than the parabolic growth rates calculated from our measured
	tracer diffusivities in single crystalline 2/1-mullite. Two terms were used to calculate the
	theoretical parabolic growth rates (see equation (18)): a diffusivity term and a dimensionless
	term, the factor, ∆R, which could be expressed in a good approximation by the normalised
	change of the chemical potential of Al 2 O 3 ,	∆	µ	Al	2 O	3	/	RT	, across the reaction layer. Hence, a

strong deviation from the experimental values cannot be explained by a wrong calculation of the factor, ∆R, because this would imply a very erroneous calculation of the chemical potential of Al 2 O 3 . The observed deviation from the experimental values must be induced by the calculation of the diffusivity term in equation (

Table 1

 1 Experimental conditions and data for sapphire-equilibrium-melt runs[17], where t is the annealing time, ξ is the mullite layer thickness, and k exp the experimental

	2 O 3 is 1 at interface I and II Al 3 O 2 a	at interface II (see Fig. 2) so that one gets
	from equation (43) for the difference of the chemical potential					
	∆	µ	Al	2	O	3	=	µ	II Al	2	O	3	-	µ	I Al	2	O	3	=	RT	ln(	a	II Al	2	O	3	)	(48)
	Considering equation (34) one gets equation (24).											

Table 2

 2 Parabolic growth rates calculated from the measured tracer diffusivities of

	aluminium and oxygen using equations (10), (18) and (21) (compare with
	experimental data in Table 1). The activity of SiO 2 at phase boundary II, II SiO 2 a , was
	approximated by the molar fraction of SiO 2 in the aluminium-silicate melt. The free
	energy,	∆	r G	Al	6 Si	2	13 O

controlled mullite formation reaction model being based on tracer diffusivity data of aluminium, silicon and oxygen

  Compilation of our measured tracer diffusivities ( 18 O,26 Al,30 Si) in single crystalline 2/1-mullite. Ikuma et al.[8] measured the18 O diffusivity in single crystalline 3/2mullite. Also shown are data of the parabolic growth constant, k, of mullite formation measured by Aksay et al. [17] via high-temperature diffusion couple experiments. Schematic representation of the reaction model for the mullite formation. Al 2 O 3 is transported through the solid mullite layer by means of intrinsic Al 3+ and O 2-ion fluxes and reacts to 3/2-mullite with SiO 2 from the aluminosilicate melt which is in equilibrium with mullite. The chemical potential of Al 2 O 3 decreases across the mullite

	Figure Captions		Philosophical Magazine, submitted, revised
	13 O kJ/mol 2 6 Si Al r G -33.8 o ∆ °C kJ/mol 1678 16.2 F r P e a 0.93 0.65 0.69 2.1×10 -17 II SiO 2 ∆R 0 ∆R 3 2 O Al D m 2 /s e r R e v i e w O n 1.5×10 -17 calc k y y y m 2 /s l Fig. 1 Fig. 2 layer, the limiting values are I O Al 3 2 µ in α-Al 2 O 3 and II O Al 3 2 µ in the aluminosilicate melt. calc exp k / k 4.6 F o r P e e r R e v i e w O n l 0.45 0.50 0.55 0.60 0.65 0.70 0.75 10 -22 10 -20 10 -18 10 -16 10 -14 k 1800 1600 1400 1200 T [°C] A diffusion-P. FIELITZ * †, G. BORCHARDT †, M. SCHMÜCKER ‡ and H. SCHNEIDER ‡ Parabolic Growth Constant of Mullite, Aksay et al. 18 O, Ikuma et al. (3/2-mullite) Tracer Diffusivities of 18 O, 26 Al, 30 Si Fielitz et al. (2/1-Mullite) Mean values II[010] II[001] 26 Al 18 O 30 Si D, k [m 2 /s] 1000/T [1/K] F F o r †Institut für Metallurgie, Technische Universität Clausthal, D-38678 Clausthal-Zellerfeld, Germany o r P e ‡Institut für Werkstoff-Forschung, Deutsches Zentrum für Luft-und Raumfahrt, P µ I Al 2 O 3 D-51147 Köln, Germany e e r * corresponding author: e-mail: peter.fielitz@tu-clausthal.de e r R e v i e l n y l O x x = 0 solid solid liquid (I) (II) x = ξ n O w Al 2 O 3 SiO 2 -Al 2 O 3 melt 3Al 2 O 3 •2SiO 2 Al 3+ O 2-µ II Al 2 O 3 w e i v e phone: +49/5323/72-2634 R fax: +49/5323/72-3184
	1678 16.2	-33.8	0.93 0.65 0.69 2.1×10 -17	1.5×10 -17	3.9
	1753 16.8	-35.3	0.85 0.59 0.63 6.1×10 -17	3.8×10 -17	5.6
	1813 17.3	-36.5	0.70 0.46 0.48 1.3×10 -16	6.4×10 -17	17	Fig. 2
						Fig. 1 1
						22

  Aksay et al.[17] used diffusion couples with sapphire and aluminium-silicate glasses at different temperatures. For every temperature, the Al 2 O 3 concentration of the binary glass was chosen so that the glass phase was in equilibrium with the mullite phase. That is, any growth of the mullite layer requires Al 2 O 3 to be transported through the mullite layer from the This transport is enabled by a flux of freely migrating defects which are formed during the mullite formation reaction. We assume that during the reaction of "SiO 2 " from the binary glass with "Al 2 O 3 ", which is located on regular sites in the mullite structure, aluminium vacancies and oxygen vacancies are formed according to the following reaction
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  ) one can conclude that the reason for this observation is the low value of the Gibbs free the agreement between the experimental data and the calculated parabolic growth rates in this temperature range, so that it is not meaningful to try a quantitatively validation of this model. It is, however, extremely useful to discuss this phenomenon from a more general point of view. The derivation of the factor of first approximation, ΔR 0 , starts with the assumption that the (chemical) diffusion coefficient, D, in the reaction layer is practically constant and we assume, of course, that the calculated parabolic growth rate is practically correct, which implies the approximate relation constant

	energy,	G Δ o Al r	6 Si	2	13 O	≈	-	35	kJ	/	mol	, for the formation of 3/2-mullite from the oxides and the
	high experimental temperatures,	RT ≈	17	kJ	/	mol	. Therefore, our proposed defect model does
	practically not improve				

  ΔR, because this would imply a very erroneous calculation of the chemical potential of Al 2 O 3 . The observed deviation from the experimental values must be induced by the calculation of the diffusivity term in equation (
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  4 ) was observed than in the bulk. The amount of Al 2 O 3 which is transported through the grain boundaries is proportional to the volume fraction of grain boundaries in the mullite layer. Therefore, an effective diffusion coefficient can be calculated by the Hart-Mortlock equation[24][25] 
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  Al and18 O, which are almost equal.Based on this observation we propose a diffusion-controlled mullite formation model which assumes that the growth kinetics of a mullite layer is controlled by the diffusion of aluminium ions and oxygen ions. The two ionic fluxes can be described by a single molecular (ambipolar) flux of Al 2 O 3 which transports Al 2 O 3 through the mullite layer and reacts with SiO 2 to mullite. The ambipolar flux of Al 2 O 3 is enabled by freely migrating defects which areThe reaction of SiO 2 with Al 2 O 3 on regular sites in the mullite structure requires the formation of aluminium vacancies and oxygen vacancies (equation (13)). Based on this defect model we derive equation(17) to calculate the parabolic growth constant of mullite formation.However, the direct application of this equation requires the proposed defect model to be valid in the whole mullite layer and necessitates the measurement of tracer diffusivities at the two interfaces. Therefore, we write equation (17) into the form of equation (18) by the definition of a dimensionless factor, ΔR, and assume that the ambipolar diffusion coefficient of Al 2 O 3 at interface I corresponds to the ambipolar diffusion coefficient of Al 2 O 3 calculated from our tracer diffusivity data. The factor, ΔR, is then calculated by means of the proposed defect model (see equation (21)).Further, it is demonstrated that because of the fairly low value of the Gibbs free energy of formation of mullite the ambipolar diffusion coefficient of Al 2 O 3 in the mullite layer is practically constant.To calculate the parabolic growth rate of mullite formation we need the ambipolar diffusion coefficient of Al 2 O 3 in the mullite layer which can principally be calculated from the diffusion coefficients of aluminium and oxygen (equation (8)). Neglecting correlation effects we calculate the ambipolar diffusion coefficient of Al 2 O 3 from our measured tracer diffusivity data (equation(10)). The results of this calculation are compiled in Table2and show that our calculated values are about a factor of 5 lower than the measured values by Aksay et al.[17], at least below 1750 °C. Taking into account typical experimental errors in layer growth experiments this fairly small discrepancy supports our reaction model. Our calculated values thus define a lower limit of the parabolic growth rate.
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	F o F o
	r r
	P P
	e e r e e r
	R e v i e w R e v i e w
	O n O n
	l y l y
	14 15

Table 1

 1 Experimental conditions and data for sapphire-equilibrium-melt runs[17], where t is the annealing time, ξ is the mullite layer thickness, and k exp the experimental parabolic growth constant.
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Table 2

 2 Parabolic growth rates calculated from the measured tracer diffusivities of aluminium and oxygen using equations (10), (18) and (21) (compare with experimental data in Table1). The activity of SiO 2 at phase boundary II,II 

	SiO 2 a , was
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