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Unité de Bio-Informatique Structurale, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris (France)
(Received 00 Month 200x; in final form 00 Month 200x)

We investigate numerically the transition properties for models of DNA denaturation, which can be relevant for certain classes of
disordered systems. The investigation is following two, complimentary, numerical approaches: on-lattice Monte Carlo like simulations or
off-lattice statistical mechanics calculations, which can extend very significantly the affordable lengths for the sequences. The on-lattice
model consists of two interacting self-avoiding walks with the same origin on a three-dimensional cubic lattice. We introduce two different
contact energies, for the adenine-thymine coupling and the guanine-cytosine one respectively, distributed according to a bimodal law.
Whereas the transition is recognized to be of first order in the pure (homopolymer) case, the behaviour of quantities averaged over
disorder suggests that the random system undergoes a second order transition.

1 Introduction

The models of DNA denaturation have been extensively studied since the discovery of the double-helix [1].
In particular, the original interest in the helix-coil model was for its biological relevance, accounting for
the sequence-specific separation of the two strands. More recently, the model has become also a subject of
interest to physicists, because of its relevance to problems of self-avoidance effects and disorder in “almost 1-
dimensional” systems. Here we consider disordered DNA denaturation with two different (complimentary)
numerical approaches, trying to bring clarifications for still debated questions concerning the transition
order.

We first summarize briefly results obtained with a pure model, inspired by the classical helix-coil model
(introduced by Poland and Scheraga [2]) in which self-avoidance is completely taken into account. In
this pure case the transition appears to be of first order [3–5]. We consider then the effect of disorder
on this transition. To do so, we compare the results of on-lattice self-avoiding walk (SAW) numerical
simulations [6] with those obtained with a disordered version of the Poland-Scheraga (PS) model with
loop length probability exponent cp = 2.15 (which takes into account self-avoidance).

In a nutshell, our results suggest that disorder is relevant to the transition, in agreement with recent
theoretical findings [7]. It is nevertheless interesting to notice that in a study involving a slightly different
disordered version of PS model with the same cp [8], it was found evidence for a still first order transition
(characterised by two different correlation length exponents, for “typical” and “averaged” quantities re-
spectively). In this general background, we finally propose a qualitative explication (coherent with some
preliminary results [9]) of the different observed behaviours.

2 The pure model

The first models for DNA denaturation were related to the 1-dimensional Ising model, with two accessible
states for base pairs (open or closed) and only nearest-neighbour interactions. Long range interactions
are taken into account in the PS model [2], with the introduction of length-dependent entropic weights
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for the loops. Therefore, the model undergoes an “almost 1-dimensional” phase transition [10], and the
effect of disorder on this kind of transition, particularly when it is of first order in the pure case, is an
open question. If mutual interactions between different regions are neglected, it is possible to compute the
grand canonical partition function of the homogeneous system. Based on such calculations, one finds that
the possibility of the transition, and its order, both depend on the exponent cp which characterises the
probability of the loop length at the critical temperature, P (l) ∝ 1/lcp . In particular, there is no transition
for cp < 1, a second order transition for 1 ≤ cp ≤ 2 and a first order one for cp > 2.

In three dimensions, for a random walk loop, we have the value cp = 3/2 and the transition is of second
order. If we consider a self-avoiding loop (characterised by cp ' 1.75), the transition becomes sharper [11],
but still of second order. Nevertheless, with on-lattice numerical studies of a model consisting of two
interacting SAWs, it was found that the system undergoes a first order transition, with a linear increase
of the maximum of the specific heat with the chain length [4]. It can be noticed that in this model self-
avoidance is completely accounted for, since two monomers can occupy the same lattice point if and only
if they occupy the same position in the two different chains.

Based on conformal theory results for polymer networks [12], it was shown theoretically [3] that self-
avoidance of loops with the rest of the system can be accounted through the assignment of an appropriate
value to the exponent cp. In three dimensions the correct value for such assignment is approximately
cp ' 2.15, as confirmed by numerical simulations with the on-lattice model [5], which explains why the
transition is of first order in the homogeneous case.

It can be stressed that the denaturation in the pure model with cp > 2 is a peculiar kind of first
order transition, characterised by a diverging correlation length ξ ∼ (T − Tc)

−νp [3–5], with 1/νp = φp =
min(1, cp − 1). Therefore, despite the divergence of the specific heat, it is not clear if well known criteria
such as the Harris one [13] do apply in this case and if disorder is relevant. As a matter of fact, it is
only recently that the effect of disorder on DNA denaturation transition with self-avoidance has been
investigated [6–9].

3 The disordered SAW model

Base pairs hetereogeneity is reasonably accounted for by considering two different contact energies, as-
sociated with adenine-thymine and guanine-cytosine pairs respectively. In [6], a disordered version of the
SAW model for DNA denaturation was introduced and studied numerically. The model consists of two
interacting SAWs on a three dimensional cubic lattice, with the same origin. Two monomers can occupy
the same lattice point if and only if they are in the same position i in the two different chains with the
corresponding (pairing) energy εi. The {εi} are quenched random variables distributed accordingly to a
bimodal law P (ε) = [δ(ε − εAT ) + δ(ε − εGC)]/2, with the choice of values εGC = 2 and εAT = 1, the
temperature being in εAT units.

Statistics were collected over Ns = 128 different disorder sequences and, for each sample, 16 different
temperatures around the critical one were considered. For various observables, the behaviour as function
of the temperature was obtained by reweighing data at the different values of the set.

In this study, despite implementations on a parallel computer, and the usage of the Pruned-Enriched
Rosenbluth Method (PERM) [14], particularly efficient for thermalizing SAWs, it was only possible to
consider chain lengths up to N = 800. It appeared that such lengths were not large enough for unambiguous
clarification of the situation. In particular, the maximum of the averaged specific heat, as plotted in [Fig.
1a], seems to be clearly diverging with the chain length (though less rapidly than in the pure case). A fit

of all the points to the law c(N, ε)
max

' aN2φr−1 + b gives φr = 1/νr ∼ 0.85, with however the data still
compatible with a first order transition (i.e. φr = 1/νr = 1 = φp) when neglecting the smallest sizes. It
can be pointed out that on theoretical grounds [15] one would expect a non-diverging specific heat when
disorder is relevant, that makes the observed behaviour even more intriguing.

A smoother transition is further suggested by the results concerning the averaged probability of the loop
length P (l) at Tc, with however the possibility of a still first order one not being ruled out. The data in
[Fig. 1b] would suggest that cr = cp > 2 taking into account only the smallest chain lengths but it is also
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Figure 1. Disordered SAW model on lattice. a) Maximum of the averaged specific heat as function of the chain length. b) Averaged
probability of the loop length at Tc.

clear upon fitting that the asymptotic value is cr < 2 when the largest sizes are considered.
As a final remark, preliminary results concerning the disordered SAW model with different values for

the ratio R = εGC/εAT suggest that the critical exponents could depend on R values. In what follows we
discuss in more detail such dependencies, which could be also explained by strong finite size effects, related
to the details of the considered model.

4 The disordered PS model

The Poland-Scheraga model for DNA denaturation has been implemented in different forms and studied
in different contexts [1,2,8,16–21]. In particular, it has been successfully compared to experimental denat-
uration curves [18]. Recently, on biological grounds, the segmentation (helix/coil) obtained with the model
was compared with the genetic segmentation (coding/non coding) demonstrating sharp correspondences
for certain genomes [19, 20]. Moreover, the effect of base pair mismatches on the transition was also in-
vestigated [21]. In such versions, a more detailed pairing scheme for the base pairs is adopted, taking into
account the stacking energies and the cooperativity factor for loop initiations.

In the present work, we are rather interested in the thermodynamic limit behaviour of the model in the
presence of disorder, and therefore we adopt as few parameters as possible. It seems indeed reasonable to
suppose that the cp exponent value should be the most relevant parameter for the determination of the
universality class. It is also expected that the disordered PS model with cp = 2.15 and the disordered on-
lattice SAW model, as previously considered, should belong to the same universality class. This hypothesis
is nevertheless not confirmed as yet, and needs to be investigated in detail, all the more that recent
results [8] suggest a different behaviour.

On algorithmic grounds, for the implementation of the PS model, we write a “forward” recursive equation
in terms of canonical partition functions (following [16], instead of recursions concerning specific conditional
probabilities as in [17]): Zf (i + 1, ε) = exp(βεi+1 − log µ)[Zf (i, ε) +

∑
l Zf (i − l, ε)/lcp ], with Zf (i, ε) the

partial partition function associated with configurations up to position i and i in the closed state. An
analogous recursion can be written for the “backward” partition function Zb. With appropriate boundary
conditions, and for strict correspondence with the on-lattice conditions, we restrict the calculations to
configurations with base pair at position 1 in the closed state (with the allowance for non-penalized free-
ends at the other extremity). The total canonical partition function is simply Z(N, ε) = Zb(1, ε) and the
probability PN (i, ε) for a base pair in position i in a chain of length N with disorder sequence {εi} to be
closed is given by: PN (i, ε) = Zf (i, ε)Zb(i, ε)/[Z(N, ε) exp(βεi − log µ)]. For a given disordered sequence we
can evaluate from the set of PN (i, ε) values at different temperatures, the various quantities of interest,
such as the energy density, the specific heat, the fraction of closed base pairs θ(T,N, ε) =< n > /N (which
is the order parameter) and the susceptibility χ(T,N, ε).

In the forward-backward recursive equations which define the model, the only thermodynamic parameters
are the possible values of the coupling energies {εi} and log µ. In order to ensure as much as possible strict

Page 3 of 9

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

4

Figure 2. Disordered PS model with cp = 2.15. a) Maximum of the averaged susceptibility as function of the chain length. b)
Logarithm of the averaged P ∗(l) = lcpP (l) at Tc.

correspondence with the disordered on-lattice SAW model, we adopted also in the PS implementation
energies distributed according to the bimodal law with εGC = 2 and εAT = 1 (the temperature in εAT

units) and choose the value log µ ' 1.55, from the connectivity constant of SAWs on a three dimensional
cubic lattice. As discussed in more detail in the following section, the finite size behaviour of the model
could be strongly influenced by these particular values.

For the efficient calculation of partition functions following the recursions above, with algorithmic com-
plexity reduced by one order of magnitude, we adopted a SIMEX scheme [16,17] (SIMulation with EXpo-
nentials, after an idea first expressed in [17] for conditional probabilities), which has been recently applied
to the study of base pair mismatches [21] and to a slightly different version of disordered PS model [8].

The method relies on the numerical representation of the long-range effect as 1/lcp '
∑kmax

k=1 ak exp(−l bk)
and such approximations (for example up to kmax = 14 in [16,19], for cp = 1.95) can be obtained through
the Padé-Laplace method [22]. Here, for cp = 2.15, and in order to make results comparable, we used the
values of the parameters in [8] (up to kmax = 15). For sufficient accuracy in the obtainment of the different
observables, for each chain length at least Ns = 500 disordered sequences were generated, and each sample
was studied at 250 temperature values.

The data for the maximum of the averaged susceptibility as a function of N are shown in [Fig. 2a]. A
striking similarity in the behaviour of this quantity with the one concerning the maximum of the specific
heat is observed, suggesting that the two observables may be described by the same critical exponents and
corrections to scaling. This figure also clearly demonstrates the existence of strong finite size corrections
to the asymptotic behaviour, which would suggest divergence of χmax(N) for chain lengths N ≤ 2500,
as previously observed on the maximum of the specific heat for the disordered on-lattice SAW model
(with N ≤ 800). Instead, the quantity is saturating, in agreement with the theoretically expected result
νr ≥ 2/d [15].

The analysis of P (l) data at Tc (plotted in [Fig. 2b]), leads to the same qualitative results. Also in this
case, for chain lengths smaller than N ∼ 2500, the asymptotic behaviour is not reached and in particular
the smallest sizes would be in agreement with a still first order transition as in the pure case. On the
contrary, when looking at the largest sizes it is clear that for the exponent of the random system cr � cp.
In detail, the asymptotic behaviour suggests cr ∼ 1.35, which should correspond to a correlation length
exponent νr = 1/(cr − 1) ∼ 3 > 2/d = 2, again in agreement with a non-diverging specific heat (and
susceptibility).

5 Discussion and perspectives

The results obtained here for the disordered PS model considered, with cp = 2.15, appear to confirm that
disorder is relevant to this first order phase transition, as suggested from recent theoretical findings [7].
Moreover, this model and the disordered SAW model on-lattice should belong to the same universality class
and they could also be characterised by the same kind of strong finite size corrections to the asymptotic
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behaviour.
Nevertheless, the overall situation is not clear since recent results [8], based on a slightly different version

of the disordered PS model with the same cp value, suggested a transition which is still of first order as
in the pure case but characterised by two different correlation length exponents. These studies performed
an analysis in terms of the pseudo-critical temperature Tc(N, ε) [23], appropriately defined for a given
disorder sequence and chain length. It was found that the averaged value and the fluctuations of this
quantity appear to behave as Tc(N, ε) ' T∞

c + const/N νr,1 and δTc(N, ε) ' const/N νr,2 respectively,
with the different exponents νr,1 = νp = 1 and νr,2 = 2/d = 2, as one expects in the case of irrelevant
disorder. Correspondingly, the behaviour of the typical sample should be governed by the correlation
length ξ1 ∼ (T − Tc)

−νr,1 , whereas when considering averaged quantities the behaviour is dominated by
the fluctuations and one should find ξ2 ∼ (T − Tc)

−νr,2 .
At present, we are performing the same kind of analysis in terms of Tc(N, ε) for the disordered PS model

discussed here and preliminary results [9] show that in our case the same exponent νr,1 = νr,2 ∼ 3 could

apply for Tc(N, ε) and δTc(N, ε) data, also compatible with the value obtained independently from the

behaviour of P (l) at Tc, therefore confirming that disorder is relevant. Interestingly, a similar value was
found in [8] for the slightly different disordered PS model in the study, but for the case cp = 1.75.

A possible explanation for the different observations is that the various disordered PS models are in the
same universality class, which could not depend on the cp value as soon as cp > 3/2 (i.e., the specific heat
in the pure case is diverging and disorder should be relevant following the Harris criterion [13]) but there
are strong finite size effects depending on the particular model. More in detail, the effect of disorder could
be related to the possible presence of “rare regions” in the typical sample, and correspondingly it could
become evident only at chain lengths larger than some value N ∗ that one could expect [9] to increase
exponentially with a parameter x depending on model details. If this is the case, despite the very large
sizes studied in [8], it is possible that the asymptotic regime was still not reached because of finite size
effects amplified in a very significant way. On the contrary, in our case the asymptotic regime appears
to be reached even with sequence lengths in the range N ∼ 5000. In any event, more careful studies are
necessary in order to confirm our findings and hypothesis. Moreover, it will be important and interesting
to investigate in detail the differences in the models for an overall clarification of the situation.
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