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Friction between incommensurate crystals
J. Friedel, P.-G. de Gennes

Figure 1
Geometry of the contact plane. The upper layer (director n1) has been

rotated by an angle θ/2, while the lower layer (director n01) has rotated by
−θ/2. Two systems of screw dislocations appear in the contact plane: one of
them Dα is shown and is parallel to the x axis. The second, Dβ, is not shown
and is parallel to the y axis; both sets have the same interline distance d.

Figure 2
Definition of the directors (unit vectors) inside one layer.

Figure 3
A ladder of equidistant screw dislocations (with Burgers vector b and dis-

tance d) creates a rotation of the director n1 → n01.

Figure 4
The stress (along x) creates a force per unit length fy (along y) acting on

the dislocations Dα The dislocations move along y, while the atoms move along
x.
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Friction between incommensurate crystals

J. Friedel(+), P.-G. de Gennes(∗)
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Revised Version

Abstract

We present an overview of friction processes expected between two
ideal crystals of strong layers (graphite, MoS2...) when one crystal is ro-
tated with respect to the other by a certain angle θ. We assume perfect
conditions: no impurities; no preexisting dislocations in the bulk of the
crystals; slow gliding velocities. Two regimes show up: a) weak coupling
when θ > Ũ1/UL, where Ũ1 (UL) are typical intra (inter) layer interac-
tions. Here we expect weak friction, controled by 2 phonon processes, and
analyzed by Sokoloff et al. However we point out that surface waves
at the interface also play a role; b) strong coupling (θ < UN/UL)
where two orthogonal sets of screw disclinations should build up in the
contact plane, as shown long ago by F. C. Frank. Here (to a first ap-
proximation) the dislocations are arranged in ladders, and we expect solid
friction with a Peierls-Nabarro threshold stress.

Keywords - Incommensurate structures - Tribology - Grain boundaries
- Rayleigh-Love waves - Graphite

(+)Bât. 510 Université Paris Sud, 91405 Orsay, France
(∗)Institut Curie Recherche, Bât. Curie, 26 rue d’Ulm 75231 Paris

Cedex 05, France (pgg@curie.fr)

1 Introduction
Friction Experiments have been performed with an atomic force microscope
(AFM) tip sliding on a single crystal surface (eg NaCl) [1]. This system would
be relatively simple if the tip was extremely sharp, with a single atom probing
the surface - corresponding to the Tomlinson model [2]. However, in practice,
the tip is blunt, and the tribological properties are more complex.
Another case is obtained with an AFM tip facing a layered crystal (graphite,

MoS2). Here, if the tip is rotated by an angle θ, one often finds an unusually
small friction [3][4]. This feature is associated with the (misleading) word ’su-
perlubrication’. In these experiments it has been suggested that a flake from the
crystal detaches and follows the rotation of the tip [5]. The system may then (in
favorable cases) build up an incommensurate structure at the interface between

1

Page 6 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
flake and bulk. This situation is interesting, but again complex, because (i) the
size of the flake may be very small (nanometers): the frictional behavior may
depend on the flake size; (ii) the state of the support layer below the contact
plane (after the extraction of the flake) is not controled.
Our aim, in the present text, is to discuss theoretically an ideal situation,

with two monocrystals of graphite (or MoS2) of relatively large contact area
(micrometers rather than nanometers). One crystal is rotated with respect to
the other by a certain missetting angle θ (Fig. 1). The situation is assumed to
be perfect: no impurities, no dislocations inside each of the crystals.
We start by recalling a crucial distinction between two regimes (Section 2):

one decoupled regime where the two crystal arrangements are nearly indepen-
dent, and one coupled regime where the missetting is compensated by two sets
of screw dislocations. In Section 3 we explore the decoupled regime, finding a
weak viscous friction as predicted by a number of authors [6][7]. In Section 4
we analyze strong coupling, leading to solid friction. In Section 5 we compare
our results with earlier theoretical work.

2 Strong coupling versus weak coupling

2.1 Two ladders of screw dislocations

The contact displayed on Fig. 1 is a grain boundary lying in the (xy) plane.
We know that grain boundaries are realised in practice through ladders of dis-
locations [8][9]. To construct these ladders in the present case, we start by
defining atomic orientations inside one graphitic plane, through two orthogonal
unit vectors (or ’directors’) shown on Fig. 2. We want to rotate the directors
in the top crystal (n1 → n01, n2 → n02) by an amount θ.
a) Consider first the shift n1 → n01. Frank achieves this by a ladder of

screw dislocations, each of them creating a step in the atomic lines parallel to
n1 (Fig 3). The magnitude of this step is the Burgers vector b of the dislocation.
With a ladder of equidistant dislocations (distance d). The resulting tilt angle
is:

θ = b/d (1)

b) We introduced one ladder (dislocations parallel to n2) to ensure that
n1 → n01. But we are at this moment obtaining sheared layers, since n2 is not
normal to n01. To release the shear imposes a second ladder (parallel to n

0
1) with

the same spacing d (Eq 1), giving the correct rotation n2 → n02.
Actually our choice of directions (n1 and n02) for the two sets of disloca-

tions is clumsy, and unsymetrical. Another choice (equivalent to order θ2) and
completely symmetrical, is based on the bisector axes x and y of Fig 1. The
two sets of Frank dislocations are parallel to the symmetry axes (x, y) of the
rotation pattern.

2
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2.2 Dislocations: infinitesimal or quantized?

If the layers are very rigid, we cannot distort them to build up real dislocations
with a well defined core: we must then think of a large number of dislocations
(d small) but each of them being very weak (b very small). This still allows to
comply with Eq 1.
This limit of rigid layers and weak interlayer couplings corresponds to what

Frank [8] called infinitesimal dislocations, and to what we call weak coupling. Let
us now discuss the opposite limit, where the layers are not infinitely rigid. The
contact will then tend to adjust, and to build up dislocations of finite Burgers
vector b (where b is now an intralayer repeat distance). Let us estimate what
are the energy changes associated with this process, for a ladder parallel to the
x axis.
a) One dislocation has an energy per unit length

W ∼ µb2 ln
d

b
∼ µb2 (2)

where µ is a 3dimensional elastic modulus, dominated by the intralayer interac-
tions µb3 ∼ UL. Note our crude simplifications: ignoring numerical coefficients
and dropping the logarithmic factor; also ignoring the difference between in-
tralayer distances: (b) and interlayer distances: (a). Since the interdislocation
distance is d, the energy per atom in the contact plane associated with Eq 2 is:

bW (b/d) ∼ ULb/d (3)

b) On the other hand the dislocations have allowed the atoms in the contact
plane to sit just in the right position with respect to their partners in the
opposite layer: thus we gained an energy ∼ ŨI per atom, where ŨI is the
interlayer energy per atom. The symbol ŨI reminds us that ŨI is not the bare
interaction, but a renormalized (smaller) interaction, due to elastic distortions
and estimated by Peierls [10]. The quantized dislocation ladder will win if
ŨI > ULb/d or (using Eq 1)

θ <
ŨI
UL

(4)

When the condition 4 is satisfied, we expect to be in the strong coupling
regime, with dislocations of finite Burgers vector b.

2.3 Complications due to the incommensurate structure

If θ is a rational number, we can accomodate the dislocation ladder as a multiple
of the basic period b and the contact is spatially periodic. But we must often
deal with non rational values of θ. What happens then?
We shall give here a poor man’s approach to this classical problem, and

consider, as an example, the following case, with θ small. Let us define an
integer p such that

p <
1

θ
< p+ 1

3
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In a 0 order approximation we can think of the ladders as dimensionless spacing
p. In a first order approximation we would think of ribbons with k1 distances
equal to p, and k2 distances equal to p + 1; the relative fraction of these two
distances being imposed by Eq 1. To a first approximation we can choose k1
and k2 as integers (as small as possible) and then generate a periodic structure,
of period (k1+k2)b. But this is not exact, since θ is not rational. We must then
go to a second approximation, etc, generating what is often called a devil’s stair
case.
Physically, the search for an exactground state of piled dislocations is not

very meaningful, because the contact will not usually achieve the ideal ground
state. The 0 order result (d = bp) is meaningful, but the energy gained by
refining the structure is very small (for large p). Observable arrangements are
dependent upon sample history. A practical picture is built with dislocations of
distance, p or p+ 1, plus some disorder at this level.

3 Friction in the weak coupling limit

3.1 Principles

When the two incommensurate crystals can be considered as nearly rigid, we
expect that, at the crudest level, the interaction energy reaches a constant
value by a simple averaging process. But if we go to temperatures T comparable
with the Debye temperature Θ of the crystal, we do expect a viscous friction.
The perturbation picture built by Sokoloff [7] for this situation amounts to
describe one portion (say: the top part) creating a sinusoidal surface potential

U(r) = Ũ1 cos(τ+.r) (5)

where τ+ is a reciprocal lattice vector of the top crystal. (The smallest τ+
giving the largest Ũ1). If we move the top part at velocity V in the contact
plane, this generates a time periodic potential of frequency

Ω = τ+.V (6)

(Ω is small because the velocities V of interest are small at the atomic scale).
This surface potential will excite some phonons in the bottom part, and thus
lead to a viscous dissipation 1

2T S̊ (the factor 1/2 accounts for the fact that
dissipation occurs in both top and bottom). In many cases this will lead to a
dissipation quadratic in velocity

T S̊ = V ẑV (7)

where ẑ is a 2x2 matrix, with eigen vectors parallel to the two symmetry axes
(x, y) of Fig 1 (In most of our -rough- discussion we shall ignore the anisotropy
of ẑ).
The friction stress σzα (where α is x or y) is then given by

σzα = zαβVβ (8)

4
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3.2 Phonon processes

For T 3 Θ the amplitudes u of the thermal vibration of one atom have an
average square

< u2 >= b2
kBT

Mc2
∼= b2

kBT

UL
(9)

where M is the mass/unit, c the sound velocity. kB is the Boltzmann constant.
(Eq 9 is a simplified form, ignoring the anisotropy of the crystal). Since α =
(u/b)2 is small, we can use an expansion in powers of α to discuss the friction.
The terms of order α correspond to one phonon processes where the perturbation
of Eq 5 creates a single phonon in the bottom crystal, of wave vector k and
frequency ωk.The requirements of energy conservation and quasi momentum
conservation impose ωk = Ω and k = τ+ − τ− (where τ− is any reciprocal
lattice vector of the bottom part). Sokoloff pointed out that these stringent
requirements can be satisfied only for a few discrete points in k space: a few
phonons can ring, but we do not expect a realistic dissipation.
One must then go to two phonon processes (ie to order α2). Here a phonon

(q) is absorbed. Another phonon (k) is excited, and the conservation rules are

Ω = ωk − ωq (10)

τ+ = τ− + k − q (11)

We have displayed here the (dominant) Raman process where ωk and ωq (∼
1012 sec−1) are much larger than Ω (∼ 108 sec−1). Here, because we have more
degrees of freedom, many events are allowed (with k and q of order b−1) provided
that the whole phonon spectrum is excited (ie T > Θ). The (qualitative) answer
for the viscous friction stress is then

σ = zV ∼= (2π)3θ2σ0 keT
UL

V

c
(12)

where σ0 is a characteristic stress

σ0 =
U21
UL

1

b3
(13)

With θ = 0.1, UL = 5 eV, U1 = 0.5 eV, T = 300◦K, and V = 10−2cm/ sec, we
estimate σ0 = 105atm and σ ∼ 10−4atm. Thus the viscous friction process is
weak: superlubrication is allowed in the weak coupling regime.
We must however emphasize that this conclusion fails if we have a monolayer

rather than a bulk crystal, because the singular fluctuations of 2d crystals allow
for multiphonon processes.[11]

4 Friction with strong coupling

4.1 Geometry of the motions

Consider now a rotation θ smaller than U1/UL. Then we deal with two ladders
of screw dislocations, parallel to x and y in Fig 1. Choose for instance a stress

5
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σxz on the interface. This will act on the dislocations of Burgers vector parallel
to x. The force per unit length f on one dislocation will be along y as shown
on Fig. 4. If the dislocations can move, with a certain velocity VD along y, the
contact is slipping, with a velocity V along x

V =
b

d
VD (14)

4.2 The threshold stress

At low stresses σxz, we do not expect any motion (VD = V = 0) because the
dislocation are pinned on the lattice structure by a sinusoidal surface potential
(Eq 5). This pinning is reminiscent of the discussion by Peierls on the stress
required to move a dislocation along a glide plane [10]. The resulting threshold
stress is (ignoring some minor prefactors)

σ∗ ∼= U1
b3
exp(−2πa/b) (15)

This displays the renormalisation from the bare sinusoïdal potential U1 to the
renormalized potential U1 (due to local elastic adjustments)

U1 = U1 exp(−2πa/b) (16)

where a is the interlayer spacing (while b is always the intralayer size of one
unit).1

When σxz < σ∗ we expect no motion of the dislocations and (from Eq 13)
no slippage at the contact plane (V = 0). Thus strong coupling naturally leads
to solid friction. We can actually rederive the criterion for strong coupling
(associated with eq. 4) by imposing that the Peierls stress τ∗ be larger than the
local stress on one dislocation, due to the next one in the ladder.
It is of interest to notice that the system may be highly anisotropic inside

the contact plane (xy). For instance, if we impose an oblique stress (where
both σzx and σzy are different from 0) we may have Vx 6= 0 if σzx > σ∗ while
Vy = 0 if σzy < σ∗. The direction of motion (V ) is not parallel to the direction
of the force (τzα).
Ultimately, if both σzx and σzy are larger than σ∗, we can obtain finite

velocities V in both directions. Friction is then expected to include both the
static stress σ∗ and a dynamic portion σD, similar to what is described in Section
3. Usually, we should have σD << σ∗.

5 Discussion
We have defined two regimes: weak and strong coupling, separated by the in-
equality (4). It is important to notice that the distinction depends not only

1The dominant Fourier component of the surface forces has a wave vector 2π/b. There are
other components (down to ∼ 2π/d) but the leading term is the first one. This is the basis of
equation (16).

6
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of the compared interactions (U1/UL) but also of the missetting angle θ: small
missettings favor strong coupling.
Weak coupling should lead to an anomalously weak viscous friction, de-

scribed qualitatively by Eqs (12, 13). However, we should hasten to mention
that another form of viscous friction can show up in strong coupling, if θ is not
exactly equal to the inverse of an integer p. Then we expect a certain amount
of disorder along the dislocation ladders (with distances being equal to pb or
(p+1)b. Moving a disordered array is similar to moving impurities in the contact
plane. Here there are no selection rules on the wave vectors, and the friction is
large -as discussed for instance in Ref [12].
It may also be of interest to mention another feature associated with weak

coupling: we expect surface waves to propagate near the interface (within a
thickness comparable to the wavelength). These waves are associated with a
relative displacement of both lips. The boundary conditions are as follows: a)
since the crystals glide on each other, the shear stress σxz at the interface van-
ishes; b) the normal stress σzz must be continuous: using the mode symmetry,
one finds that this imposes σzz = 0. Thus the boundary conditions coincide with
the conditions for Rayleigh-Love waves - describing seismic propagation at the
surface of the earth [13]. Love waves should be present within weak coupling.
With strong coupling a phonon gap is expected. These features are transposi-
tions of known features for the Frenkel Kontorova model, to be discussed below.
We should now compare our views with a number of theoretical pictures

of superlubrication, which have been presented in the past.

5.1 The Tomlinson model

This deals with a single atom moving on a crystal surface, and provides some
extremely interesting ideas. But it has strong limitations.
(a) It is not easy to go from the single atom picture to the present incom-

mensurate problem -especially in the strong coupling limit, where the distance
d between neighboring dislocations plays an important role.
For instance the model calculations of Verhoeven et al [14] do discuss the

contact between a flake of finite size (nanometric) and a crystal: they are useful,
but restricted to two interacting pieces, each of them being fully rigid : this
ignores the possibility of a dislocation network. These calculations should be
extended to situations where d is comparable to the flake size.
(b) The Tomlinson model ignores an important feature, pointed out many

years ago by Peierls [10]: the crystal structure is deformed by the atom; this
deformation leads to a renormalized sinusoïdal interaction of amplitude U1 much
smaller than the bare interaction U1. (See Eq 16)

5.2 Frenkel-Kontorova

A historic approach on incommensurate systems is the model of Frenkel and
Kontorova, for which many exact results are known [15] [16]. Here one speaks
of two incommensurate chains (one rigid, one elastic) coupled by a sinusoïdal

7
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potential due to the rigid part. This can lead to a transition from weak to strong
coupling, reminiscent of what we describe here, but there are some important
differences.
(a) The Frenkel-Kontorova model is one domensional, and gives a criterium

for weak coupling which differs from ours: namely θ < (U1/UL)
1/2. This is an

artefact. In the real case, the elastic distortions are not restricted to two layers,
but spread over a number of layers comparable to the interdislocation distance.
The correct power law is given by Eq (4). Some studies on a 2 dimensional
extension of the Frenkel-Kontorova model have appeared [17].
(b) The discussion of friction is often focused on very high slip velocities V

(comparable to the speed of sound). This is of great theoretical interest, but
not relevant for classical tribology measurements, where V ∼ 1cm/ sec at most.

5.3 Viscous friction

The calculations of viscous friction by Sokoloff [7] and others are useful, pro-
vided that we do have a weak coupling situation. (With strong coupling, the
situation is completely different -dominated by the Peierls Nabarro stress - and
the viscous corrections are not very important.) The Sokoloff approach has one
weakness however: it does not include the emission of phonons in the form of
Rayleigh-Love waves, which may be crucial. We should also remember that: a)
if we have impurities on the interface, on some surface roughness, the
selection rules (11) drop out and friction is strongly inscreased. This
has been discussed recently [18]; b) the Sokoloff conclusions break down if
one of the partners is a monolayer (rather than a bulk crystal): then the friction
is expected to be large [11].

6 Conclusions
On the whole, superlubrication is not a complete surprise, provided that we are
in the weak coupling regime θ > U1/UL. But the details of the process are
rather intricate. We should mention some extra complications.
(i) For hexagonal layers like graphite it is not sure that we keep two orthog-

onal sets of straight dislocation: the dislocations might tend to adjust to the
hexagonal symmetry (at least for small θ).
(ii) If the crystals are metallic, we can have another form of viscous friction,

due to the excitation of electrons near the Fermi level. Even in graphite, this
may play a role, as pointed out to us by a referee.
Both points (i) and (ii) would deserve further investigation.
A final comment: we discussed only the extreme regimes (uncoupled/coupled).

The transition between them raises many questions: is it abrupt or continuous?
Do we have critical exponents near the transition point? The answers are known
for the Frenkel-Kontorova model [16] but (as far as we know), this question re-
mains open for two bulk crystals in contact.
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