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Phenomenological coefficients in a dilute BCC alloy for the

dumbbell mechanism

V. Barbe, M. Nastar∗

Service de Recherches en Métallurgie Physique, CEA/Saclay,
91191 Gif-sur-Yvette Cedex, France.

Abstract

The Self-Consistent Mean Field Method is applied to calculate the transport coefficients in a dilute

BCC alloy with the dumbbell diffusion mechanism. A first degree of approximation (first shell) of

the SCMF formalism coincides with the formerly derived pair association method, and a second

degree of approximation (second shell) leads to a more accurate analytical formulation. The SCMF

results are compared with other formalisms as well as existing and new Monte Carlo simulations,

including a solute-dumbbell binding energy. This theory shows a good balance between accuracy

and maniability in the investigated systems, and a simple criterium is proposed for the preferential

use of the first and second shell approximations.

Short title : Dumbbell in a dilute BCC alloy

1 Introduction

Within the framework of the linear thermodynamics of irreversible processes, the transport coeffi-

cients Lij are defined as the linear coefficients relating the flux of a species i to the thermodynamic

force applied on the species j. Theoretical calculations of those coefficients in model alloys have

rised a considerable interest in the past decades, as their knowledge provides with information on the

∗Author for correspondence. Email : maylise.nastar@cea.fr.
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coupling between fluxes of atoms and defects (e.g. a flux of solute atoms induced by a defect flux).

Defect fluxes are of a particular importance in irradiated materials, where supersaturated vacancies

and interstitials are permanently created and eliminate at defect sinks. As a consequence, attention

has been specially paid to both main types of defects, vacancies and interstitials in the dumbbell

configuration (two atoms on a single atomic site).

In a dilute alloy (say B in the solvent A), very satisfying results have been achieved over the years

for the vacancy mechanism [1]. However, the more complex dumbbell mechanism has not been given

a complete treatment yet. In the FCC structure, Bocquet [2] calculated the transport coefficients

for an energetic description of the system neglecting the interactions of the defect and the solute

with neighbouring atoms, followed by Chaturvedi and Allnatt [3] and Singh and Chaturvedi [4]. A

more complex calculation, including solute-dumbbell interaction, was proposed by Barbu [5] and

completed by Allnatt et al. [6] and Okamura and Allnatt [7], all assuming 〈100〉 dumbbells. In

the BCC structure, Bocquet [8, 9] calculated the diffusion coefficients of the solute and defect for

the 〈110〉 and 〈111〉 orientations, but did not derive the entire set of transport coefficients. The

first expression was due to Barbu and Lidiard [10] using the pair association method with the

〈110〉 orientation : the results were found to be very simple, due to a low level of approximation,

neglecting for instance the solute-dumbbell interactions. Recently, Sharma et al. [11] proposed a

more systematic kinetic treatment for the same energetic description, based on the same formalism

as Chaturvedi and Allnatt [3], hereafter refered to as the Chaturvedi formalism. However, due to

the particular complexity of the jump mechanism for the 〈110〉 dumbbell, the entire procedure was

presented only for the translation mechanism. They nevertheless provided with the first Monte Carlo

results for the dumbbell mechanism in a dilute alloy, which gives an insight of the accuracy of the

different theories.

In this paper we address the calculation of the transport coefficients using the self-consistent
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mean field theory (SCMF), initially proposed by Nastar et al. [12] for the vacancy mechanism (see

also [13, 14]), and newly adapted to the dumbbell mechanism [15, 16]. This formalism has proved

its efficiency by proposing the first expression of the transport coefficients in a concentrated BCC

alloy for the dumbbell mechanism. We now explore the dilute limit of this alloy. Due to the

relative simplicity of the expressions, we will take into account also in the present paper a complete

thermodynamic description of the system, including dumbbell-substitutionnal interactions as well as

interactions between the solute and solvent atoms.

Section 2 is devoted to the presentation of the atomic model and Section 3 to the the derivation of

the transport coefficients. The latter is exactly the same as presented in reference [15], simply reduced

to the dilute limit, so that we will only introduce the main equations in the present paper. As for

the concentrated case, two approximations of the SCMF results are presented, denoted as first shell

and second shell approximations, the corresponding results being summarized in section 4. Section

5 is shortly devoted to the Monte Carlo simulation technique, and the different approximations are

discussed in Section 6, by comparison with existing formalisms (by Barbu and Lidiard or Sharma

and Chaturvedi) on the basis of available and new Monte Carlo simulations.

2 Atomic model

As mentioned above, the stable geometry of the dumbbell that we consider in this study is the 〈110〉

orientation. It is noted ABα, where α is one of the six possible orientations if both atoms are of the

same species, and one of the twelve directions if else. In this structure the defect can experience four

types of displacements, as presented by Bocquet [8]. The first one is an on-site rotation of an angle

of 60◦ toward another 〈110〉 orientation, and the other three consist in the jump of one atom of the

defect toward a substitutional atom to form a new defect, while the second atom of the initial defect

3
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remains in substitutional position. In the general case, one can write :

ABα + C → A + BCβ. (1)

For the translation mechanism (T), C is a ‘target’ nearest neighbour of ABα and α = β. The

rotation-translation mechanism (RT) combines a translation plus a 60◦ on-site rotation of the dumb-

bell BC. Eventually, another rotation-translation mechanism (RT2) combines a jump toward a

second-neighbour site and a 90◦ on-site rotation. This mechanism is temporarily ignored by the

present version of the SCMF formalism for the dumbbell mechanism, which is restricted to a nearest-

neighbour (nn) description.

For simplicity we note AB‖C the configuration in which C is on a target site for the B atom of

the dumbbell, BA‖C if C is on a target site for the A atom and AB⊥C if C is on a non-target nn

site of the dumbbell. Target sites as well as jump mechanisms are schemed on Figure 1.

[ Insert Figure 1 about here ]

The most common expression of the jump frequency for Equation (1) is wαβ
AB/C , assuming that the

frequency depends only on the nature of the three involved atoms and on the jump mechanism. This

notation, due to Bocquet [2], was widely employed, particularly by Sharma et al. [11] in the dilute

BCC alloy, but fails to describe a dumbbell-solute interaction. However, in our sense, it is necessary

to treat the case of a dilute alloy more consistently. If we restrict to nn solute-dumbbell interactions,

there is still a limited set of configurations to consider, and a limited set of jump frequencies relating

the different configurations : we shall note wi (i = 1, 2 . . .) each different jump frequency. This

model is an adaptation to the BCC structure of the one proposed by Barbu [5], and an extension of

the four-frequency model by Barbu and Lidiard [10] in the BCC dilute alloy, the latter neglecting

atom-solute interactions. Table 1 describes each jump frequency wi and details the correspondence

with the four-frequency model in absence of interactions.

4
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[ Insert Table 1 about here ]

As in Ref. [15], we differentiate the translation and rotation-translation mechanism in terms of

jump frequencies : wi stands for the RT mechanism, and the corresponding translation frequency is

τiwi. The respect of the detailed balance implies the following relations between the jump frequencies

as well as between the factors τi :

τ3 = τ2 (2)

τ5 = τ4 (3)

τ7 = τ6 (4)

wR4

wR5

=
w4

w6

. (5)

In the following, we will need the equilibrium concentrations of the initial configurations for

every jump or rotation frequency. We thus define cAB as the equilibrium probability of the mixed

dumbbell to occur in one only direction (out of twelve) ; in the same way, cAA is the probability of

finding a dumbbell AAα in one single orientation α without solute atom in nn position, cAA‖B is the

probability of one geometrical configuration (out of 24) where B is a target atom of A, and cAA⊥B

for a nn non-target site. At equilibrium, all directions are equivalent, so that the mass conservation

states :

6cAA + 12cAB + 24cAA‖B + 24cAA⊥B = cI (6)

c′B + 12cAB + 24cAA‖B + 24cAA⊥B = cB, (7)

where cI and cB are the total concentrations of the system in dumbbells and solute atoms respectively,

and c′B is the concentration of free solute atoms (further than a nn distance from any dumbbell).

Those concentrations are calculated by means of the detailed balance in Appendix A, where a

description of the jump frequencies in terms of interaction energies is also to be found. Although

5

Page 5 of 42

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

such a description will be useful for the application to real alloys, we find more practical to derive

the correlation coefficients in terms of the jump frequencies themselves.

The last step is to define jump probabilities W as the product of a jump frequency w by the

concentration c associated to its initial configuration :

W0 = cAAw0 (8)

W1 = cABw1 (9)

W4 = cAA‖Bw4 (10)

W6 = cAA⊥Bw6 (11)

WR4 = cAA‖BwR4 (12)

Within this framework, the detailed balance is very simply expressed as :

W2 = W3 (13)

W4 = c′BW5 (14)

W6 = c′BW7 (15)

WR4 = WR5. (16)

We can eventually define a mean jump occurence of an atom A from one site to a given nn site :

WA = 3(2 + τ0)W0 + 3(2 + τ2)W2 + 9(2 + τ4)W4 + 9(2 + τ5)c
′
BW5

+12(2 + τ6)W6 + 12(2 + τ7)c
′
BW7 (17)

= 3(2 + τ0)W0 + 3(2 + τ2)W2 + 18(2 + τ5)c
′
BW5 + 24(2 + τ7)c

′
BW7. (18)

3 The SCMF theory : derivation of the transport coeffi-

cients

In the SCMF theory [15], the transport coefficients are calcultated using a non-equilibrium distri-

bution function of a system submitted to an homogeneous and vanishingly low gradient of chemical

6
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potential. In this section, we present a shortened summary of this theory applied to the dumb-

bell mechanism in the BCC structure, to give to the reader the necessary material to perform the

calculations.

3.1 Non-equilibrium description

Each configuration n of the system is described by the occupation numbers nA
i , . . . , nABα

i , . . ., where

nA
i is 1 if the site i is occupied by the chemical species A in substitutional position and 0 if else, and

nABα
i is 1 if the site i is occupied by a dumbbell AB with the orientation α, 0 if else. Thus, the total

occupations of site i by the species A or by a dumbbell are respectively :

NA
i = nA

i + 2
∑

α

nAAα
i +

∑
α,B 6=A

nABα
i (19)

N I
i =

∑
A,B,α

nABα
i . (20)

Note that the sums over the orientations α contain six values for a dumbbell AA and twelve for a

dumbbell AB.

The equilibrium distribution function has the well-known form :

P0(n) = exp [βG0(n)] , (21)

where β = 1/kBT is the inverse temperature and G the Gibbs energy :

G0(n) = Ω +
∑
i,A

NA
i µA +

∑
i

N I
i µI −H, (22)

µA being the chemical potential of the species A, Ω a normalisation constant and H the Hamiltonian

of interactions between atoms and/or defects (see Appendix A).

Under an homogeneous gradient of chemical potential, the SCMF assumes a non-equilibrium

distribution function of the form :

P (n) = exp [β(G0(n) + δG)] (23)

7
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where the correction δG to the Gibbs energy is :

δG(n) = δΩ +
∑
i,A

NA
i δµA

i +
∑

i

N I
i δµI

i − h. (24)

Here δΩ is the correction to the normalization constant and δµA
i is the contribution of the gradient

of chemical potential : unlike the equilibrium case, δµA
i depends on the site i.

The function h is the result of the dynamic correlations between the occupation numbers of

different sites under the influence of a gradient of chemical potential. Following Vaks [17], this

function is a priori unknown and is supposed to take the most general form of an Hamiltonian, hence

its name of effective Hamiltonian. It is composed of effective interactions v, which have nothing in

common with thermodynamic interactions but their name and the alphabetic letter. In particular,

the effective interactions are proportional to the gradients of chemical potential and are consequently

directive, i.e. they obey the anti-symmetry relation :

vBA
ij = −vAB

ij , (25)

and more generally an effective interaction changes its sign by inverting the position of the concerned

atoms. One consequence is that the effective interactions vAA
ij are always equal to zero.

A detailed presentation of the effective interactions and the antisymmetry property is to be found

in [15] for a general multi-component concentrated alloy, with effective interactions limited to a nn

range. In this study, we restrict ourselves to the common treatment of a dilute alloy and discard all

configurations involving more than one solute atom. As a consequence, only six configurations are

compatible with a nn description :

• B belongs to the dumbbell ;

• B is on a target site of the AA dumbbell ;

• B is on a nn non-target site of the AA dumbbell.

8
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Each configuration is counted twice since the dumbbell can be oriented perpendicularly to the dif-

fusion direction (superscript I0) or toward the diffusion direction (superscript I+). It is unnecessary

to take into account the backward orientation, because of the antisymmetry property of the effective

interactions. Figure 2 schemes those configurations and the associated effective interactions if the

diffusion direction is assumed to be the 〈100〉 direction. Note that the configuration AB0 is invariant

by symmetry and consequently gives rise to no effective interaction, so that the simple notation vAB

is attributed to the configuration AB+.

[ Insert Figure 2 about here ]

To conclude, recalling that the gradient of chemical potential is vanishingly low, so must be the

correction δG, so that the non-equilibrium distribution function can be linearized with respect to the

non-equilibrium terms. Using Equations (21), (23) and (24), one eventually obtains :

P (n) = P0(n)

[
1 + β(δΩ +

∑
i,A

NA
i δµA

i +
∑

i

N I
i δµI

i − h)

]
. (26)

Generally, all non-equilibrium values may be time-dependent, and one could write P (n, t), δΩ(t),

h(t) . . . However, as we will see in the next section, the calculation is based on a steady-state de-

scription of a system out of equilibrium, so that the time dependence is unnecessary.

3.2 Flux and kinetic equations

The above non-equilibrium description is related to the transport coefficients of the system by a

Master Equation, as introduced e.g. by Vaks [17] :

dP (n, t)

dt
=

∑
ñ

[
W (ñ → n)P (ñ, t)−W (n → ñ)P (n, t)

]
, (27)

where W (ñ → n) is the transition probability of a system in configuration ñ to the configuration n

per time unit, and P (ñ, t) is the above defined non-equilibrium probability of the configuration ñ.

9

Page 9 of 42

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

As a part of the distribution function, the effective interactions appear in the expression of the

atomic fluxes between two neighbouring sites. Following the very same procedure as in Ref. [15], we

express those fluxes in a dilute alloy as :

JB
i→s = −3(2 + τ1)W1(µ

B
s − µB

i )− 4(2 + τ1)W1vAB (28)

JA
i→s = −WA(µA

s − µA
i )

+4(2 + τ2)W2vAB + 2((2 + τ4)W4 − (2 + τ2)W2)(2vAA+
‖ B + vAA0

‖B
). (29)

To this point, the effective interactions must be self-consistently calculated to give the expression

of the transport coefficients. In the SCMF theory, they are determined by the use of kinetic equations,

i.e. the corresponding moments of the distribution function 〈nAB
i 〉, 〈nAA

i nB
j 〉 must be conserved. The

kinetic equations are obtained by the same calculations as in Ref. [15], and are detailed below :

d〈nAB
i 〉

dt
= 2(2 + τ1)W1(µ

B
j+ − µB

i )− 2(2 + τ2)W2(µ
A
j+ − µA

i )

+ [2(2 + τ2)W2 + 2(3 + 2τ1)W1 + 2WR1] vAB

−2(1 + τ3)W3vAA+
‖ B − 2W3vAA0

‖B
(30)

d〈n
AA+

‖ B

ij 〉
dt

= [(2 + τ3)W3 − (2 + τ4)W4] (µ
A
j+ − µA

i )

−(1 + τ2)W2vAB +
[
3(2 + τ4)W4 + (2 + τ3)W3 + 2WR‖ + 2WR5

]
vAA+

‖ B

−WR‖vAA+
‖ B −WR‖vAA0

‖B
−WR5vAA+

⊥B −WR5vAA0
⊥B (31)

d〈n
AA0

‖B

ij 〉
dt

= [(2 + τ3)W3 − (2 + τ4)W4] (µ
A
j+ − µA

i )

−2W2vAB +
[
3(2 + τ4)W4 + (2 + τ3)W3 + 2WR‖ + 2WR5

]
vAA0

‖B

−2WR‖vAA+
‖ B − 2WR5vAA+

⊥B (32)

d〈nAA+
⊥B

ij 〉
dt

= [4(2 + τ6)W6 + 2WR5 + 2WR⊥] vAA+
⊥B

−WR5vAA+
‖ B −WR5vAA0

‖B
−WR⊥vAA+

⊥B −WR⊥vAA0
⊥B (33)

10
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d〈nAA0
⊥B

ij 〉
dt

= [4(2 + τ6)W6 + 2WR5 + 2WR⊥] vAA+
⊥B

−2WR5vAA+
‖ B − 2WR⊥vAA+

⊥B (34)

Here the notation n
AA+

‖ B

ij for example stands for a dumbbell AA+ on site i and an atom B on target

site j. We enjoin the reader to refer to Ref. [15], particularly Appendix A therein, for the technical

counting of the effective interactions. An important remark is the use in the above relations of the

reduced chemical potential of the chemical species :

µA
i ≡ µA

i + µI
i , (35)

which guarantees that all reduced chemical potential gradients are independent.

The last step consists in putting Equations (30-34) to zero. It is straightforward to assess that

the resulting effective interactions are linear combinations of the gradients of chemical potentials. As

a consequence, combining with Equations (28) and (29) will lead to the Onsager equation, and thus

the definition of the transport coefficients.

4 Results

The SCMF theory as presented in this paper leads to three different approximations of the transport

coefficients, depending on the number of effective interactions one might take into account.

The crudest approximation is the neglecting of all dynamic correlations, or the uncorrelated

transport coefficients. They are obtained by setting to zero all effective interactions, which leads to

the relations :

4kBT

na2
L

(0)
AA = WA

4kBT

na2
L

(0)
AB = 0

4kBT

na2
L

(0)
BB = 3(2 + τ1)W1, (36)

11
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where n is the number of atoms per unit volume and a is the lattice parameter.

The first shell approximation consists in setting the effective interactions involving three atoms to

zero and then solve Equation (30) alone. The transport coefficients in the first shell approximation

have the following expression :

4kBT

na2
L

(1s)
AA = WA −

4(2 + τ2)
2W 2

2

(3 + 2τ1)W1 + (2 + τ2)W2 + WR1

4kBT

na2
L

(1s)
AB =

4(2 + τ2)
2W2W1

(3 + 2τ1)W1 + (2 + τ2)W2 + WR1

=
4kBT

na2
L

(1s)
BA

4kBT

na2
L

(1s)
BB =

(2 + τ1)W1((1 + 2τ1)W1 + 3(2 + τ2)W2 + 3WR1)

(3 + 2τ1)W1 + (2 + τ2)W2 + WR1

. (37)

It must be noted that, though the first shell approximation neglects the kinetic correlations between

the solute and the AA dumbbell, it is fully compatible with a thermodynamic interaction between

both species, which will actually act on the different jump frequencies.

In the second shell approximation, we calculate in principle the transport coefficients on the basis

of all kinetic equations. However, if an analytic resolution of the set of five kinetic equations is always

possible, the final expression is very lengthy and may not be of interest. Consequently we chose to

derive the analytical calculation in the absence of on-site rotation : one notes that in this particular

case, the effective interactions between a dumbbell and a solute atom on a non-target nn site are

equal to zero (Equations (33) and (34)), so that the number of independent equations reduces to

three. Still, the thermodynamic interaction between a dumbbell and a solute on a non-target nn

site continues to play a role, as it controls the concentrations of the different configurations and the
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associated jump frequencies. The transport coefficients are :

4kBT

na2
L

(2s)
AA = WA −−6

((2 + τ3)W3 − (2 + τ4)W4)
2

(2 + τ3)W3 + 3(2 + τ4)W4

− 8Ψ2(2 + τ4)W4((2 + τ3)W3 − (2 + τ4)W4)

(3 + 2τ1)W1 + (2 + τ2 − θΨ)W2

4kBT

na2
L

(2s)
AB =

4(2 + τ2)
2W1 × (4ΨW4)

(3 + 2τ1)W1 + (2 + τ2 − θΨ)W2

=
4kBT

na2
L

(2s)
BA

4kBT

na2
L

(2s)
BB =

(2 + τ1)W1((1 + 2τ1)W1 + 3(2 + τ2 − θΨ)W2)

(3 + 2τ1)W1 + (2 + τ2 − θΨ)W2

. (38)

where we have introduced the quantities Ψ and θ as :

Ψ =
(2 + τ3)W3

3(2 + τ4)W4 + (2 + τ3)W3

(39)

θ =
(1 + τ2)

2 + 2

1 + τ2

(40)

5 Monte Carlo simulations

To test the key results of our and competing theories, we performed a series of Monte Carlo simula-

tions. We used a simulation box of 512 atomic sites with periodic boundary conditions, containing

only one dumbbell and one solute atom, so that cI = 1/512 and cB = 1/513 : in these conditions

we respect the assumption of the dilute alloy model and never introduce any configuration involving

more than one solute atom. A general description of the simulation was given by Murch [18].

The transport coefficients are calculated by the generalized Einstein relations [19] :

kBTV LAA =
〈∆R2

A〉
6t

(41)

kBTV LAB =
〈∆RA∆RB〉

6t
, (42)

where ∆RA is the total displacement of all atoms of species A during the time t, and V is the atomic

volume. The averaging 〈.〉 is operated over at least 105 observations : each observation contains in

average at least five jumps per atom of each atomic species (i.e. 5 jumps of the B atom and 2560

jumps of A atoms), and we impose additionaly that each observation contains at least five jumps
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of the type AA/A to ensure that the defect doesn’t remain “stuck” to the solute atom. Given the

chosen jump frequency ratios which can outpass 1000:1, we might consider as satisfying the obtained

relative error of 10% to 20% in the transport coefficients.

In the presented simulations, we use the value τi = 1 for all frequencies wi. However, the accuracy

of the different approximations of the SCMF theory seems unaffected by the coefficients τi. Moreover,

in order to use the analytical expressions derived for the second shell approximation, we will discard

the on-site rotation.

6 Discussion

In this section the results of the SCMF theory are compared to the other available theories (by

Sharma et al. [11] using the formalism of Chaturvedi, and by Barbu and Lidiard [10] using the pair

association method) and to Monte Carlo simulations. A first part will be devoted to a theoretical

comparison of all formalisms, including both approximations of the SCMF theory, and the second

and third parts will concern the Monte Carlo simulations, respectively within and beyond the four-

frequency model. The effect of on-site rotation is then briefly discussed.

6.1 An analytical comparison of the formalisms

Before addressing the competing formalisms, we will focus on both approximations of the SCMF.

As it is visible from the expressions of the transport coefficients, the main differences arise from the

addition of factors Ψ and θ (defined by Equations (39) and (40) in the second shell approximation).

The physical meaning of Ψ is clearly the competition between the possible jumps of a AA defect with

a neighbouring solute atom : the formation of a mixed dumbbell (frequency W3) or a jump toward

one of the three other target sites with the frequency W4. As emphasized by the expressions of the

transport coefficients, this contribution is the most important difference between the first shell and

second shell approximations : we notice in particular the change in the factor LAB, where the jump
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probability W2 (equal to W3 by the detailed balance) is replaced by ΨW4 in the numerator. Hence,

the first shell approximation should be sufficient as long as both values are not too different, i.e. the

ratio W3/W4 = w3/w4 is not too high.

On the contrary, the factor θ seems to be only a slight geometrical correction. Actually, as Ψ is

always lower than 1, the correction θΨ cannot reach values above 3/2 in absence of translation or 2

if τ2 = 1. This factor is the only difference between both approximations in the expression of LBB,

and the subsequent variation of LBB will not exceed 50%.

To return to the first shell approximation, it is useful to notice that it is strictly equivalent to the

Barbu and Lidiard formalism, provided that all τi factors be equal to 1. Actually, the pair association

method and the SCMF theory are both based on the resolution of the same kinetic equations, and

this similarity could have been expected. From this point of view, it is most probable that a second

shell extension of the work of Barbu and Lidiard would have led to the same results as ours, and

that the second shell approximation of the SCMF in a dilute FCC alloy would equal the results of

Allnatt et al. [6] using the pair association method. It can thus be concluded that the pair association

method, presently restricted to the dilute alloys, is contained in the more general SCMF formalism.

On the other extremity, a comparison of the SCMF with Chaturvedi’s formalism was already

performed in Ref. [15] for the case of concentrated FCC alloys : it had been highlighted that the for-

malism of Chaturvedi could be understood as the SCMF formalism including infinite-range pairwise

effective interactions. Chaturvedi’s formalism is then expected to be more accurate than the present

version of the SCMF theory, although the case of the concentrated FCC alloy pointed out that the

possible gain in accuracy was balanced by a considerable degree of complexity. In the dilute BCC

alloy, this complexity resulted in the impossibility to calculate the transport coefficients but for the

mechanism of simple translation. In this particular case, an analytical formulation of the transport

coefficients is provided (Equations (45), (48) and (49) of Ref. [11]). Those equations contain a factor
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Q (Equation (46) in Ref. [11]) similar in its spirit to the factor Ψ introduced by the SCMF theory.

In conclusion, and before any discussion on the results themselves, this SCMF application ap-

pears like an intermediate approximation between the simple first shell pair association method and

the more systematic formalism of Chaturvedi, the latter being available only for the translation

mechanism.

6.2 Four-frequency model

In order to compare the accuracy of all models, we first restrict ourselves to the simple translation

mechanism. Figure 3 shows the results of all three approximations for the following set of jump

frequencies : wAA/A = 0.01, wAA/B = 0.05, wAB/A = 1, wBA/A = 0.1, as a function of the solute

concentration, in terms of the correlation factor :

f
(A)
AB =

LAB

L
(0)
AA

. (43)

The figure also contains Monte Carlo simulations by Sharma et al. [11], in which the jump frequencies

wBB/A = 1, wBA/B = 0.15, wAB/B = 1, wBB/B = 1 are included, i.e. the simulation box contains

several solute atoms, and configurations involving more than one solute atom actually appear. To

avoid the possible confusion due to the scattering, we represent only the values of the coefficient

f
(A)
AB . The differences between the three models are equivalent for f

(B)
AB , and negligible for fAA and

fBB. The SCMF results in both approximations are calculated for the translation mechanism only,

by setting to zero all terms which are not multiplied by a factor τi : as a consequence, the first shell

results are different from those predicted by Barbu and Lidiard [10], who did not differentiate the

translation and RT mechanisms.

[ Insert Figure 3 about here ]

Two main results are to be seen from Figure 3. On the first hand, the second shell approximation

seems to be surprisingly more accurate than Chaturvedi’s formalism. This result was unexpected
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as the latter contains information about infinite-range correlations, and should be superior. The

difference observed with respect to the Monte Carlo simulations could arise from the configurations

containing more than one solute atom : those configurations are taken into account by the Monte

Carlo simulations, and not by the theoretical models. Nevertheless, it is also to notice that the

difference between the second-shell approximation and the more complex formalism of Chaturvedi

is not essential and reduces to a factor 1.5, so that the nearest-neighbour kinetic treatment of the

SCMF might be sufficient in most cases of interest.

The second information is that the concentration of solute may not be a key parameter for the

comparison of the different formalisms : hence, one observes that the difference between all formalisms

remains practically constant in the entire concentration range. The reason is that all calculations

are made to the first order with respect to cB and will lead to linear expressions in cB, so that the

only differences lie in the coefficients of the linear expressions.

To answer those points, we now focus on new Monte Carlo measurements in a simulation box

containing only one solute atom, and choose to keep a fixed concentration for varying jump frequency

ratios. As we have seen in the first part of the discussion, the main difference between first and second

shell concerns the treatment of the ratio w3/w0 (since in the four-frequency model w4 is replaced by

w0, see Table 1). Consequently, we keep all three frequencies {w0, w1, w2} equal to 1 and let w3 vary

from 0.1 (Ψ = 0.033) to 105 (Ψ = 1). We further assume that the jump frequencies for the simple

translation and rotation-translation are equal (τi = 1 for all i), which is more realistic but discards

the formalism of Sharma et al., and we neglect for simplicity the on-site rotation mechanism. The

resulting transport coefficients are to be seen on Figure 4.

[ Insert Figure 4 about here ]

In this particular set of jump frequencies, the first shell approximation of the SCMF (or the

formalism of Barbu and Lidiard) predicts the equality LAB = LBB for any w3/w0 ratio. The Monte
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Carlo simulations show that it is generally not the case, and that the first shell approximation can

overestimate the cross coefficient LAB as well as the coefficient LAA by several orders of magnitude

for large w3/w0 ratios. On the contrary, the second shell approximation is surprisingly accurate in

this domain. Nevertheless, we must notice that the first shell approximation is sufficient for a w3/w0

ratio between 0 and 10, which supports the conclusions reached in the preceeding section from a

simple observation of the analytiical expressions. A more systematic study involving the variation of

frequencies w0, w1 and w2 shows that the first shell approximation is actually satisfying in all cases

but for a high w3/w0 ratio.

The discrepancy for the factor LAA in the case of large jump frequency ratios is attributed to

a very poor accuracy of the Monte Carlo simulations in this domain : as the association frequency

w3 is much larger than the escape frequency w0, the dumbbell will stay in the neighbourhood of the

solute atom, and the collective movement of the solvent atoms are not satisfyingly explored.

6.3 Beyond the four-frequency model

The relative simplicity of the SCMF formalism allowed to introduce an energetic description of the

system beyond the four-frequency model, including particularly solute-dumbbell nearest-neighbour

interactions. We hereby use this possibility to investigate a “stairs-like” behaviour of the energetic

description. This behaviour is sketched in Figure 5. The mixed dumbbell is given a fixed binding

energy εAB, the dumbbell AA is assumed to have no binding energy, and the solute-dumbbell complex

AA‖B (B on a target site of AA) has an intermediate binding energy VAA‖B between zero and εAB.

In this case, the complete dissociation of the mixed dumbbell will occur in two consecutive steps,

with frequencies w2 and w4.

[ Insert Figure 5 about here ]
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We take as an example the value exp(−βεAB) = 100 and fix the saddle point energies so that all

frequencies but w2 and w4 are equal to 1 (see Figure 5). As a consequence, the varying frequencies

have the values :

w4 = exp(βVAA‖B) (44)

w2 = exp
[
β(εAB − VAA‖B)

]
. (45)

Figure 6 shows the corresponding transport coefficients as predicted by both approximations of

the SCMF theory, compared with Monte Carlo simulations under the assumption that all factors τi

are equal to 1. The first shell approximation is already very satisfying for diagonal factors LAA and

LBB, whereas the second approximation is necessary for a good prediction of the cross-coefficient

LAB when the solute-dumbbell interaction VAA‖B is not zero. Such a result was actually to expect

if one observes the ‘return probability’ Ψ as defined by Equation (39). In our particular case, this

probability takes the value :

Ψ ≡ w3

w3 + 3w4

=
1

1 + 3 exp(βVAA‖B)
. (46)

If VAA‖B approaches the value of εAB, the factor Ψ is nearly equal to unity, which the first shell of

the SCMF fails to account for.

[ Insert Figure 6 about here ]

Moreover, beyond the simple comparison between both approximations, one can observe on Figure

6 that all three transport coefficients are practically independent on the value of the solute-dumbbell

interaction. This result supports a widely accepted hypothesis, which states that in presence of

multiple energy barriers, only the total energy barrier needs to be taken into account for a satisfying

modelling of the phenomena. However, if this modelling should be based on the more simple SCMF

first shell approximation, the correct limit is the one which ignores the solute-dumbbell interaction.
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6.4 Effect of the on-site rotation

The on-site rotation mechanism was discarded in the Monte Carlo simulations as well

as the second shell expressions (Equations (38)) for complexity reasons. However, it

deserves some rapid remarks.

On the one hand, the decorrelating effect of rotation already noticed by Barbu and

Lidiard [10] is confirmed by the equivalent first shell approximation (see the presence

of WR1 at the denominator of LAB in Equation (37)). This effect is relatively easy to

understand : if the rotation frequency is high, a large number of rotations will occur

between two consecutive jumps (we define a ’jump’ by a change of the atomic site of the

defect), so that all eight nn sites of the defect are potentially target sites. Consequently,

the relative weight of the return frequency of the defect after one given jump, which

is responsible for the correlation effects [20, 14], will considerably decrease, hence the

lowering of the correlation effects. It must be noticed that the rotation frequency has

no effect on the uncorrelated coefficients L
(0)
AA and L

(0)
BB, which means that the rotation

mechanism eventually leads to an acceleration of the diffusion.

On a quantitative point of view, the authors recently showed [16] that the first

shell approximation generally overestimates the decorrelating effect of rotation in a

concentrated BCC alloy. The first shell approximation remains quantitative when the

rotation frequency is lower or equal to the slowest characteristic jump frequency, while

the second shell numerical results were found on the contrary very close to the Monte

Carlo simulations for any value of the rotation frequency. This result is valid upon the

whole concentration range, including the dilute limit.
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7 Conclusion

We presented the application of the SCMF theory, recently adapted to the dumbbell mechanism [15],

to the case of a dilute BCC alloy. A first shell approximation coincides with earlier results by Barbu

and Lidiard [10], indicating that the pair association method may be contained within the SCMF

formalism. A second shell approximation, which leads to usable analytical results in absence of on-

site rotation, is found similar to a recent work by Sharma el al. [11], though the latter was much

more complex in its construction, and limited to the simple translation mechanism.

Comparisons with Monte Carlo simulations involving or not solute-dumbbell interactions proved

the general accuracy of the second shell approximation. However, the simpler first shell expresssion

is still valid while the frequency ratio between an association jump AA/B and a competing AA/A

jump w3/w0 is not greater than 10. In presence of solute-dumbbell interactions, this ratio should

only be replaced by w3/w4.

Given the identification observed between the SCMF theory and the pair association method,

application of the SCMF theory to the FCC structure does not seem necessary, as detailed studies

in the second shell approximation were already devoted to the subject [6]. Forthcoming work will

then be preferentially focused on the generalization of the model of an interacting alloy

to the concentrated domain.
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Appendix A : concentrations of dumbbells in a dilute inter-

acting alloy

In this section, we calculate the probabilities of the different configurations appearing in a dilute

BCC alloy with help of a full energetic description of the system. This description involves the

binding energies of different types of dumbbells (εAA and εAB), interactions between nearest-neighbour

substitutional atoms (VAA and VAB), as well as solute-dumbbell interactions when the solute is on a

target site (VAA‖B) or a nn non-target site (VAA⊥B). The concentrations to calculate are cAA, cAB,

cAA⊥B, cAA‖B and c′B as defined in Section 3. Note in particular that each concentration involves one

only orientation and direction of the dumbbell and one only neighbour for cAA⊥B and cAA‖B, hence

the conservation properties of Equations (6) and (7). The principle is to solve the equations of the

detailed balance under the conditions of both conservation equations.

We first express the frequency ratios involved in the detailed balance within the framework of

interactions. Those ratios are obtained under the assumption of a classical bond-breaking model :

w2

w3

= exp
[
β(−εAA‖B − εAA − 7VAB + εAB + 7VAA)

]
(47)

w4

w5

= exp
[
β(εAA‖B + VAA − VAB)

]
(48)

w6

w7

= exp [β(εAA⊥B + VAA − VAB)] . (49)

The equations of the detailed balance (Equations (13) to (15)) can then be expressed as :

cAA‖B

cAB

= exp
[
β(−εAA‖B − εAA − 7VAB + εAB + 7VAA)

]
(50)

cAA‖B

cAAcB

= exp
[
−β(εAA‖B + VAA − VAB)

]
(51)

cAA⊥B

cAAcB

= exp [−β(εAA⊥B + VAA − VAB)] . (52)

It is then straightforward to derive the expression of the different concentrations. For simplicity,
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we introduce the different weights Pi as :

PAB = exp [−β(εAB − εAA + 8(VAA − VAB))] (53)

PAA‖B = exp
[
−β(εAA‖B + VAA − VAB)

]
(54)

PAA⊥B = exp [−β(εAA⊥B + VAA − VAB)] , (55)

so that the final concentrations are simply expressed by :

cAA =
1

1 + 2c′BPAB + 4c′BPAA‖B + 4c′BPAA⊥B

× cI

6
(56)

cAB =
c′BPAB

1 + 2c′BPAB + 4c′BPAA‖B + 4c′BPAA⊥B

× cI

6
(57)

cAA‖B =
c′BPAA‖B

1 + 2c′BPAB + 4c′BPAA‖B + 4c′BPAA⊥B

× cI

6
(58)

cAA⊥B =
c′BPAA⊥B

1 + 2c′BPAB + 4c′BPAA‖B + 4c′BPAA⊥B

× cI

6
. (59)

However, to be consistent with the kinetic treatment of the alloy, which is processed to the first order

in c′B, one must express the concentrations in the same limit :

cAA = (1− c′BP )
cI

6
(60)

cAB = c′BPAB
cI

6
(61)

cAA‖B = c′BPAA‖B
cI

6
(62)

cAA⊥B = c′BPAA⊥B
cI

6
. (63)

where we have introduced for simplicity the global weight :

P = 2PAB + 4PAA‖B + 4PAA⊥B. (64)

At this point, we recall that the concentration c′B is the concentration of free solute atoms in

the system, i.e. solute atoms which are not involved in a mixed dumbbell nor in a solute-dumbbell

complex. If cB is much higher than cI , then we can consider that c′B equals cB, which corresponds
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to the physical case of a normal alloy. However, in our Monte Carlo simulations, we assumed the

equality cI = cB to avoid configurations with several solute atoms. The exact value of c′B is then

given by solving Equation (7) :

c′B =
cB

1 + cIP
. (65)
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Table 1 : Jump and rotation frequencies in a dilute alloy considering interactions between a dumb-

bell and a substitutionnal nn solute atom. Jump frequencies refer to the rotation-translation

mechanism only. Initial and final configurations are independent on the orientation relative to

the X axis, i.e. AB is equivalent to BA. AA stands for a configuration where the dumbbell

AA has no solute atom in nn substitutionnal position.
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Frequency Initial Target Final Four-frequency
configuration atom configuration model

w0 AA A AA w0

w1 AB A BA w1

w2 BA A AA‖B w2

w3 AA‖B B AB w3

w4 AA‖B A AA w0

w5 AA A AA‖B w0

w6 AA⊥B A AA w0

w7 AA A AA⊥B w0

wR0 AA AA wR0

wR1 AB AB wR1

wR4 AA‖B AA⊥B wR0

wR5 AA⊥B AA‖B wR0

wR‖ AA‖B AA‖B wR0

wR⊥ AA⊥B AA⊥B wR0

Table 1:
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Figure 1 : Jump mechanism for the 〈110〉 dumbbell (in grey) in the BCC structure. Atoms in black

are on target sites, white atoms are on nn non-target sites. (a) Simple translation mechanism ;

(b)-(c) : rotation-translation mechanism.

Figure 2 : Geometry of the 〈110〉 dumbbell in the BCC structure in the case of a one-dimensional

diffusion. The configurations to be taken into account are (a) : AB0 ; (b) : AA0
‖B ; (c) :

AA0
⊥B ; (d) : AB+ ; (e) : AA+

‖ B ; (f) : AA+
⊥B. The arrow indicates the orientation of the

diffusion fluxes.

Figure 3 : Correlation coefficient f
(A)
AB in a BCC alloy dilute in B as a function of the solute con-

centration C(B). Dumbbells jump with the simple translation mechanism, the set of jump

frequencies is indicated in the text. Full circles stand for Monte Carlo simulations by Sharma

et al. [11] ; the dashed line refers to the model of Sharma et al., the dotted line to the first shell

approximation of the SCMF theory and the full line to the second shell approximation of the

SCMF theory.

Figure 4 : Transport coefficients in a BCC alloy dilute in B as a function of the association fre-

quency w3 ; the frequencies w0, w1 and w2 are equal to 1, as well as all factors τi, and the

on-site rotation is discarded. Symbols stand for Monte Carlo simulations, dashed lines for the

first shell approximation of the SCMF (equivalent to the expression of Barbu and Lidiard [10]),

and full lines for the SCMF in second shell approximation.

Figure 5 : Energetic description of the stairs-like behaviour : the (negative) binding energy of the

mixed dumbbell εAB is fixed and the solute-dumbbell binding energy VAA‖B can vary from 0

to εAB. All frequencies are equal to 1, excepted for the dissociation frequencies of the mixed

dumbbell w2 and of the solute-dumbbell complex w4.

Figure 6 : Transport coefficients in a BCC alloy dilute in B for the stairs-like behaviour described
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in Figure 5, as a function of the frequency w4. The binding energy of the mixed dumbbell is

exp(−βεAB) = 100. Dashed lines stand for the SCMF in first shell approximation, solid lines

for the SCMF in second shell approximation, symbols for Monte Carlo simulations.
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Figure 1:
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Figure 5:
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Figure 6:
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