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38042 St Martin d’Hères, France 

 

 

ABSTRACT 

 

A generalized version of Frenkel’s model of cluster gas is proposed to provide a 

rigorous description of the contribution of the configuration entropy to the total 

free energy of cluster distributions in binary alloy. It is shown that the predicted 

cluster distributions are in excellent agreement with those obtained in kinematical 

Monte Carlo simulations. The emission and absorption coefficients to be used in 

cluster dynamics are fully defined: they depend not only of the free energy of 

clusters but also of the whole cluster distribution. Alternatively, this model can 

provide accurate values of the nucleation driving force used in classical 

nucleation theory. 

 

Keywords: Free Energy, Precipitation, Cluster Dynamics, Nucleation. 

 

 

1. Introduction 

 

The classical nucleation theory (CNT) and its companion, the cluster dynamics (CD), are still 

very living subjects which continue to inspire an impressive amount of works. Among the 

various reasons for this continuous interest, one can find: - the generality of this theory which 

makes it a tool commonly used in a wide range of fields, each community developing its own 

culture of the CNT, adapted to its needs; - the increasing need to extend this theory to 

situations more complex than the model situations examined by pioneers (see [1] as a starting 

point to appreciate such aspects). In addition there is also a more recent reason: indeed, the 

continuous development of experimental investigation techniques and computing capabilities 

allows us to carefully examine some painful approximations of this theory. Kinematical 

Monte Carlo simulation (KMC) is a privileged tool to help us to better understand how 

precipitation really takes place in crystals [2]. Contrary to real materials, the properties of the 

simulated material based on realistic interatomic potentials are perfectly controlled and the 

role of various quantities can be easily tested. For instance, it is possible to know if monomers 

are the only species of mobile clusters or not [3]; alternatively it is also possible to design a 

potential which forbids or allows the mobility of small clusters to study the influence of this 

mechanism [4]. Therefore, when comparing with analytical approaches it is no longer 

acceptable to assume any hypothesis for the sake of simplicity or to invoke possible effects to 

justify observed deviations between models and experiments, for instance. As in various other 

fields, such mature simulation tool can help us to differentiate the right from the wrong 

among theories developed in a time where such a tool was not available, yet. A good example 

of point worth to examine, first in binary systems, is the definition of the well-known 

absorption and emission coefficients defined in CTN and used in CD calculations. Following 

the work of Kelton [5], it was recently suggested, in a paper further referred to as paper I [6], 

to cut the problem into two pieces: interfacial reactions, a purely thermodynamical feature, 
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and long range diffusion, whose knowledge is only necessary to predict the precipitation 

kinetics, i.e. to link the physical time to successive states of the system. Curiously, the first 

point has been the subject of a controversy for many years while the second point seems so 

trivial that is seldom discussed, except recently because there is increasing evidence that in 

many real materials monomers are not the only mobile clusters [2]. Hopefully there are 

situations where only monomers diffuse, e.g. AlZr and AlSc alloys [3]; such situations are 

thus perfect case studies to investigate both thermodynamical and kinematical aspects of 

precipitation.  

 

In paper I, interfacial exchange rates were obtained through an atomic scale analysis of 

the probabilities to capture and release a solute atom at the interface of a cluster. The ratio of 

these coefficients was found similar to the ratio of the absorption and emission coefficients in 

CD, i.e. equal to )/)(exp( 1 TkFF Bnn ∆−∆− +  multiplied by a concentration of monomers ( Bk  is 

the Boltzmann constant, T is the temperature and ( )1nFFF nn −=∆  is the difference of free 

energy between a cluster of size n and that of n monomers). Of course, in the former case this 

concentration of monomers is local, while in the latter case it is taken in its global sense. 

Although these two concentrations are strictly equivalent only at equilibrium, this difference 

only deals with the kinetics, through the different schemes to solve the master equation (i.e. 

one or two pairs of coefficients). The main information to retain from this comparison 

between microscopic and macroscopic analysis is that the thermodynamics is the same in both 

descriptions, as expected. This confirms, one more time, that the expression of the ratio of 

these coefficients does not depend on whether the considered clusters are sub- or super-

critical. This also means that the most classical way to find this ratio, i.e. by considering the 

notion of equilibrium concentrations of clusters, is fundamentally correct, despite that the 

predicted equilibrium concentrations of clusters lose their physical meaning beyond the 

critical size. In order to avoid this controversial feature, an alternative general demonstration 

was proposed by Slesov and Schmelzer [7] leading, of course, to the same result. More 

recently, the link between CNT and CD was examined in a general way by Martin [8].  

In fact, the most important is not how the expression of this ratio is obtained, all 

approaches leading to the same result, but how this ratio is actually calculated. Macroscopic 

thermodynamics has been suspected for a long time to be unsuitable to describe the free 

energy of small clusters, classically approximated by the capillary approximation like large 

clusters. This concern gave rise to original works about 20 years ago to find alternative 

calculation methods based on statistical physics [9]. Note that alternatives to the capillary 

approximation have been proposed also for liquids [10] and gases [11]. Using the same kind 

of method than Perrini et al. [9], various features of clusters, including their free energy, were 

recently computed for clusters of cubic (or L12) structure, taking advantage of current 

computing capabilities (paper I). In particular, it was shown that the usual constant interface 

energy is a well suited approximation only beyond a cluster size of about 35 solute atoms (for 

this structure) and only in a given range of temperature; this threshold was found to increase 

with temperature. For cluster sizes smaller than this threshold the free energy is more complex 

to describe, i.e. three parameters are necessary, or if one prefers, the interface energy depends 

on cluster size. And for very small clusters (less than 10 solute atoms) it is preferable to use 

the exact polynomial solution (cf. paper I) because it cannot be efficiently fitted with a simple 

law. Specific difficulties were found to describe the free energy at low or high temperature, 

see paper I for details. Therefore, these results explain why CTN and CD can be successful in 

a given range of temperature and solute concentration and fail out of this range. Nevertheless, 

despite these recent progresses, comparisons between cluster distributions obtained by CD 

with those provided by KMC simulations revealed important deviations at high temperature 

and solute concentrations. As long as only cluster distributions are compared, and not the 
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evolutions versus time of average quantities, like the average cluster size for instance, only 

the thermodynamical description of the alloy is involved, i.e. it should not depend (or only 

very weakly) on the description of the long distance diffusion process which controls the 

kinetics. As the accuracy of the calculation of the free energy of clusters is fairly good (of the 

order of 0.1% at high temperature) this deviation has another origin which appears when one 

comes back to the expression of the total free energy of a distribution of clusters. The 

neglected contribution is the configurational entropy of the so-called cluster gas.  

 

The main goal of the present paper is to examine this contribution. In other words, 

paper I deals with the arrangement of solute atoms within clusters (the main contribution to 

the total free energy) while the present work deals with the arrangement of clusters within the 

system. This question can be envisaged following various points of view, e.g. as a correction 

to bring to the absorption and emission coefficients to be used in CD, or more generally as an 

efficient way to provide a reference solution for binary alloys when atomic interactions can be 

truncated at a distance equal to the lattice parameter a (or the solute atoms sublattice in the 

case of ordered clusters). The strategy adopted here is based on the notion of cluster gas as 

known from Frenkel’s pioneering work [12]. It will be shown that when associated with the 

previously mentionned calculations of cluster free energy, this concept can provide a rigorous 

way to describe the free energy of any distribution of clusters in a binary alloy without the 

various approximations peculiar to classical methods like Cluster Variational Method (CVM) 

[13], Low Temperature Expansions (LTE) [14-15] or simpler thermodynamical models like 

regular or ideal solutions.  

 

Starting from the notion of cluster gas, the derivation scheme leading to the expression 

of cluster concentrations at equilibrium is first recalled (section 2). Then it is shown step by 

step how the “frustration” of the matrix can be fully included: this frustration arises from the 

space forbidden to a given cluster by other clusters (section 3). Section 4 shows how this 

contribution has to be accounted for in the so-called absorption and emission coefficients in 

CD. Then the predicted distributions of clusters are compared with those observed in 

Kinematical Monte Carlo (KMC) simulations for AlZr alloys and finally the link with the 

Classical Theory of Nucleation (CNT) is examined. 

 

All KMC data reported in this paper were provided by courtesy from E. Clouet; most 

results and details about the simulation procedure can be found in [3, 16-17] and forthcoming 

papers. 

 

 

2. Notions of equilibrium concentrations and cluster gas 

 

2.1 Equilibrium concentrations 
 

In undersaturated solutions, i.e. of concentration C0<Ceq, where Ceq is the limit of solubility, a 

stable (Boltzmann) distribution of clusters can develop: it is the distribution which minimizes 

the total free energy of the system. In such a distribution, the concentration of each class of 

clusters of size n (where n is the number of solute atoms in the cluster) takes its so-called 

equilibrium value nC
~

 defined by: 

 








 ∆
−=

Tk

G
C

B

n

n exp
~

 (1) 
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in the CNT framework where nG∆  is the formation free energy of clusters of size n. 

Equivalently, in the cluster gas formalism the same quantity is defined by: 

 

[ ] 






 ∆
−=

Tk

F
CC

B

n
n

n exp
~~

1  (2) 

 

where 1

~
C  is the equilibrium concentration of monomers.  

 

Figure 1 shows a typical example of cluster distribution for an undersaturated solution 

(C0=0.75 Ceq). This distribution was obtained using a classical algorithm of cluster dynamics 

(for recent works see [17, 18]) which strictly speaking is not a true free energy minimization 

algorithm but it succeeds to reproduce values given by Equation (2) with a relative accuracy 

which can reach 10
-10

.  

 

In a supersaturated solution, such a stable distribution of clusters cannot establish 

because of the emergence of a critical size n*: instead, the long time behaviour is 

characterized by the growth of overcritical clusters while subcritical clusters dissolve. 

Nevertheless, according to the CNT, a “quasi steady-state” is expected, at least for low 

supersaturated alloys, such that the cluster concentrations still take their equilibrium values 

for n<n* although the concentration decreases faster than expected according to Equation (2) 

while approaching n*. This deviation was studied in details and extended to non-steady states 

by Kashchiev [19]; for steady-states, with the free energy of clusters approximated with the 

capillary approximation it was shown that this deviation equals to 50% at n=n*.  

These predictions are in good agreement with cluster distributions obtained in CD for 

low supersaturated solutions. Figure 2 shows such an example obtained for an alloy of low 

solubility limit and C0=5 Ceq; the ratio ½ between simulated and predicted concentrations at 

n=n* is fairly well verified. Of course these distributions are not as stable as true equilibrium 

distribution obtained in undersaturated alloys (cf. Figure 1) but the time scale of their 

evolution is so large, compared with the time necessary to stabilize them, that the expression 

“quasi steady-state” is fully justified, but they do evolve with time. On the contrary, for high 

supersaturations, although it might be possible to find a particular time such that the 

concentration of monomers is the same than in the equilibrium distribution predicted by 

Equation (2) and the concentration at n* is about half of the predicted one, in average the 

distribution is only approximately in agreement with the predicted one. And in addition such 

configurations are observed only for short period of times as they evolve very quickly. This 

difference of behaviour with low saturated alloys is of course enhanced by smaller values of 

n* which are not in favour of the capillary approximation. These more complex situations will 

be examined in section 4. 

 

Figures 1 and 2 

 

2.2 Frenkel’s model of cluster gas 

 

If the range of atomic interactions can be truncated such that two clusters do not interact, then 

the total free energy per site of a cluster distribution can be rigorously described as the sum of 

free energies of all clusters plus the contribution of the configuration entropy of the cluster 

distribution or gas (also called entropy of mixing): 
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( )Ω−= ∑ ln     TkFCF B

n

nntotal  (3) 

 

Cn is the concentration of clusters of size n, Ω  is the partition function of the cluster gas. 

Within the approximation of Frenkel’s model of cluster gas it is considered that, whatever its 

size, a cluster occupies only one site of the lattice, which is acceptable as long as N0<<Ns 

where Ns is the total number of sites in the system containing N0 solute atoms. Within this 

approximation Ω  is defined by: 

 

∏ ∑
∞

=

∞

=









−

=Ω

1 1

! !

!

k k

ksk

s

nNn

N
 (4) 

 

where nk is the number of clusters containing k solute atoms. The conservation of solute atoms 

imposes:  

 

∑
∞

=

=
1

0 
k

k Nnk  or ∑
∞

=

=
1

0 
k

k CCk  (5) 

 

with Ck=nk/Ns and C0=N0/Ns. Using Stirling’s approximation to simplify factorial terms, the 

total free energy per lattice site writes: 

 

( )








+







−








−+=








∑∑∑∑

∞

=

∞

=

∞

=

∞

111

ln 1ln 1 
k

kk

k

k

k

kB

k

kk

s

total CCCCTkFC
N

F
 (6) 

 

The technique to minimize this expression versus cluster concentrations Ck while 

accounting for Equation (5) can be found in different flavours in the literature but the base 

remains the Lagrange multiplicator method: 

 

0
1 0 =

∂

∂
+

∂

∂

nn

total

s C

C

C

F

N
λ  (7) 

 

The parameter λ is set for a given value of n, the most convenient choice being n=1, then 

reintroduced in Equation (7) to obtain the general result: 

 

 exp ~
1

~

~
1

~
1








 ∆
−

















−
=

















− ∑∑ Tk

F

C

C

C

C

B

n

n

k

k

k

k

n
 (8) 

 

Usually, the denominator ( ∑−
k

kC
~

1 ) is neglected, which is consistent with the assumptions 

used to derive this expression, and in practice one uses the simplified Equation (2) instead of 

the complete result. 

 

It is worth noting that this cluster gas model is not an ordinary model of alloy, capable 

to provide a ready-to-use approximation of the partition function or of the free energy of the 
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system, contrary to other popular thermodynamical models. It only proposes a description of 

the total free energy of a binary alloy as the sum of two well-defined contributions, i.e. one 

coming from the individual structure of clusters (their free energy Fn) and the other one 

coming from their collective arrangement. This decomposition is correct (provided that two 

solute atoms belonging to two different clusters do not interact) but even if the values of Fn, 

can be calculated with a high accuracy, the collective effect is oversimplified in the original 

Frenkel’s work.  

 

2.3 Discussion 

 

Whether the solution is under- or super- saturated, the notion of equilibrium concentration 

remains of great interest for both the CNT and the classical CD even if in practice these two 

methods use different ingredients for calculating the equilibrium concentrations of clusters. 

Indeed, various thermodynamical approximations can be used to calculate the driving force in 

Equation (1), while Equation (2) relies exclusively on the notion of cluster gas described 

above.  

It is reminded that in classical CD the expression of the evaporation coefficient can be 

obtained from that of the simpler condensation coefficient through the rule of detailed 

balance, where the equilibrium concentrations are described according to Equation (2) (see 

[17] for instance, or [20] for a complete review of these questions). Therefore, the knowledge 

of this expression is absolutely fundamental for classical CD. Due to the necessary 

assumption of low solute concentration to establish Equation (2) it is commonly accepted that 

CD is strictly valid only in the limit of high dilutions although it can provide an acceptable 

approximation for common dilutions. This problem is likely to be even more acute for ordered 

precipitates than for pure precipitates due to their proportionally larger volume. This could 

explain the deviations observed between CD and KMC simulations of precipitation in AlZr 

alloys, which increase with the temperature and the solute concentration [18]. Therefore, it is 

necessary to reconsider Equation (2) to improve the domain of validity of CD.  

Alternatively, if the equilibrium concentrations could be correctly obtained, for 

instance following the latter method, then the nucleation driving force and other useful 

quantities could be determined accurately then introduced into models using such quantities. 

However, to make possible this reverse process it is necessary to enhance the notion of cluster 

gas, in particular to remove the fundamental approximation it is built on (any cluster occupy 

only one lattice site, whatever its size). This is the goal of the next section. 

 

 

3. Accounting for the matrix frustration 

 

3.1 Constant exclusion volume 
 

Before trying to account for the real volume of each cluster, an intermediate case worthy to 

consider is the simple case such that all clusters have the same volume V but with V>1 (V is 

here an integer value measuring the number of lattice sites really occupied by the cluster). The 

partition function of the cluster gas can be decomposed into a product of independent 

functions kΩ , each member k being related to a class of cluster. Consider the first class to 

arrange, i.e. k=1; at this stage it is not yet necessary to assume any relation between the rank k 

and the number of solute atoms in a cluster of class k since V is a constant. 
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After that (i-1) classes have been arranged in the lattice, iΩ  writes: 
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Ns is normalized by V to introduce the factorial notation which will be further simplified 

using for instance Stirling’s approximation. Finally the equivalent of equation (4) writes: 
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Using the same method than previously leads to a result very similar to equation (8): 
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Continuing to apply the same approach for the general case was found too confusing 

to lead to a practical solution without extensive simplifications. Instead, it is much easier to 

use the fact that when the cluster gas is at equilibrium, by definition, an elementary change in 

the concentration of any class does not change the total free energy. The simplest perturbation 

to consider consists in removing a cluster of a given class and then to redistribute its solute 

atoms among other classes. Any redistribution is acceptable but one of them is of particular 

interest: the dissolution of the cluster of size n into n individual monomers. This choice is the 

only one which reduces the problem to the examination of the linked evolution of two classes, 

1 and n (now the rank is also the number of solute atoms in the cluster). In practice, the 

problem amounts to compare the partition function before and after the transformation of the 

n-mer into n monomers, or even easier, to compare the partition function after introduction of 

the last n solute atoms, following the two different modes. 

 

The intermediate case treated above is used to illustrate this method. After removing 

the terms in common, the ratio of the new and old partition functions (i.e. after and before the 

dissolution of the n-mer) writes: 
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The total variation of free energy per site writes: 
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The logarithmic term can be estimated following the same calculation scheme than 

previously, which gives: 
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It can be easily checked that reporting this expression into Equation (15) leads again to 

Equation (12).  

 

It is worth noting that the key hypothesis required to establish this result is not related 

to the solute dilution but is the simple condition n1>>k, where k is any cluster size of the 

considered distribution. In other words, it assumes that the number of monomers is very large 

compared to the number of solute atoms in the largest cluster to be considered, a condition 

always fulfilled in situations of practical interest. The alloy dilution can play a role only in the 

required degree of approximation of the factorial terms. However, as Equation (13) is a ratio 

of pairs of very similar factorial terms, it can be easily checked that the result is not sensible 

to the approximation used for factorials; in practice Stirling’s approximation is sufficient. 

Finally, the only restriction is trivial: the description of the solute phase in terms of clusters or 

isolated precipitates has to be relevant with regards to the solute concentration, i.e. this 

description assumes that clusters do not percolate.  

 

3.2 Real exclusion volume 
 

To apply this simple method to the complex general case it is convenient to define the 

quantities Mk, the respective numbers of sites available to insert a new k–mer in the system. 

With Vj,i the number of sites that a cluster of size j forbids to a cluster of size i, we have: 
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jijsi nVNM  ,  (16) 

 

Then we need to generalize Equation (11). Following the same reasoning way than for 

mono-size clusters, we list all the possible states of the system, accounting now for the real 

values of exclusion volumes Vj,i 
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Here *

iM  refers to the number of sites left available by classes of clusters already 

inserted in the system, see Equations (9-11). Contrary to Equation (11) this result cannot be 

simplified anymore because of the different values Vj,i. It is reminded that the use of the 

factorial notation is intended to compact the result and facilitates its calculation, but it is 

important to not forget the original form analogous to Equation (9). Indeed, developing the 

full result it is easy to see that the value of Ω given by Equation (17) depends now on the 

order of introduction of the various clusters. As it is a purely mathematical procedure and not 

a physical process, only the maximal value of Ω should be retained. This maximal value 

corresponds roughly to the introduction of the different classes of clusters in the inverse order 

of their size, i.e. first the largest clusters and finally the monomers. Equation (17) can be 

rewritten in a polynomial form: 

 

∏∑
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==

−=Ω
11
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i

i
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sks nNaN
c

c  (18) 

 

Here Nc is the total number of clusters (Nc≤N0) and the coefficients ak are complex 

functions of the exclusion volumes and concentrations but the two first values are special 

cases. The first coefficient, a1=1 in any cases and a2 ,which is easy to calculate only if all 

exclusion volumes are identical, is a constant for a given system, i.e. it does not depend on the 

way to build the cluster gas contrary to the following coefficients. However, in principles, it is 

always possible to consider a system large enough to ensure that 1+>> ksk aNa  for k>2. By 

consequent, the value of Ω given by Equation (17) can be considered independent on the 

(virtual) order of introduction of the various clusters, as in the simplest case, at least for large 

systems. If, as in the present paper, one plans to compare with simulation results obtained 

with finite size systems it is worth to refine these considerations about the expression of Ω. 

Hopefully, with the method introduced in the previous section we do not really need to 

evaluate Ω, we only need to evaluate variations of Ω. Coming back to the introduction of the 

last n solute atoms in the system either under the form of n monomers or one n-mer, we can 

take as common reference the initial value of Ω, assumed exact Then even for a finite size 

system it can be reasonably assumed that the two modes of introduction of the last n solute 

atoms do not require Ω  to be evaluated again (it is reminded that n is implicitly assumed 

much smaller than the total number of solute atoms in the system). Therefore, the equivalent 

of Equation (13) writes: 
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Assuming the trivial conditions M1>>kV1,1 and Mk>>Vk,k, and applying the same method than 

for the intermediate case (constant V), the equivalent of Equation (15) writes: 
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Finally, the general solution takes a form which could be guessed from the structure of 

equation (12): 
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If all exclusion volumes are equal, both intermediate and classical solutions are readily 

obtained (i.e. Equations (12) and (8), respectively).  

 

It can be objected that this results is valid only for small values of n because the 

dissolution of a large cluster cannot be considered an elementary change of the partition 

function. Indeed, the most elementary change would be, as in cluster dynamics, the 

transformation of an n-mer into an (n-1)-mer plus a monomer. Using the same technique than 

above, the ratio of the partition functions corresponding to these two states of the system 

writes now: 
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After simplification, with snn NMM /= , the equivalent of Equation (20) for this transition 

writes: 
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The drawback of this equation is that it couples the three classes n, (n-1) and 1. But 

there is a particular case for which Equations (20) and (23) are strictly equivalent: the 

transformation of 2-mer into two monomers. Thus, setting k=2 in Equation (23) leads to the 

same result than Equation (21) for 2-mers. Then, by recurrence, incrementing k in Equation 

(23) leads again to Equation (21) for all possible classes of cluster sizes, which validates a 

posteriori the initial choice about the simplest (if not the most elementary) configuration 

change to consider. Note that after posing ( )
nnn MCC /

~
=

)
 equation (21) can be rewritten in a 

compact notation analogous to Equation (2). 

 

Although Equation (21) is now fully justified, there are still hidden hypothesis which 

deserve to be addressed. To compute the equilibrium concentrations, section 3.3 address the 

definition of the exclusion volumes Vj,i entering in the definition of terms Mn. Finally the 

section 3.4 will show that Equation (21) is still an approximation for very dilute alloys: 

indeed, neglecting the multi-exclusion in Equation (16), i.e. the fact that the various exclusion 

volumes can superimpose is likely to overestimate the total exclusion volume at high solute 

concentration. After some further developments it will be shown how Equation (21) can be 

rewritten in a general form. 
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3.3 Individual exclusion volume 
 

It is recalled that, by definition, a cluster is surrounded by a layer free of solute, then by a 

second layer from where solute atoms can be captured of released, the exact shape of these 

two layers changing after each events (cf. paper I). In addition to their industrial interest, AlZr 

alloys are good candidates to test the present model due to their low solubility, which allows 

for large supersaturations, and the L12 structure of the Al3Zr precipitates, which is likely to 

enhance the frustration effect. In addition, with atomic interactions limited to <100> (second) 

neighbours, due to the strong repulsive force between Zr atoms in position of first neighbours, 

the first neighbouring <110> is constant for all Al and Zr atoms [3]. Thus, some results given 

in paper I for the cubic structure are directly applicable, in particular the free energy surface 

term. Others, like the numbers of sites in the first shell are peculiar to the L12 structure and in 

this case, compared with pure cubic clusters, the f.cc. structure of the matrix tends to smooth 

such properties of L12 clusters. 

For large clusters the particular value Vn,1 is easy to estimate: Vn,1 ≈  n/Cp where Cp is 

the atomic solute concentration of clusters (Cp=1/4 for L12 clusters). Indeed, for large clusters 

the relative importance of surface sites versus volume sites becomes more and more 

negligible as their size increases. The total volume of a cluster (i.e. including the solute free 

layer) is nothing but the exclusion volume for monomers. This quantity was calculated 

following the Monte Carlo method described in paper I as a function of the reduced 

temperature Tw/T where Tw characterizes the material at temperature T. The two first values of 

(Vn,1/n) being independent on Tw/T, only the rate of convergence toward the asymptotic limit 

can depend on this parameter. This result is plotted on Figure 3; it shows that (Vn,1/n) 

decreases very quickly at the beginning then converges toward its asymptote as expected, 

more rapidly at low temperature than at high temperature. 

Then for k>1, Vn,k is estimated by approximating the excluded volume by a sphere 

whose radius is the sum of the radii of the two clusters, also approximated as spheres as 

shown in Figure 4.  

 

( )3

,
3

4
jiji RRV +=

π
 (24) 

 

First, the comparison with V1,1 provides R1, then the comparison with Vk,1 (for k>1) 

gives the following values of Rk. These effective radii are represented in Figure 5. The exact 

calculation with the Monte Carlo method used for calculating Vn,1 would require a complex 

sampling and thermal averaging procedure over the shapes of both clusters I and J. Then the 

result should be translated into a form easy to manipulate like Equation (24). In principles, the 

task is not impossible, but it is very doubtful that this complex calculation would significantly 

modify the values of Vi,j derived from Equation (24) and the accurate calculation of Vn,1.  

 

Figures 3 and 4 

 

As it can be seen in Figure 5, the value of clusters effective normalized radii do not depend or 

are only weakly dependent on the ratio Tw/T for the few first classes, contrary to larger 

clusters. Like other quantities at low temperature, Rn exhibits some peaks, valleys and stairs: it 

is a consequence of the existence of compact configuration for particular values of n (the best 

example is n=8). For intermediate temperature (i.e. 723K for AlZr alloys) these fluctuations 

almost vanish and at higher temperature the curves are smooth. The lower the temperature the 

closer remains Rn from its asymptotic limit. The increasing values of Rn at high temperature 

are mostly due to the roughness of the cluster surfaces by contrast to the sharp surfaces 
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observed at low temperature. The shape factor investigated in paper I does not play any role 

here. For numerical applications (section 4.2) these quantities have been fitted to get the 

values of Rn when n>100. The fitting procedure has been described in details in paper I. 

Briefly, it is established from calculated values in the range 35<n<100, typically, then 

compared with few values calculated in the range 100<n<400. With this procedure, accurate 

and stable fits (relative accuracy of the order of 10
-3

) were obtained for the range n>35 with 

only few parameters (cf. Table 1). No accurate and stable fit was found for the range 2<n<35, 

at least not with simple expressions, thus computed values were used for numerical 

applications presented in the next section. 

 

Table 1 

Figure 5 

 

3.4 Accounting for multiple exclusion 
 

The knowledge of these individual exclusion volumes is sufficient for very dilute alloys but 

even for concentrations of the order of 1%, to avoid the overestimation of the exclusion effect 

(i.e. underestimation of the partition function Ω) it is necessary to express the terms Mn in a 

very general way, able to account for multiple exclusions. The meaning of Mn and the 

expression of the equilibrium concentrations are preserved; only the numerical values of 

terms Mn are modified by multi-exclusion.  

Consider the status of a particular site versus the exclusion of clusters of size j by 

clusters of size i. This site can be excluded by 1, 2 or more clusters i, i varying over all 

possible classes of cluster size. Expressing these different probabilities is rather complex due 

to coupling effects, especially for an ordered structure. But this knowledge is not necessary; 

indeed, one only needs to know the probability for a given site to not be excluded, which is 

much simpler. Basic combinatorial probability analysis leads to:  
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Substituting this result to Equation (16) into Equation (21) gives the generalized solution for 

equilibrium concentrations: 

 

( )[ ]
∏

−
−







 ∆
−=















 ∆
−=

k

nVV

k

B

nn

n

n

B

nn

n

knk

C
Tk

F
C

M

M

Tk

F
CC

1,,~
1 exp 

~
 exp 

~~
1

1

1  (26) 

 

For dilute alloys such that Ck << 1 for all values of k, Equation (25) simplifies: 
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Consequently Equation (26) takes a much simpler form, with ( )1,,, knknk nVVV −=∆ : 

 









∆−







 ∆
−= ∑

k

nkk

B

nn

n VC
Tk

F
CC ,1  

~
exp exp 

~~
 (28) 

Page 12 of 32

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Equation (28) is equivalent to Equation (21) only for high dilutions; indeed, in this case, 

Equation (27) simplifies, i.e. one finds again Equation (16).  

 

When Ck is not small enough to apply the above simplification, typically for k=1 or 

less probably k=2 or even 3, the respective terms ( ) nkV

kC
,~

1
∆

−  has to be introduced following 

the form of Equation (26), then the form of Equation (28) can be applied for the following 

terms. In other words, the cumbersome form of Equation (26) can always be avoided, except 

for the very few first terms if the solute concentration is high. This also shows that depending 

on the alloy concentration and the approximation level adopted to describe the cluster gas, the 

equilibrium concentrations can be easily under- or over- estimated.  

Note that whatever the level of approximation (i.e. Equation (21) or (26) or (28)), the 

key quantities controlling this frustration effect are the factors nkV ,∆  plotted in Figure 6 for a 

few values of n. The quantity nkV ,∆  increases with both n and k. And for large values of n and 

k, since knnk VV ,, =  and ( )nV n /,1  has an asymptotic behaviour we have knnk VV ,, ∆≈∆  which 

explains why all curves seem to be parallel. Note that even in the represented k range in 

Figure 6 the different curves are very similar and most of all they were found to be almost 

independent on the parameter Tw/T, which is coherent with the way Vk,n is built for k>1. This 

can be understood as a measure of the sensibility of clusters of size J to explore the structure 

of clusters of size I: obviously, whatever the value of I, monomers are the most efficient 

probes and the sensibility decreases with J.  

 

Figure 6 

 

4. Applications 

 

4.1 Introduction of the matrix frustration effect in CD 
 

As recalled in introduction, whatever the method chosen to solve the master equation of CD, 

i.e. with one (I) or two (II) pairs of coefficients, the key quantity is the ratios of the partition 

function of the system before and after the capture or the release of a solute atom by a cluster 

of size n. When the matrix frustration is neglected this amounts to consider the quantity 

)/)(exp( 1 TkFF Bnn ∆−∆− + . To remain general, the coefficients of absorption (I), or capture 

(II), and emission (I), or release (II), will be noted 1, +nnw  and nnw ,1+ , respectively. Accounting 

for the frustration effect can be readily done by application of the detailed balance: 

 

111
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Then, using equation (28) to express the equilibrium concentrations, it comes: 
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The only difference between schemes I and II is that this ratio appears only in the emission 

coefficient in the classical method (the usual expression is limited to the first term) while its 

contribution to capture and release coefficients in method II is symmetrical. Notations 

introduced in paper I and entering in the definition of the capture and release coefficients are 

first recalled:  
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+
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+


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








=ν  (32) 

 

Original equations have been rewritten to better put into evidence the symmetry of 

these two coefficients. 1, +nnT  is the transition function between states n and n+1, *

nQ  is a 

reduced partition function of clusters such that ( )TkFQ Bnn /exp* ∆−= ; the attempt frequency 

ν does not play any role in the present problem. Finally, with shell

nC  the concentration of 

solute atoms in the second shell of clusters of size n, taking the contribution of cluster gas 

entropy symmetric like the contribution of cluster internal entropy in Equations (27-28) (the 

partition functions Q* and Ω are independent), the coefficients of emission or absorption for 

scheme II can be fully defined: 

 

( ) shell

n

k

nknkknnnn CVVCPP   exp   ,1,

0

1,1, 







∆−∆−= ∑ +++  (33) 

 

( )







∆−∆−= ∑ +++

k

nknkknnnn VVCPP ,1,

0

1,,1 exp /  (34) 

 

Note that all concentrations in the corrective term are now real concentrations, but of 

course, at equilibrium the ratio of these two coefficients verifies the equality which is the base 

of classical CD: ( ) ( )11,11,

~~
/

~
/ CCCPP nnnnnn +++ = . 

 

4.2 Comparison of predicted distributions with those obtained in KMC simulations 

 

The best test to investigate the validity of the proposed solution is to compare the predicted 

distributions of clusters with those obtained in KMC simulations, a technique completely 

independent of the present formalism, at the opposite of a cluster dynamics algorithm which 

would be based on Equation (33-34). Results obtained by Clouet [16-17] for AlZr at 723K 

(C0=1%) and 873K (C0=1% and 3%) were selected for this test.  

The first point to clarify is the nature of such a comparison, i.e. what should be 

compared and in what conditions, knowing that KMC simulations can provide cluster 

distributions at various times along the precipitation kinetics. Apparently the problem is 

trivial, such comparisons becoming more common in the literature. But the lack of details 

about the comparison procedure reveals that the difficulty of such comparisons has been 

underestimated.  

In absence of frustration, a particular case consists in calculating the equilibrium 

concentrations such that all solute atoms are contained in the subcritical classes, i.e. 
*

nn ≤ . It 

is the solution usually adopted to define the initial value of n*, and used for instance to 

differentiate “precipitates” from the “solid solution” in KMC simulations referred to for this 

test. This criterion defines a particular value of C1, the concentration in monomers, which is 

reached at a particular time in KMC simulations further used to define the first set of curves in 
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Figures (7-9). For different times, one has to adopt a reverse procedure: first choosing a given 

distribution from KMC simulations, which in return defines a particular value of C1, then one 

has to impose this value as the new and only constraint to calculate the cluster distribution, 

truncated at n* as previously. In this case, the total concentration in solute is disregarded; 

indeed, only the concentrations in subcritical classes can be directly compared with real or 

simulated ones, by definition (it is reminded that in the case of true equilibrium as in Figure 1, 

all classes are subcritical).  

To account for the frustration effect one has to adopt a similar procedure, but contrary 

to the previous case, the concentration of a given class depends also on the concentrations of 

other classes, not only on C1. It is of course possible to self-consistently evaluate such a 

distribution (an application is proposed in section 4.4), but like the solution without 

frustration, it diverges beyond the critical size, contrary to real or KMC distributions. And if 

the distributions are truncated at n* the comparison becomes biased by construction. Thus, the 

most physically significant comparison consists in calculating the frustration effect in 

Equation (28) according to the KMC distribution one wants to compare with. It is precisely 

this comparison procedure which revealed the limits of the approximated solution (Equation 

21), the exclusion volume becoming larger than the system volume beyond a certain cluster 

size.  

Figures (7-9) compare these two solutions, with and without frustration, with the KMC 

distributions of same C1 for three different times. The first one, t1, as defined above, while the 

second time, t2, corresponds to the smallest time such that the solution with frustration 

coincides fairly well with the KMC distribution up to n*. This agreement is preserved 

approximately until the number of precipitates Np(t) starts to decrease. Figure (10) proposes a 

schematic representation of the different stages observed along the precipitation kinetics of 

these aluminium alloys. Note that the different stages of the curve C1(t)/C0 do not strictly 

coincide with the well-known stages of the evolution of the average size of clusters, not 

reported here (see [17]). For the scope of the present paper we are mostly concerned with the 

long intermediate stage which corresponds roughly with the so-called nucleation stage. 

Beyond the maximum of Np(t) the agreement between KMC and predicted distributions 

gradually deteriorates, at least for large (subcritical) classes while it is well preserved for the 

small classes. The third set of curves in Figure 7 and 9 corresponds to a time t3 taken near the 

transition from the third to the fourth stage of C1(t)/C0 in Figure (10), i.e. well after the 

maximum of Np(t). For technical reasons, in Figure 8, this third set corresponds to a time 

taken just before this transition (due to the low supersaturation in this case, the number of 

clusters in supercritical classes becomes too small for a reliable comparison). We now discuss 

this comparison for these three set of curves. 

 

Time t1 always corresponds to early nucleation, as expected, but note that it might 

correspond to very different values of C1(t)/C0 depending on C0 and the ratio Tw/T. Various 

situations are observed: 

- Figure 7: similar to the ideal situation shown in figure 2, the ratio 2 between the 

predicted concentration at n* =7 and the simulated one is fairly well verified; the 

distributions are in reasonable agreement up to n=5. Thus at first sight this situation 

appears very classical. The solution with frustration exhibits the same n* than the 

simplest solution, is in excellent agreement up to n=3 but overestimates the 

concentrations in the following classes. 

- Figure 8: n*=25 while the KMC distribution extends only up to n=14 (a huge 

simulation box would be necessary to occupy all classes up to n=25 for such a short 

time). Consequently the solution without frustration seems to be the best one. 
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Compared with the previous case the two solutions are now well separated, both in n* 

and Cn values. 

- Figure 9: the KMC distribution is much larger than the predicted critical sizes (n*=5 

and 8, with and without frustration, respectively) but for low values of n it is clearly in 

between the two predicted solutions. Again, compared with the first case, note that the 

two solutions are well dissociated. The ratio of concentrations at n* (without 

frustration) is here about 3.  

This first set of curves does not provide any clear advantage for one solution over the 

other, but shows that the situation is effectively much more complex than the ideal picture 

shown in Figure 2 and is very dependent on both the solute concentration and the parameter 

Tw/T (or more simply the temperature for a given material). To understand these differences of 

behaviour it is necessary to examine how these distributions evolve during the precipitation 

kinetics.  

 

At t=0, the distributions are mostly composed of monomers; other small clusters are in so 

small concentration than the associated curve would be almost a vertical line in Figures (7-9). 

When a cluster distribution builds on, its length and concentrations in all classes, except the 

first one, increase; later, the concentrations of small clusters start to decrease too. Thus, at the 

very beginning of precipitation, it is not surprising to find the KMC curves under the 

predicted ones except for the very first subcritical classes.  

 

Consider now the ability of the two predicted solutions to follow the evolution of the 

KMC distributions when time increases. Excellent agreement between KMC distributions and 

the predicted solution without frustration is never observed and when this agreement is, say 

acceptable, it is observed only during a very short period of time. Much better agreement is 

observed with the solution accounting for frustration, but this agreement needs more time to 

be reached. However, contrary to the solution without frustration which increasingly deviates, 

this agreement with KMC distributions improves with time and finally concerns the whole 

curve (at time t2). In addition, this agreement is well preserved until time t3 when the cluster 

distributions become increasingly influenced by the growth and coarsening processes versus 

nucleation, except for small classes. Indeed, while undersaturated alloys exhibit Boltzmann-

like cluster distributions (Figure 1), in supersaturated alloys, with time, cluster distributions 

are known to evolve towards a Lifshitz – Slyozov – Wagner-like distribution [20]; hence 

intuitively one expects large subcritical classes to deviate from the Boltzmann-like 

distribution after some annealing time. The analysis of the two most supersaturated cases 

studied here (Figures 7 and 9) suggests a naïve criterion: the divergence between predicted 

and simulated distributions appears when the fraction of solute in supercritical classes 

approaches (and then exceeds) that contained in subcritical classes. Of course, this criterion 

does not refer to a sharp transition; in one hand the agreement is not absolutely perfect up to 

that point and in the other hand it remains acceptable for a while beyond this transition, which 

corresponds fairly well with the end of the nucleation stage. Another argument is that the 

agreement between predicted and KMC distributions is clearly better or at least easier to put 

into evidence for the case leading to the largest n*, which corresponds to the least 

supersaturated case (Figure 8). 

Note on figure 9 that two curves are almost superimposed, but correspond to different 

solutions and times, and by consequent different C1: this stresses the importance of defining 

carefully the conditions of such comparisons. Similar comparisons can be found in the 

literature for other materials, see [4] for instance. The results for high dilutions look similar to 

presents ones, however, as the criterion applied to perform the comparison is different (the 
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equality of C1 is not enforced), the main divergence between predicted and KMC distributions 

localizes on low classes while the rest of the curves seems to be in approximate agreement.  

From the comparison of these three figures, no simple criterion can be derived to easily 

predict the influence of the frustration effect without any calculation. Indeed, at least two 

parameters are necessary to describe the observed behaviour: the ratio Tw/T which controls the 

free energy of clusters and the total solute concentration which controls the magnitude of the 

exclusion effect. Alternatively, one could also adopt parameters derived from these 

fundamental quantities, e.g. the solubility limit and the supersaturation. The key quantity 

responsible of this complexity is certainly the free energy of clusters calculated in paper I, a 

quantity whose evolution with Tw/T can be considered fairly self-similar only in a very 

restricted range. For AlZr alloys considered here, the free energy at 873K is quite different 

from that at 723K, a temperature for which the free energy is typical of this intermediate 

range. 

 

Figures 7-9 

 

Comparing the magnitudes of cluster concentrations for the different KMC curves 

reported here with the magnitudes of exponents (Vk,n – k Vn,1) reported in Figure (6) shows 

that the contribution of the different classes of size k to the frustration effect concerning a 

class n decreases with k, as expected; but note that this decreasing is fairly slow for Figures 7 

and 9 compared with Figure 8 which corresponds to a much lower supersaturation. In the 

latter case, the calculation of the frustration effect could be based only on subcritical classes 

without noticeable differences in predicted distributions. This contributes to explain why 

classical models based on the CNT framework (including classical CD) might be successful 

for low saturated alloys but increasingly deviate with increasing concentrations, generally 

speaking.  

 

Figure 10 

 

4.3 Critical cluster size 
 

Consider a cluster of size n, it is in equilibrium with its interface if the probabilities to capture 

or to release a solute atom are equal, i.e. if 1,1, −+ = nnnn PP . According to Equations (34-35) this 

condition is achieved if the solute concentration in the shell equals a critical value 

( )1,1,1,1, /* ++−−= nnnnnnnn

shell

n
TTC φφ . If 1

~
* CC

shell

n
<  the local concentration of solute atoms in the 

shell will increase by diffusion from the matrix and the cluster will grow up until it reaches a 

new size in equilibrium with the average concentration of monomers. Inversely, if 1

~
* CC

shell

n
> , 

the cluster will shrink until it reaches its new equilibrium size. Thus, one can associate a 

critical value n* with the concentration of monomers, such that: 

 

( )( )







−+










= ∑ +−

+

−

k

nknkkk

nn

nn
VVVC

P

P
C 2/exp/
~

1*,1*,1,0

1**,

0

1**,

1  (35) 

 

Strictly speaking, solving this equation requires the knowledge of both the capture and 

release rates as reported in Figure 11 and 12, respectively. These results are comparable with 

those obtained for pure cubic clusters (cf. Paper I), however these coefficients depend also on 

the structure of the matrix, the magnitudes of coefficients are different and at low temperature 

the strong oscillations are smoother. As it can be seen in Figure (11), the release factor varies 
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slowly enough to reasonably assume that 0

,1

0

1, nnnn PP +− ≈ , which allows for some 

simplifications: 1*1**

~
/

~~
+≈ nn

shell

n CCCC  then the equilibrium condition 1*

~
CC

shell

n =  becomes 

1**

~~
+= nn CC . Classically, the observed minimum on the curve nC

~
 is assumed to define the 

critical size n*. This conclusion arises from a similar reasoning way but in a continuous space 

of cluster size. Comparing this approximation with Equation (35) and KMC distributions did 

not reveal deviations larger than few units (i.e. the condition (35) can be reached before the 

minimum of the distribution). Thus in first approximation, this classical approximation is 

justified; nevertheless, its application to alloys of high concentration should be considered 

with great care. Indeed, even such a small difference is likely to induce important differences 

in the predicted kinetics of precipitation. 

 

Figures 11-12 

 

 

4.4 Nucleation driving force in CNT 
 

It is interesting to analyse what can be learnt from this work when compared with classical 

models based on the CNT formalism (see for instance [20-21]). In the CNT framework the 

formation free energy nG∆  of L12 clusters writes: 

 

n

nuc

nn FGnG +∆=∆ 4  (36) 

 

Here nuc

nG∆  is the nucleation free energy for clusters containing n solute atoms; it can be 

deduced from the comparison of equations (1) and (28): 

 

( ) ( )







−+−−=∆ ∑

k

nkkkB

nuc

n VnVCCnTkFnGn ,1,11

~~
ln    4  (37) 

 

F1 depends on the temperature and the order energy Wab, function of bond energies (cf. paper 

I), finally ( ) ( )TTTkF wB /6/1 =  where the factor 6 holds for the coordination of the cubic 

sublattice. With these notations, nuc

nG∆  writes: 

 

( ) ( )
















−++
















−=∆ ∑

k

nkkk

wBnuc

n VnVC
n

C
T

TTk
G ,1,1

~1~
ln 6

4
 (38) 

 

In the CNT framework nuc

n
G *∆  has to be determined for the value of n which 

minimizes nuc

nG∆ . By construction this criterion is equivalent to choose the minimum of the 

curve nC
~

 which coincides with or is close to the critical value n*, as shown in the previous 

section. In practice, when disregarding the frustration effect, the calculation of nC
~

 depends 

only on 1

~
C , while when accounting for this effect it depends on concentrations of all classes. 

In the former case, two situations are possible whether real or KMC distributions are available 

or not. When such distributions are available, we saw in the previous section that the most 

physical calculation of equilibrium concentrations consists in accounting for the whole 

distribution. If no reliable distribution is available one can still calculate equilibrium 
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concentrations following a self – consistent scheme. To estimate the relevance of this 

procedure, a comparison between both calculation modes is presented.  

Consider first the simplest calculation mode, which is very similar to the case without 

frustration effect. To obtain accurate values, the length of the distribution was fixed and the 

simplified criterion to determine n* described above was applied, i.e. the equality of the two 

last equilibrium concentrations was imposed (n* and n*+1), giving the corresponding C0 in 

return.  

The figure 13 compares nuc

n
G *∆  for AlZr at 723K and 873K, including or not the 

frustration of the matrix, and the CVM solution obtained by Clouet et al. [3] for AlZr at 723K. 

According to this figure, the frustration effect is almost negligible at 723K, except at high 

concentration when n* is in the range [1-5]. The presence of cusps on the curves is due to 

sharp fluctuations of the free energy around values of n multiple of 4 (the magnitude of the 

effect decreases while n increases, see paper I). The CVM solution is almost parallel to the 

two present solutions with a shift of few meV towards higher (absolute) values of nuc

n
G *∆  and 

a different shape when the solute concentration approaches 1%; in relative values, this shift is 

only about 6%. Neglecting the multi-exclusion reduces this shift by a factor 2 approximately. 

Figure 13 shows also that the influence of the frustration effect increases with temperature. 

Similar curves obtained for different values of Tw/T (not reported here for sake of simplicity) 

show that the evolution with temperature at a given concentration is highly non linear due to 

the simultaneous increase of the solubility limit.  

Figure 14 compares the associated critical concentrations of monomers, with and 

without the frustration effect. Except for very low values of n*, for which some irregularities 

appear, these two curves are very similar, even if respective points corresponding to a given 

n* do not coincide. Again the frustration effect appears more pronounced at high temperature. 

Remark on these two figures that the range of variation of solute concentration associated 

with the range of variation of n* from 1 to 70 decreases when the temperature increases, 

because of the increase of the solubility limit.  

 

Figures 13-14 

To compare these results with those obtained when the frustration effect can be 

computed directly from KMC distributions as in section 4.2, Figure 15 compares nuc

n
G *∆  as a 

function of the concentration of monomers. The values corresponding to KMC distributions 

were taken during the three precipitation kinetics reported in the previous section. As 

expected, the agreement between the two modes of calculation of the frustration effect is not 

perfect, nevertheless it is sufficient in most of the nucleation stage to validate the self – 

consistent calculation scheme as an acceptable approximation to predict nuc

n
G *∆  without 

performing any heavy simulations. Of course when n* is very small the cluster distribution 

used in the self-consistent mode to calculate the frustration effect represents poorly the real 

distributions which are much longer. Similarly when nucleation is well advanced, the real 

distributions are much longer than n*. This explains why the acceptable agreement between 

both calculation modes concerns only the central part of the curves related to KMC 

simulations in Figure 15. 

The evolution of )(* tG
nuc

n
∆  (solution “+ frustration (KMC)”) during the precipitation 

kinetics is represented in Figure 16. The curve corresponding to the lowest supersaturated 

case is almost flat during the nucleation stage while for the two other cases )(* tG
nuc

n
∆  varies 

by a factor 2 from early nucleation to the end of this stage. With Figure 15, it stresses the 

importance to calculate the nucleation driving force consistently with the evolution of cluster 

concentrations as a function of the annealing time. 
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Figures 15-16 

 

5. Conclusion 

 

Starting from the concept of cluster gas introduced by Frenkel, a model was developed to 

predict the distributions of clusters in supersaturated binary alloys. The model, which assumes 

that the free energy of individual clusters can be calculated with a good accuracy (cf. paper I), 

provides a rigorous estimation of the configuration entropy of the cluster gas, accounting for 

the real exclusion volume of clusters, whose values are based on a Monte Carlo calculation. A 

solution convenient for dilute alloys was first established then extended to account for the 

multi-exclusion in concentrated alloys. The predicted cluster distributions were compared 

with those observed in KMC simulations of AlZr precipitation. It was shown that when the 

frustration effect is neglected, the predicted distributions are never in good agreement with the 

KMC ones. A brief acceptable agreement is nevertheless observed in early nucleation but then 

this solution increasingly diverges with annealing time. On the contrary, accounting for the 

frustration effect leads to cluster distributions in excellent agreement with the KMC ones 

although the convergence is slower; in addition, the agreement persists approximately until 

the number of stable clusters decreases. The correction of absorption / emission coefficients in 

cluster dynamics was established independently of the scheme chosen to solve the master 

equation. Finally the results were examined at the light of the classical theory of nucleation, 

revisiting some usual approximations. It was shown that whatever the calculation method 

adopted to predict the precipitation kinetics, the whole cluster distribution needs to be 

accounted for to correctly predict the nucleation free energy. However, in dilute alloys, this 

calculation can be restricted to subcritical clusters as usually done in simple thermodynamical 

models. This model can be applied to any binary alloys, provided that clusters can be 

considered as non-interacting, but requires various quantities like the cluster free energy to be 

calculated accurately as a function of the ratio Tw/T for given structures of clusters and matrix. 

The obtained results can be used to evaluate the degree of approximation of various general 

models and calculation methods like CVM, for instance. Finally, the best way to conclude this 

work is certainly to compare cluster distributions obtained in CD with and without this 

frustration effect taken into account, with KMC results for AlZr 3% at 873K, as reported in 

figure 17. The most simple scheme of CD was used, so that with help of fitting data provided 

in paper I for cluster free energy (Tw/T≈1) and present table 1, reproducing present results 

should not present any major difficulties (see [17] for basic equations). The effect is so 

important at this temperature that one cannot expect correct predictions for the kinetics if it is 

not accounted for. Of course, for these low solubility alloys, when the temperature decreases 

the effect decreases quickly, but inversely, for alloys of higher solubility, like AlLi for 

instance, this effect should be much more severe. If extending the calculation of cluster free 

energy as done in paper I to multicomponent alloys is a challenge, on the contrary, the present 

frustration effect is not difficult to generalize; AlZrSc alloys could be good candidates for 

such an application. Finally, it is hoped that this work has successfully demonstrated that we 

still have to learn from ordinary binary alloys. 

Figures 17 
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Figure 1: Equilibrium distribution of clusters obtained in an undersaturated alloy of low solubility limit. EQ: 

from Equation (2); CD: from classical cluster dynamics. 

 

 

 

 

 

 

 

1 10
Cluster size

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

C
o

n
ce

n
tr

at
io

n

EQ n*=42

CD

AlZr   C0=5Ceq   T=723K

 
 

 
Figure 2: Equilibrium distribution of clusters obtained in a low supersaturated alloy of low solubility limit. EQ: 

from Equation (2) plotted up to the critical cluster size n*=42; CD: from classical cluster dynamics. 
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Figure 3: Exclusion volume V1n of monomers by n-mers (or inversely), normalized by n. The bottom of the 

figure represents the asymptotic limit for infinite n (equal to 4 for L12 clusters). For AlZr alloys, Tw/T=1.350 and 

1.072 correspond to 723K and 873K, respectively. Tw/T=0.875 and 0.750 correspond to intermediate cases 

between low solubility limit alloys like AlZr or AlSc, and high solubility limit alloys like AlLi, for instance. 

 

 

 

 

 

 
 

 
Figure 4: Exclusion volumes of clusters of size J by clusters of size I, and inversely. For this evaluation, all 

clusters are taken spherical.  
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Figure 5: Exclusion radius Rn normalized by the radius of a sphere of volume equal to n times the unit cell a

3
. 

The asymptotic limit for infinite n is equal to 1. 
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Figure 6: Variation of the frustration factor -∆Vk,n with k for a few values of n. Results are almost independent on 

Tw/T. The two pairs of dashed and dotted lines allow for comparing the evolution of ∆Vk,n vs. ∆Vn,k for n=100, 

k=20 and 50. 
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Figure 7: Comparison of predicted distributions with those obtained by KMC simulations of AlZr at medium 

temperature and medium concentration (by courtesy from E. Clouet). Solutions with and without frustration are 

represented by dashed and plain lines, empty and small filled symbols, respectively, for 3 different times. Each 

set of 3 curves corresponds to a particular concentration of monomers.  
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Figure 8: Comparison of predicted distributions with those obtained by KMC simulations of AlZr at high 

temperature and medium concentration (by courtesy from E. Clouet). Solutions with and without frustration are 

represented by dashed and plain lines, empty and small filled symbols, respectively, for 3 different times. Each 

set of 3 curves corresponds to a particular concentration of monomers. Symbols near the bottom of the figure 

correspond to single clusters in the corresponding classes of size.  
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Figure 9: Comparison of predicted distributions with those obtained by KMC simulations of AlZr at high 

temperature and high concentration (by courtesy from E. Clouet). Solutions with and without frustration are 

represented by dashed and plain lines, empty and small filled symbols, respectively, for 3 different times. Each 

set of 3 curves corresponds to a particular concentration of monomers. 

 

 

 

 

 

 

 
 

Figure 10: Schematic representation of the evolution of both the concentration of monomers C1(t) normalized by 

the total solute concentration C0, and the number of precipitates Np(t) (of size greater than a critical size) 

normalized by its maximum value. The respective positions, lengths and variations of slope of the different 

stages may significantly vary with C0 and Tw/T. 
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Figure 11: Release rate factor 
0

1, +nnP  (Eq. 31) for the L12 structure normalised by ν Exp(-Tw/T); Tw/T =1.35 and 

1.07 correspond to T=723K and 873K respectively. 
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Figure 12: Capture rate factor 
0

1, +nnP  (Eq. 32) for L12 structure normalised by ν Exp(Tw/T); Tw/T =1.35 and 1.07 

correspond to T=723K and 873K respectively. 
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Figure 13: Comparison of the predicted values of the nucleation free energy with (+) and without (-) frustration 

(from the right to the left n* varies from 1 to 70) with the CVM calculation performed by Clouet et al., 2004  
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Figure 14: Evolution of the concentration of monomers associated with figure 13. The straight dotted line 

represents a distribution containing only monomers. 
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Figure 15: Comparison of the two calculation modes of the nucleation free energy. The symbols are relative to 

the simplest mode with (+ frustration) and without (- frustration) frustration reported in figures 13-14. For curves 

(“+ frustration (KMC)”) the frustration effect is calculated from KMC distributions relative to the same kinetics 

than in figures (6-9).  
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Figure 16: Evolution of the nucleation free energy (solution “+ frustration (KMC)” in figure 15) during KMC 

precipitation kinetics used in Figures (7-9). 

 

 

 

 

 

 

Page 29 of 32

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

1 10 100
cluster size

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

co
n
ce

n
tr

at
io

n

KMC (C
1
=0.7606%)

CD + frustration
CD - frustration
KMC (C

1
=0.5833%)

CD + frustration
CD - frustration

AlZr C
0
=3%  T=873K

 
 

 

Figure 17: Comparison of 2 KMC cluster distributions (by courtesy from E. Clouet) with those obtained in CD, 

with and without matrix frustration accounted for, for the same concentrations in monomers. Note that the 

smallest possible cluster concentration for these KMC results was 10
-6

, i.e. one cluster for 10
6
 atomic sites. 

 

 

 

 

 

 

 

 

 

Tw/T a b c 

1.350 8.580 11.885 -2.229 

1.072 10.554 12.682 -4.230 

0.875 13.995 12.820 -5.731 
 

 

Table 1: Fit of V1,n with expression:     4 3/13/2

,1 cnbnanV n +++=  
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Table and Figures captions 

 

 

 

Table 1: Fit of V1,n with expression:     4 3/13/2

,1 cnbnanV n +++=  

 

 

 

Figure 1: Equilibrium distribution of clusters obtained in an undersaturated alloy of low 

solubility limit. EQ: from Equation (2); CD: from classical cluster dynamics. 

 

 

Figure 2: Equilibrium distribution of clusters obtained in a low supersaturated alloy of low 

solubility limit. EQ: from Equation (2) plotted up to the critical cluster size n*=42; CD: from 

classical cluster dynamics. 

 

 

Figure 3: Exclusion volume V1,n of monomers by n-mers (or inversely), normalized by n. The 

bottom of the figure represents the asymptotic limit for infinite n (equal to 4 for L12 clusters). 

For AlZr alloys, Tw/T=1.350 and 1.072 correspond to 723K and 873K, respectively. 

Tw/T=0.875 and 0.750 correspond to intermediate cases between low solubility limit alloys 

like AlZr or AlSc, and high solubility limit alloys like AlLi, for instance. 

 

 

Figure 4: Exclusion volumes of clusters of size J by clusters of size I, and inversely. For this 

evaluation, all clusters are taken spherical.  

 

 

Figure 5: Exclusion radius Rn normalized by the radius of a sphere of volume equal to n times 

the unit cell a
3
. The asymptotic limit for infinite n is equal to 1. 

 

 

Figure 6: Variation of the frustration factor -∆Vk,n with k for a few values of n. Results are 

almost independent on Tw/T. The two pairs of dashed and dotted lines allow for comparing the 

evolution of ∆Vk,n vs. ∆Vn,k for n=100, k=20 and 50. 

 

 

Figure 7: Comparison of predicted distributions with those obtained by KMC simulations of 

AlZr at medium temperature and medium concentration (by courtesy from E. Clouet). 

Solutions with and without frustration are represented by dashed and plain lines, empty and 

small filled symbols, respectively, for 3 different times. Each set of 3 curves corresponds to a 

particular concentration of monomers.  

 

 

Figure 8: Comparison of predicted distributions with those obtained by KMC simulations of 

AlZr at high temperature and medium concentration (by courtesy from E. Clouet). Solutions 

with and without frustration are represented by dashed and plain lines, empty and small filled 

symbols, respectively, for 3 different times. Each set of 3 curves corresponds to a particular 

concentration of monomers. Symbols near the bottom of the figure correspond to single 

clusters in the corresponding classes of size.  
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Figure 9: Comparison of predicted distributions with those obtained by KMC simulations of 

AlZr at high temperature and high concentration (by courtesy from E. Clouet). Solutions with 

and without frustration are represented by dashed and plain lines, empty and small filled 

symbols, respectively, for 3 different times. Each set of 3 curves corresponds to a particular 

concentration of monomers. 

 

 

Figure 10: Schematic representation of the evolution of both the concentration of monomers 

C1(t) normalized by the total solute concentration C0, and the number of precipitates Np(t) (of 

size greater than a critical size) normalized by its maximum value. The respective positions, 

lengths and variations of slope of the different stages may significantly vary with C0 and Tw/T. 

 

 

Figure 11: Release rate factor 0

1, +nnP  (Eq. 31) for the L12 structure normalised by ν Exp(-Tw/T); 

Tw/T =1.35 and 1.07 correspond to T=723K and 873K respectively. 

 

 

Figure 12: Capture rate factor 0

1, +nnP  (Eq. 32) for L12 structure normalised by ν Exp(Tw/T); 

Tw/T =1.35 and 1.07 correspond to T=723K and 873K respectively. 

 

 

Figure 13: Comparison of the predicted values of the nucleation free energy with (+) and 

without (-) frustration (from the right to the left n* varies from 1 to 70), with the CVM 

calculation performed by Clouet et al., 2004  

 

 

Figure 14: Evolution of the concentration of monomers associated with figure 13. The straight 

dotted line represents a distribution containing only monomers. 

 

 

Figure 15: Comparison of the two calculation modes of the nucleation free energy. The 

symbols are relative to the simplest mode with (“+ frustration”) and without (“- frustration”) 

frustration reported in figures 13-14. For curves (“+ frustration (KMC)”) the frustration effect 

is calculated from KMC distributions relative to the same kinetics than in figures (6-9).  

 

 

Figure 16: Evolution of the nucleation free energy (solution “+ frustration (KMC)” in figure 

15) during KMC precipitation kinetics used in Figures (7-9). 

 

 

Figure 17: Comparison of 2 KMC cluster distributions (by courtesy from E. Clouet) with 

those obtained in CD, with and without matrix frustration accounted for, for the same 

concentrations in monomers. Note that the smallest possible cluster concentration for these 

KMC results was 10
-6

, i.e. one cluster for 10
6
 atomic sites. 
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