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Abstract

A continuum description of the time evolution of an ensemble of parallel

straight dislocations has been recently derived from the equation of motions of

individual dislocations. The predictions of the continuum model were compared

to the results of discrete dislocation dynamics (DDD) simulations for several

different boundary conditions. It was found that it is able to reproduce all

the features of the dislocation ensembles obtained by DDD simulations. The

continuum model, however, is systematically established only for single slip.

Due to the complicated structure of the equations extending the derivation

procedure for multiple slip is not straightforward.

In this paper an alternative approach based on a thermodynamics-like prin-

ciple is proposed to derive continuum equations for single slip. An effective free

energy is introduced even for zero physical temperature, which yields equilib-

rium conditions giving rise to Debye-like screening, furthermore, it generates
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dynamical equations along the line of phase field theory. It is shown that

this leads essentially to the same evolution equations as obtained earlier. In

addition, it seems that this framework is extendable to multiple slip as well.

1 Introduction

In the past decade there has been a increasing activity to develop a continuum theory

of dislocations. Theoretical investigations intensified due to an experimental finding,

namely, if the characteristic size of a specimen is less than about 10µm then the plastic

response of the crystalline materials depends on the size [1, 2]. (The phenomenon is

commonly called size effect). One can easily explain this size dependence by assuming

that the crystalline materials have an internal degree of freedom which ”feel” the

sample surface. This immediately indicates that a theory able to account for the

size effects has to be nonlocal, since the sample surface is ”seen” from the bulk.

The simplest possible way to account for this effect is to add gradient terms to the

”local” ones in the stress-strain relation. There are several different phenomenological

propositions to incorporate gradient terms into continuum plasticity models (Aifantis

[3, 4, 5], Flack and Hutchinson [6], Gurtin [7], Svendsen [8]). Although they are

successfully applied to explain certain experimental results, the physical origin of the

different gradient terms are not clear. Since in crystalline materials the elementary

carriers of plastic deformation are the dislocations, a continuum theory should be

built up from the properties of individual dislocations. An appropriate continuum

theory of dislocations should also be able to account for dislocation patterning which

is a long standing challenge of dislocation theory.

Attempts to describing the time evolution of dislocation systems on a continuum

level are not new (Kuhlmann-Wilsdorf et al. [9], Holt [10], Walgraef and Aifantis

[11], Kratochvil et al. [12, 13]). However, these continuum theories either are based

on questionable assumptions, or they depend on parameters which are difficult to

determine.

For a system of parallel edge dislocations with single slip Groma et al. [14, 15, 16]

have established a systematic way to build up a continuum theory from the equation
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of motion of individual dislocation. The most important feature of this theory is that

gradient terms appear naturally in the evolution equations of the different dislocation

densities. At the moment, however, it is not clear how to extend the model for

more complicated dislocation geometries and configurations. Recently, El-Azab [17],

Kratochvil and Sedlacek [18], Koslowski et al. [19] and Zaiser and Hochrainer [20] have

proposed promising frameworks for treating curved dislocation lines with statistical

methods, but there are many open issues to be resolved before we can say we have

a well established 3d continuum theory of dislocations. Constructing a continuum

theory for even 2d multiple slip is far from straightforward.

A completely different approach based on thermodynamical considerations has

been elaborated by Berdichevsky [21] for a system of uniform-sign screw dislocations

in 2d. Although, 2d screw dislocations represent an extreme oversimplification, the

variational method he applied seems to be promissing to treat more realistic dis-

location systems. Another important step forward was achieved by Sarafanov and

Perevezentev [22]. Using a formal analogy with plasma systems, they determined the

screening of a disclination by an ensemble of 2d edge dislocations. A general study of

the Debye-like screening problem for 2d single slip geometry has been carried out by

the present authors [23]. This involves an effective free energy whose variation leads

to equilibrium equations, explicitly solvable under some physically important condi-

tions. The results obtained were compared with DDD simulations and an experiment

finding.

In this paper we construct evolution equations for dislocation densities resem-

bling non-equlibrium thermodynamics. This is based on the effective free energy

drawn from the aforementioned equilibrium theory [23]. Our main result is that the

dynamical equations thus obtained reproduce the physically most important terms

known from earlier studies [14, 15, 16].

First the method developed earlier to link the microscopic and mezoscopic de-

scription of the evolution of a 2d single slip dislocation system is summarized. The

two subsequent sections present the new variational approach to the dynamical equa-

tions. Before the conclusion, the outlook of extending the model for double slip is
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discussed.

2 Linking micro to mezoscale

In this section we recall the existing theory for the evolution of dislocation densities

[14, 15, 16], which serves as the basis for comparison to our new approach as elucidated

later. We start our analysis by considering the simplest possible dislocation ensemble,

a system of N parallel edge dislocations with Burgers vectors ±(b, 0, 0). We assume

that the temperature is low enough, so dislocation climb is negligible beside glide,

i.e. dislocations can move only in their glide planes. As a first step, the equation of

motion of individual dislocations has to be set up. Because of the dissipative nature

of dislocation motion, beside the force acting on a dislocation due to the elastic field

(Peach-Koehler force [24]), a friction force has to be taken into account. A frequently

applied approximation is that the friction force is proportional to the velocity of a

dislocation [25]. Since in the case of low deformation rate the inertia term can be

neglected besides the friction force, the equation of motion of a dislocation is only a

first order differential equation [14]:

d~ri

dt
= B−1~bsi

[

N
∑

j 6=i

sjτind(~ri − ~rj) + τext

]

, (1)

where ~ri = ~ri(t) is the postion of the ith dislocation in the plane perpendicular to

the dislocation line direction, B is the dislocation mobility, si = ±1 is the sign of the

ith dislocation, τext is the external shear stress and

τind(~r) =
bµ

2π(1 − ν)

x(x2 − y2)

(x2 + y2)2
(2)

is the shear stress generated by an individual dislocation in an infinite medium. Here

µ is the shear modulus, and ν is the Poisson’s ratio.

In order to derive continuum equations let us multiply Eq. (1) with δ(~r−~ri), and

take its derivative with respect to ~r:

~∇
{

d~ri

dt
δ(~r − ~ri)

}

= ~∇
{

B−1~bsi

[

N
∑

j 6=i

sjτind(~ri − ~rj) + τext

]

δ(~r − ~ri)

}

. (3)

4
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The left hand side of the above equation can be rewritten as

~∇
{

d~ri

dt
δ(~r − ~ri)

}

= −~ri

dt
~∇iδ(~r − ~ri) = − d

dt
δ(~r − ~ri). (4)

For further considerations it is useful to introduce the discrete distribution functions

corresponding to dislocations with positive and negative signs

ρd
±(~r) =

N
∑

i=1

Θ(±si)δ(~r − ~ri), (5)

where Θ(x) is the Heaviside function. By multiplying Eq. (3) with Θ(±si) and

summing up with respect to i we get

d

dt
ρd
±(~r) = (6)

∓B−1(~b~∇)

{(
∫

τind(~r − ~r′)[ρd
±(~r′) − δ(~r − ~r′) − ρd

∓(~r′)]d2r′ + τext

)

ρd
±(~r)

}

,

(where δ(~r − ~r′) beside ρd
±(~r′) is needed to avoid dislocation self-interaction.) The

above equation is a strongly nonlinear equation for the discrete dislocation densities

ρd
±(~r), which is as difficult to solve as the original equation of motion (1). For many

problems, however, we do not need such a detailed description of the dislocation

system represented by the discrete density functions introduced above. We can get

rid of the highly singular character of ρd
±(~r′) convoluting Eq. (6) with a window

function. In what follows, we shall denote the result of coarse graining on the quantity

A by 〈A〉. One can immediately raise the question what is the appropriate function

we should use for the shape of the windows function and what determines its ’half

width’. There is no general recipe how to resolve this problem, but we can hope that

within certain limits the results obtained by coarse graining are not sensitive to the

actual shape and width of the window function.

After performing coarse graining on Eq. (6) we obtain that

∂ρ+(~r1, t)

∂t
(7)

+B−1(~b~∇1)
[

ρ+(~r1, t)τext +
∫

{ρ++(~r1, ~r2, t) − ρ+−(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2

]

= 0

∂ρ−(~r1, t)

∂t
(8)

−B−1(~b~∇1)
[

ρ−(~r1, t)τext −
∫

{ρ−−(~r1, ~r2, t) − ρ−+(~r1, ~r2, t)} τind(~r1 − ~r2)d~r2

]

= 0

5
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where

ρ±(~r) =< ρd
±(~r) > (9)

and

ρ±±(~r1, ~r2) =< ρd
±(~r1)ρ

d
±(~r2) − ρd

±(~r1)δ(~r1 − ~r2) > (10)

are the coarse grained one and two-particle dislocation density functions correspond-

ing to the signs indicated by the subscripts.

As it can be seen the equations derived above do not represent a closed set of

equations because the time derivative of the one-particle density functions depend on

the two-particles ones. In order to get closed evolution equations, the properties of

the pair-correlation functions dss′ defined as

ρss′(~r1, ~r2, t) = ρs(~r1)ρs′(~r2)(1 + dss′(~r1, ~r2)) s, s′ ∈ {+,−} (11)

have to be analyzed. According to discrete dislocation dynamics (DDD) simulations

the pair-correlation functions defined above decay to zero within a few dislocation

spacings [26]. As a result of this, if the total dislocation density ρ = ρ+ + ρ− varies

slowly enough in space, we can assume that the correlation functions depend explicity

only on the relative coordinate ~r1−~r2. The direct ~r1 (or ~r2) dependence appears only

through the local dislocation density i.e.

dss′(~r1, ~r2) = dss′(~r1 − ~r2, ρ(~r1)) s, s′ ∈ {+,−}. (12)

(Since dss′ is short ranged in ~r1 − ~r2, it does not any make difference, if in the above

expression ρ(~r1) is replaced by ρ(~r2).) In the case ρ+ − ρ− ≪ ρ, there is no other

relevant length scale but the average dislocation spacing. So, for dimensionality

reason the ρ dependence of dss′ has to be the following:

dss′(~r1, ~r2) = dss′((~r1 − ~r2)
√

ρ(~r1)) s, s′ ∈ {+,−}. (13)

By substituting Eq. (13) into Eqs. (7,8) and (11) we conclude that the total and the

κ = ρ+ − ρ− signed or geometrically necessary dislocation (GND) densities satisfy

the evolution equations [16]

∂ρ(~r, t)

∂t
+ B−1(~b~∇)[κ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0, (14)

6
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∂κ(~r, t)

∂t
+ B−1(~b~∇)[ρ(~r, t) {τsc(~r) + τext − τf(~r) + τb(~r)}] = 0, (15)

where

τsc(~r) =

∫

τind(~r − ~r1)κ(~r1)d
2r1, (16)

τf(~r) =
1

2

∫

ρ(~r − ~r1)d
a(~r1

√

ρ(~r − ~r1))τind(~r1)d
2r1 (17)

and

τb(~r) =

∫

κ(~r − ~r1)d(~r1

√

ρ(~r − ~r1))τind(~r1)d
2r1, (18)

in which the notations

d(~r) = 1/4[d++(~r) + d−−(~r) + d+−(~r) + d−+(~r)], (19)

da(~r) = 1/2[d+−(~r) − d−+(~r)] (20)

are introduced. (For the sake of simplicity, the ρ dependence of the correlation

functions are not indicated.) Due to the following obvious symmetry properties of

the correlation functions

d+−(~r) = d−+(−~r), d++(~r) = d++(−~r), d−−(~r) = d−−(−~r) (21)

d(~r) is an even, while da(~r) is an odd function of ~r.

Taking into account that the pair-correlation functions decay to zero within a few

dislocation spacings the fields κ(~r − ~r1) and ρ(~r − ~r1) appearing in Eqs. (17,18) can

be approximated by their Taylor expansion around the point ~r. Keeping only the

first nonvanishing terms and assuming that ∂ρ
∂r

≪ ρ3/2 we get

τf(~r) =
ρ(~r)

2

∫

da(~r1

√

ρ(~r))τind(~r1)d
2r1, (22)

τb(~r) = −∂κ(~r)

∂x

∫

x1d(~r1

√

ρ(~r))τind(~r1)d
2r1. (23)

(To obtain expressions (22,23) one has to take into account the symmetry properties

of d(~r) and da(~r) explained above, and that τind(~r) = −τind(−~r).) By the variable

substitution ~η =
√

ρ~r τf(~r) and τb(~r) read as

τf(~r) =
µ

4π(1 − ν)
Cdb

√

ρ(~r), (24)
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and

τb(~r) = − µ

2π(1 − ν)
Dd

b

ρ

∂κ(~r)

∂x
, (25)

where

Cd =

∫

ηx(η
2
x − η2

y)

(η2
x + η2

y)
2

da(ηx, ηy)dηxdηy (26)

and

Dd =

∫

η2
x(η

2
x − η2

y)

(η2
x + η2

y)
2

d(ηx, ηy)dηxdηy (27)

in which ~η has to be measured in unit of dislocation spacing.

In order to understand the physical meaning of the different ’stress like’ terms

defined above we have to take into account that the correlation functions can depend

on the external stress too. One can easily see, that d(x, y) (which is the sum of the

four correlation functions) can have only a weak τext dependence. In the same time,

however, da(x, y) = 1/2[d+−(x, y) − d−+(x, y)] varies strongly with τext. It follows,

that Dd is a constant dimensionless material parameter, while Cd depends on the

external stress. Beside this, according to Eq. (24), τf scales with
√

ρ(~r). The actual

stress dependence of Cd is difficult to determine, but from Eq. (24) we can speculate

that τf acts like the flow stress. This means, up to a certain stress level τmax
f ∝ √

ρ, it

is as big as necessary to prevent dislocation motion. If, however, the local shear stress

is larger than τmax
f it becomes a constant τf = τmax

f . Certainly, we have to be careful

with associating τf with the flow stress. In real dislocation systems hardening is

caused by forest dislocations not included into our model in any sense. Nevertheless,

a stress like term showing similar properties as the flow stress appears naturally in

the theory.

An important feature of the evolution equations obtained is that a term pro-

portional to the gradient of the GND density appears naturally. There are several

phenomenological attempts [3, 4, 6, 7, 8] to introduce simular gradient terms, but

each of them suffers from the drawback that a length parameter l with unclear phys-

ical meaning has to be introduced. In contrast with this, in our theory there is a

natural length parameter, namely, the dislocation spacing l = 1/
√

ρ It has to be

8
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emphasized that, unlike in phenomenological theories, our length parameter l is not

a constant because ρ obeys the evolution equation Eq. (14).

For further considerations it is useful to note that for any 2d elastic problem the

stress tensor can be obtained from a scalar function χ (called stress potential or Airy’s

function) as [27]

σ11 = −∂2χ

∂y2
, σ22 = −∂2χ

∂x2
, σ12 =

∂2χ

∂x∂y
. (28)

It follows from Eq. (28) that the

∂

∂ri

σij = 0 (29)

equilibrium condition is fulfilled. According to the field theory of dislocations by

Kröner and Kosevich [27, 28], for the slip geometry considered in this paper, χ is the

solution of the biharmonic equation

∆2χ(~r) =
2µ

1 − ν
b

∂

∂y
κ(~r) (30)

By solving the above equation one can find that for an infinite media τsc given by Eq.

(16) is equal to σ12, i.e. τsc appearing in the evolution equations derived is the coarse

grained shear stress generated by the dislocation system. We mention that due to

the long range nature of τind, in contrast with τf and τb, τsc cannot be approximated

by a Taylor expansion

During the past couple of years the continuum theory explained above was solved

for different nontrivial deformation geometries, like shear of a channel [16], bending

[29] and shear of composite [30]. The results were compared with DDD simulations.

It was found that the continuum model is able to reproduce not only the macroscopic

(like stress strain curve) but the microscopic properties (dislocation density distribu-

tions, local shear rate, internal stress distribution) obtained by DDD simulations. At

the moment, however, the continuum theory is well established only for single slip.

Extending the theory just for 2d multiple slip (that is still a very strong simplification

of the real dislocation geometry) is already far from trivial by a derivation procedure

similar to the one outlined above. In order to establish a systematic way of setting

up continuum equations for more complex situations, in the next part of the paper

we propose a thermodynamics-like approach presented in a variational framework.

9

Page 9 of 19

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3 Variational approach

As the first step let us consider the following functional

E[χ, κ] =

∫
[

−1 − ν

4µ
(∆χ)2 + bχ′∂κ

∂y

]

d~r. (31)

By varying E[χ, κ] with respect to χ, for an infinite medium (for which the surface

terms vanish) we get, that at a given κ(~r) E[χ, κ] has an extremum at a specific χ

satisfying the equilibrium Eq. (30). This means that the equilibrium condition (30)

can be obtained from a variational principle. This simple finding will play a crucial

role in the analysis below. It is easily seen from Eqs. (31) and (30) that the extremum

of E[χ, κ] is

Emin =

∫
[

1 − ν

4µ
(∆χ)2

]

d2r. (32)

Straightforward calculation shows that Emin is the elastic energy of a deformed 2d

system with Airy’s function χ(~r). This follows that if we consider a coarse grained

GND density field κ(~r) the energy functional given by Eq. (31) is minimized at the

corresponding coarse grained Airy’s function χ(~r). We have to keep in mind, however,

that since κ(~r) and χ(~r) are coarse grained fields, Emin is not the total elastic energy

of a dislocation system.

The energy expression given by Eq. (31) has another important feature. The

second term on the right hand side of (31)

Eint =

∫
[

bχ
∂κ

∂y

]

d2r (33)

is the interaction energy of dislocations with an external elastic field given by the

Airy’s function χ(~r). In order to see that this is indeed the case, let us consider a single

dislocation positioned at the point ~r0. Since for a single dislocation κ(~r) = δ(~r −~r0),

according to Eq. (33)

Eint(~r0)) =

∫
[

bχ
∂

∂y
δ(~r − ~r0)

]

d2r. (34)

Hence the force (per unit length) acting on the dislocation due to the elastic field is

~F = − d

d2r0

Eint(~r0)) = b

(

∂2χ

∂x0∂y0

,
∂2χ

∂y2
0

)

= b (σ12(~r0)),−σ11(~r0))) (35)
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that is the Peach-Koehler force [24] for the dislocation geometry considered.

The next problem we are going to address is how to get evolution equations

from the energy functional (31) introduced. For this we apply the standard method

of phase field theories [31]. Assuming that the number of positive and negative

dislocations are conserved, the evolution equations must have the form

∂

∂t
ρ± + div~j± = 0, (36)

where ~j+ and ~j− are currents corresponding to positive and negative dislocations,

respectively. Since in our present analysis dislocation climb is excluded, the cur-

rents have to be parallel to the Burgers vector so, ~j± = ~b/|~b|j± where j± are scalar

quantities.

Like in irreversible thermodynamics, we assume that the currents are linear func-

tions of the gradient of the chemical potentials, i.e.

j+ = M++

∂

∂x

δE

δρ+

+ M+−

∂

∂x

δE

δρ−

j− = M−−

∂

∂x

δE

δρ−

+ M−+

∂

∂x

δE

δρ+

, (37)

where Mij (i, j = ±) are mobility parameters. The actual value of the mobilities

cannot be determined from general considerations. They may depend on the dislo-

cation densities, too. However, the evolution equations we obtain from Eqs. (36,37)

should be the same as Eqs. (14,15) derived in the previous section from microscopic

considerations. Taking the following forms for the currents

j+ =
B−1

2
ρ+

∂

∂x

[

δE

δρ+

− δE

δρ−

]

= B−1ρ+

∂

∂x

δE

δκ

j− =
B−1

2
ρ−

∂

∂x

[

δE

δρ−

− δE

δρ+

]

= −B−1ρ−

∂

∂x

δE

δκ
(38)

leads to the evolution equations for ρ = ρ+ − ρ− and κ = ρ+ − ρ− as

∂ρ(~r, t)

∂t
+ B−1(~b~∇)[κ(~r, t)τsc(~r, t)] = 0, (39)

∂κ(~r, t)

∂t
+ B−1(~b~∇)[ρ(~r, t)τsc(~r, t)] = 0, (40)
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where τsc = ∂2χ/∂x∂y is the self-consistent shear stress introduced above. By com-

paring Eqs. (39,40) with Eqs. (14,15) we see that the τf ’flow’ stress and the τb gradient

term related to the dislocation-dislocation correlation functions are not recovered by

the considerations above. This means, that using the standard method of phase field

theories, the dislocation dynamics we can obtain from the coarse grained energy func-

tional E[χ, κ] corresponds to the zeroth order approximation when the two-particle

density functions are assumed to be the simple products of the one particle densities,

ρi,j(~r1, ~r2) = ρi(~r1)ρj(~r2).

4 Effective free energy

As it is well known, if the dynamics of a system is influenced by thermal noise, the

minimum of the free energy F = E − TS determines the equilibrium state, where

T is the temperature characterizing the noise level, and S is the entropy. However,

by estimating the order of magnitudes of the different terms in F one can find that

for dislocation systems the TS term is negligible in most practical cases of plastic

deformation. Nevertheless, as it is explained below in details, an effective temperature

parameter Teff can characterize the dislocation system, if dislocation glide dominates

the dynamics. Remarkably, this effect holds even for zero physical temperature.

As the simplest possible assumption, the entropy of the dislocation system is

approximated by

S[ρ+, ρ−] = −
∫

[

ρ+ ln
ρ+

ρ0

+ ρ− ln
ρ−

ρ0

]

d2r, (41)

where ρ0 is a normalizing constant. If the GND density is small (|κ| ≪ ρ) up to

quadratic term in κ the entropy is

S[κ, ρ] =

∫
[

κ2

2ρ
+ ρ ln

ρ

ρ0

]

d2r (42)

With Eqs. (31,42) the effective free energy proposed reads as

F [χ, κ, ρ] =

∫
[

−1 − ν

4µ
(∆χ)2 + bχ

∂κ

∂y
+ Teff

κ2

2ρ

]

d2r + F ′[ρ] (43)

where F ′[ρ] is a term depending only on ρ. Its actual form is not important for our

further considerations.
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Replacing E by F in expression (38) of the currents leads to the evolution equa-

tions

∂ρ(~r, t)

∂t
+ B−1(~b~∇)

[

κ(~r, t)τsc(~r, t) + Teff

∂

∂x

(

κ

ρ

)]

= 0, (44)

∂κ(~r, t)

∂t
+ B−1(~b~∇)

[

ρ(~r, t)τsc(~r, t) + Teff

∂

∂x

(

κ

ρ

)]

= 0. (45)

If we take

Teff =
µ

2π(1 − ν)
Dd, (46)

and we assume that |κ| ≪ ρ and ∂ρ/∂x is in the same order as ∂κ/∂x, the term

beside τsc in Eqs. (44,45) is equal to τb, the gradient term obtained from microscopic

considerations. This means, apart from the ’flow’ stress τf , the phase field theory

based on the effective free energy functional given by Eq. (43) leads to the same

evolution equations as the one derived by the coarse graining of the equations of

motion of dislocations.

The result obtained can be summarized as follows: As it is expected, if in the

energy expression of the dislocation system the fields κ and χ corresponding to dis-

crete dislocation distribution are replaced by coarse grained fields, effects related to

dislocation-dislocation correlations are suppressed. Correlation effects manifested in

the form of gradient of GND density, however, can be accounted for by an appropriate

effective free energy. (We mention that the flow stress is not yet incorporated into

the theory.)

A remarkable feature of the evolution equations derived here is that the dynamics

is not influenced by the functional derivative of F with respect to the total dislocation

density ρ. This follows that the conditions for equilibrium are

δF

δχ
= 0

δF

δκ
= 0, (47)

i.e. the free energy is not minimized totally. Different initial configurations in ρ(~r)

may result in different equilibrium configurations.

We have to keep in mind that the theory is justified only by the fact that it gives

the same evolution equations as the ones derived from discrete dislocation dynamics.
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The main advantage of the formalism is in its potential to be extended to more

complex dislocation configuration. Although the details are not developed at the

moment, some of the aspects of the problem are discussed below.

5 Debye-like screening of dislocations

In order to demonstrate the capability of the variational approach proposed, we

shortly discuss the problem of screening of the elastic field of a dislocation by a

’bath’ of other dislocations. Here we only summarize the results compiled elsewhere

[23].

Consider a 2d system of parallel edge dislocations distributed homogeneously

with density ρ. Like before, we assume that the Burgers vector of the dislocations

are ~b = ±(b, 0). Then, let us add a single dislocation, fixed at the origin of the

coordinate system. We ask for the induced GND density and internal stress. The

effective free energy of the whole system is obviously

F ′[χ, κ] = F [χ, κ] +

∫

bχ
∂

∂y
δ(~r)d2r, (48)

where the second term on the right hand side accounts for the interaction of the extra

dislocation with the field created by the other dislocations. From the equilibrium

conditions

δF ′

δχ
= 0,

δF ′

δκ
= 0 (49)

we get

∆2χ = q
∂

∂y
[κ(~r) + δ(~r)] (50)

and

b
∂χ

∂y
= Teff

κ

ρ
, (51)

where q = 2bµ/(1−ν). Differentiating with respect to y and assuming that ρ remains

nearly constant, from (50) we conclude

∆2χ = 4k2
0

∂2χ

∂y2
+ q

∂

∂y
δ(~r), (52)
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where

k0 =

√

b2µρ

2(1 − ν)Teff

(53)

Its solution in an infinite medium is

χ(~r) = −(4πk0)
−1 sinh(k0y)K0(k0r), (54)

where K0 is the zeroth modified Bessel function of the second kind. Hence by Eq.

(51) the GND density induced is

κ(~r) =
k2

0

π

[

y sinh(k0y)

r
K1(k0r) − cosh(k0y)K0(k0r)

]

. (55)

and by Eq. (28) the shear stress is

σ12 =
q

4π

[

K1(k0r)

r

(

cosh(k0y)k0x − sinh(k0y)
2xy

r2

)

− sinh(k0y)K0(k0r)
k0xy

r2

]

. (56)

It can be seen from the asymptotic forms of the Bessel functions, that near the

origin the stress is equal to the unscreened stress, i.e., as it is expected, next to the

dislocation the stress still decays with 1/r. For large |x| values, however, both the

induced GND and the stress decay like exp(k0r)/
√

r. So within a couple of dislocation

spacings (k0 ∝ √
ρ) they practically vanish. Remarkably, along the y axis κ has a

power law asymptote

κ ≈
√

k0

32π

1

|y|3/2
. (57)

In order to test the results obtained we performed DDD simulations (for details

see [23]). The relaxed positions of 128 dislocations with 1000 different random initial

configurations were computed. Then, the induced GND density κ(~r) ∝ d++(~r) −
d+−(~r) was determined by counting the number of pairs of dislocations in a given

vicinity of relative position ~r. The comparison of the DDD and analytical results

along the y axis can be seen in Fig. 1. It can be stated that the GND density values

calculated by DDD follow the theoretical curve remarkably well. The only fitting

parameter k0 was found to be k0 = 4.2
√

ρ. We mention, that earlier investigations

[23] also indicate that the continuum equations (14,15) are able to reproduce the

properties observed by DDD under different conditions.
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Figure 1: Induced GND along the y axis obtained by DDD simulation (circles) and

the theoretical prediction (full line).

6 Double slip geometry

Several open issues have to be addressed before we can say we have an established

continuum theory for double or multiple slip. The simplest possible way to extend

the single slip equations to double slip is to assume that the GND-dependent part of

the total effective free energy is the sum of the two respective terms corresponding

to single slip

Fd0[χ, κ1, κ2] =

∫

{

−1 − ν

4µ
(∆χ)2 +

2
∑

i=1

[

bχ(~ni
~∇)κi + Teff

κ2
i

2ρi

]

}

d2r (58)

and the currents of the four different type of dislocations are

~j±i = B−1ρ±
i (~bi

~∇)
δFd0

δκi
, i = 1, 2, (59)

where quantities with subscript i = 1, 2 correspond to the two-slip systems, and ~ni is

a unit vector perpendicular to and ~bi.

In this case the dislocation evolutions in the two slip systems are coupled only

through the Airy’s function χ (or the self-consistent stress field). According to earlier

investigations [32] this does not give a satisfactory agreement with DDD simulations.
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We speculate that a better agreemet can be achieved by adding a ’cross’ term Fcross

to Fd0. If, like before, we assume that the GND densities are small compared to the

total dislocation density, i.e., the equations are linear in κi, the ’cross’ free energy

has the form

Fcross = A (ρ1, ρ2, ϕ)κ1κ2, (60)

where A is symmetric in the two densities, its dimension is 1/ρ, and ϕ is the angle

between the Burgers vectors. The general form of the function A is not known,

but in special cases simple arguments can help to determine it, and also numerical

investigations are presently under way for that purpose.

7 Conclusions

A new variational approach, resembling non-equilibrium thermodynamics, is pro-

posed to obtain evolution equations for the GND and the total dislocation densities

for single slip. The key features can be summarized as follows.

Similarly to the equilibrium case studied earlier, also the dynamical equations can

be derived from an effective free energy. The evolution equations are essentially the

same as the ones obtained from microscopic considerations.

It is found, that the gradient term, which arose earlier due to the correlation of

dislocations in the evolution equation, can also be accounted for by complementing

the naive coarse grained energy by an appropriate term. Because of the formal anal-

ogy of the resulting quantity to the usual free energy, we called our formalism effective

thermodynamics. It should be stressed, however, that the physical temperature of

the system is zero, so in fact the effective free energy is a coarse grained energy com-

puted more precisely than before. We surmise that the arisal of a positive effective

temperature is intimately related to the fact that dislocations are constrained to their

glide planes. A notable outcome of the effective thermodynamics is the Debye-like

screening of elastic stress fields by dislocations.

We suggest that the framework presented here opens a way to extend the theory

of the single slip system to more general slip plane geometries.
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