Transmission electron microscopy in situ investigation of dislocation behaviour in semiconductors and the influence of electronic excitation

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Philosophical Magazine & Philosophical Magazine Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TPHM-06-Jan-0012.R2</td>
</tr>
<tr>
<td>Journal Selection:</td>
<td>Philosophical Magazine</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Apr-2006</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Lavagne, Suzel; CEMES/CNRS; Altis Semiconductor Levade, Colette; INSA, Physics; CEMES/CNRS Vanderschaeve, Guy; INSA, Physics; CEMES /CNRS</td>
</tr>
<tr>
<td>Keywords:</td>
<td>dislocation dynamics, electron microscopy, strained layers</td>
</tr>
<tr>
<td>Keywords (user supplied):</td>
<td>Semiconductor compounds</td>
</tr>
</tbody>
</table>
Transmission electron microscopy *in situ* investigation of dislocation behaviour in semiconductors and the influence of electronic excitation

S. LAVAGNE†, C. LEVADE and G. VANDERSCHAEVE*

CEMES/CNRS, BP 94347 31055 Toulouse, France
and INSA Physics Department, av. de Rangueil, 31077 Toulouse, France

In situ straining experiments in a transmission electron microscope provide a unique way to investigate in real time the influence of various parameters (temperature, electron beam intensity, …) on the dislocation behaviour in semiconductors. A systematic study of the influence of electronic excitation on the dislocation behaviour in single phase ZnS crystals is reported. The observed radiation enhanced dislocation motion is attributed to a lowering of the lattice friction, due to non radiative recombination of carriers at electronic levels associated with dislocations. Analysis of the results makes it possible to determine which elementary mechanism of dislocation glide is affected by this effect. The defect dynamics in a ZnSe/GaAs heterostructure in the course of *in situ* heating experiments is investigated. Different dislocation mechanisms are analysed, which emphasize the influence of electronic excitation on the dislocation behaviour. The contribution of these mechanisms to the strain relaxation is discussed.

Keywords: Semiconductor compounds; Dislocation dynamics; Electron microscopy; Strained layers

† present address: Altis Semiconductors 224 Bd John Kennedy, 91105 Corbeil Essonnes, France
* corresponding author
1. Introduction

In the low to medium temperature range, moving dislocations in solids with covalent or ionocovalent bonding experience a high lattice friction. This results in a thermally activated motion which, in the appropriate temperature range, could be observed in real time during in situ experiments in a transmission electron microscope (TEM). These experiments make a thorough determination of activation parameters possible. By comparison with other techniques, for example double etching, X-ray topography (for a review, see [1, 2]), where dislocation velocities are averaged over travel distances of a few tenths of a micrometer, the in situ TEM investigation makes possible an analysis of the behaviour of short dislocation segments in the early stages of source operation. Results are available on elemental semiconductors, III-V and II-VI compounds [3]. In these crystals, the dislocation movement is well described by the Peierls mechanism (nucleation and propagation of kink pairs).

In a number of large band gap semiconductors the behaviour of lattice defects is strongly influenced by light illumination (photoplastic effect) or electron beam irradiation (cathodoplastic effect). These effects are related to the special properties of dislocations in these materials. Indeed they provide electronic levels in the band gap and act as active centres for electronic processes in crystals. Until recently most of the quantitative studies on the cathodoplastic effect have been conducted at a “semi-microscopic scale”, e.g. by in situ straining experiments in a scanning electron microscope (SEM). In these experiments moving dislocations are visualized by their emergence at the sample surface, either in the cathodoluminescence mode or by the double etching technique (for a review, see [4]). Although these techniques are suitable for quantitative measurements, their poor spatial resolution makes it hardly possible to determine without ambiguity which microscopic processes of dislocation motion are affected by electronic excitation. By contrast, in situ straining experiments in a TEM provide a unique way to study the dislocation behaviour under electron irradiation at a microscopic scale and allow a determination of the physical parameters involved in this phenomenon. It is noteworthy that in addition to the fundamental
aspects of this research, a growing interest for such investigations is that this effect underlies the degradation of optoelectronic devices: It has been recently reported that degradation and ageing phenomena are associated with propagation and/or multiplication of lattice defects due to carrier injection during the device operation [5-10].

The present paper focuses on the influence of electronic excitation on the dislocation dynamics in semiconductors, at the TEM scale. A short report is given on a systematic study on the radiation enhanced motion (REDM) in a single phase II-VI compound: ZnS. Thanks to TEM in situ experiments the physical parameters controlling the REDM effect can be identified. Then the results of an investigation of the evolution of the defect microstructure of a ZnSe/GaAs epilayer under the influence of both electron beam irradiation and heating in a TEM is presented. This provides information on both the strain relaxation mechanisms and the degradation processes in this heterostructure.

For a better understanding of the paper, a brief summary of the properties of dislocations in semiconductors will be given first.

2. Properties of dislocations in semiconductors. A brief review

2.1. Dislocation mobility

At low temperature dislocations with Burgers vector 1/2<110> lie along <110> rows of the {111} glide planes, owing to covalent (or ionocovalent) bonding inducing a high lattice friction. Therefore a glide loop consists of screw and 60° segments, that are dissociated in 1/6<112> Shockley partials (30° or 90° in character) with a stacking fault in between. In compounds, due to the presence of two types of atom: A (type II or III) and B (type VI or V), one has to distinguish two types of non screw dislocations, β and α, depending on the position of the extra-half plane with respect to the polar {111} surfaces. In the medium temperature range, dislocations are assumed to move in the so-called “glide set”: as a consequence, the core of α dislocations contains B atoms, while the core of β ones contains A atoms [1, 2].
In these crystals dislocation glide at low temperature is controlled by the Peierls mechanism: A dislocation is transferred from a valley to the next one by a process consisting of two elementary steps: the formation of a kink pair of critical separation and subsequent kink migration along the dislocation line. At variance with metals, migrating kinks experience a strong frictional force (second order Peierls relief). Dislocation glide is well described by the kink diffusion model \([11, 12]\) and can be summarized as follows. Dislocation velocities have two asymptotic forms, according to whether the length \((L)\) of the moving segment is large or small as compared to the mean free path of a kink pair \((X)\) along the dislocation line:

(i) for slow kink motion and/or long moving dislocation segment \((L \gg X)\), the kink collides and annihilates with another kink of opposite sign generated on the same segment (kink collision regime). The dislocation velocity \((v)\) is proportional to the mean free path of kinks \((X)\) and:

\[
v = 2 \upsilon_D (\tau b^2 h^2 / kT) \exp \left\{-[(F_{kp}/2+W_m)/kT]\right\} \quad (1)
\]

(ii) for fast kink motion and/or short moving segment \((L \ll X)\), the diffusing kink reaches the end of the segment before being annihilated (kink collision-less regime). The dislocation velocity is proportional to its length \((L)\):

\[
v = \upsilon_D (\tau bh^2 / kT) L \exp \left\{-[(F_{kp}+W_m)/kT]\right\} \quad (2)
\]

with \(\upsilon_D\) being the trial jump frequency (equal to the Debye frequency), \(b\) the Burgers vector, \(h\) the distance between adjacent Peierls valleys, \(\tau\) the applied shear stress, \(W_m\) the migration energy of kinks and \(F_{kp}(\tau)\) the activation energy for nucleation of a kink pair.

A certain number of experimental facts led some authors to the conclusion that glide of long dislocation in crystals is not in the kink collision regime. Alternatively they suggest that the dislocation velocity is controlled by the presence of localized obstacles (the origin of which is still debated) on the dislocation line (see [4]). In that case the mean free path of kinks is the mean separation of obstacles along the dislocation line \((D^*)\) and the dislocation velocity
is given by a law similar to Eq. (2) in which \(L \) is replaced by \(D* \). That is, the velocity is length independent, as in the kink collision regime; however, the activation energy is \(F_{kp} + W_m \), as in the kink collision-less regime.

A length dependent regime of dislocation velocity has been clearly evidenced by TEM \textit{in situ} straining experiments (for a review, see [3, 12]). In III-V compounds, the velocities of 60°\(\beta \) and screw dislocations are proportional to their length for a given stress, up to lengths higher than a few micrometers. On the other hand a transition between the two velocity regimes has been evidenced in Si and Ge.

In the frame of the kink diffusion model, activation energies for dislocation movement can be estimated without using an Arrhenius plot. Indeed all the terms in the pre-exponential factors (equations (1) and (2)) are either known or determined experimentally. The results are summarized in Table 1.

\[v = v_{0d}(\tau) \exp \left(-\frac{E_d}{kT} \right) + v_{0i}(\tau) \eta(I) \exp \left(-\frac{E_i}{kT} \right) \]

\textit{2.2. Radiation-enhanced dislocation motion}

As evidenced by experiments performed at a semi-microscopic scale, e.g. scanning electron microscopy in the cathodoluminescence mode or double etching technique, electronic excitation causes an enhancement of dislocation glide in a variety of semiconductors. The dislocation velocity can be expressed as [4]:

\[v = v_{0d}(\tau) \exp \left(-\frac{E_d}{kT} \right) + v_{0i}(\tau) \eta(I) \exp \left(-\frac{E_i}{kT} \right) \]

where \(E_d \) is the activation energy without excitation, i.e. electron beam intensity (I) = 0 and \(E_i = E_d - \Delta E \) is the apparent activation energy under excitation; both \(v_{0d} \) and \(v_{0i} \) depend approximately linearly on the shear stress \(\tau \); \(\eta \) is an efficiency factor which depends linearly on I in the low intensity range. Above a critical temperature \(T_c \) the first term dominates and no effect of excitation is observed. At lower temperatures the second term describes the dislocation motion. In Si and GaAs the mean features of excitation enhanced glide do not depend on the nature of the excitation source, either electron beam or laser light [4].
The characterization of the microscopic processes affected by excitation requires which condition of dislocation velocity (length dependent or length independent) is actually realized in the experiments performed at a semi-microscopic scale. As described below in situ deformation experiments in a TEM give further information on the behaviour of dislocations under excitation at a microscopic scale.

3. Electron beam irradiation enhanced dislocation motion in ZnS [13, 14]

The effect of electron beam excitation on the dislocation behaviour in cubic (sphalerite) ZnS single crystals has been studied in the temperature range room temperature-500 K. During in situ straining experiments (foil surface (011); tensile axis [211]) the dislocation motion is observed to be very smooth and viscous, whatever the temperature and the electron beam intensity (in the range 35-5600 A/m²). This strongly suggests that the dislocation glide is still controlled by the Peierls mechanism, even in the enhancement regime. Dislocation sources are frequently observed: In the example shown in figure 1 the single-ended source rotates counter-clockwise, the screw direction being almost parallel to the slip traces. Dislocation segments lie along the <110> rows of the {111} slip plane.

In all the studied temperature range and electron beam intensity range the dislocation velocity varies linearly with its length [13, 14]. This suggests that no kink collision takes place before the initial kink pair reaches the ends of the moving segment (kink collision-less regime). As indicated above a strong enhancement of dislocation mobility under electronic excitation is evidenced. Figure 2 reports an example of the variation of P = v/L with I. At low intensity P varies linearly with I, in agreement with the law deduced from experiments performed at a semi-microscopic scale (equation (3)). The extrapolation of the curve to I = 0 gives an estimate of the dislocation mobility in the absence of electron beam excitation, from which the data reported on Table 1 for this compound are determined. As I increases, the curves P(I) deviate from a linear relationship and P seems to come to a saturation level for electron beam intensities higher than about 1500 A/m².
As the parameter η in equation (3) is not known the determination of activation energies under electronic excitation requires the use of an Arrhenius plot: it is found $E_i = 0.3 \pm 0.1$ eV, to be compared with the activation energy in the absence of electronic excitation: $E_d = 1.15 \pm 0.1$ eV; that is $\Delta E/E_d$ is as high as 75% in this compound [14].

The observed excitation-enhanced dislocation glide is interpreted in terms of the reduction of activation energy by non radiative recombination of injected carriers at electronic levels associated with dislocations. There are two elementary steps of dislocation motion that could be assisted by the lattice vibrations induced by these multiphonon processes: the kink pair formation and the kink migration. The theoretical analysis [4] showed that in the kink-collision less regime, the linear dependence of the dislocation velocity with electron beam intensity (at low injection level) is a proof that kink pair formation is enhanced; kink migration, even if it occurs, does not contribute to the reduction in activation energy. This reduction in activation energy is therefore interpreted as the difference between an electronic energy level associated with a straight portion of dislocation and a relevant band edge.

The tendency to saturation of P at high electron beam intensities can be explained by the expected saturation of the recombination rate at high generation rates of electron-hole pairs; that is in the high intensity regime, the dislocation velocity depends only weakly on the beam intensity.

In this material, deformation proceeds mainly by glide of perfect dislocations. Owing to the low stacking fault energy ($< 6 \text{ mJ/m}^2$), glide of uncorrelated partial dislocations is occasionally observed; it is noteworthy that the observed dynamic behaviour of these defects under electronic excitation is very similar to that of perfect dislocations [15].

4. Defect dynamics in a ZnSe/GaAs heterostructure

Electron excitation also affects the defect behaviour in semiconducting heterostructures. We report here on the results of in situ heating experiments performed on a ZnSe epilayer grown on a GaAs substrate, which could be considered as a prototype structure for devices emitting in the blue region of the optical spectrum. One of the main obstacles in the development of
reliable light emitters based on II-VI semiconductor heterostructures is their short operation time. The degradation of their optical properties is attributed to the presence of structural defects and to their multiplication under the operation conditions: stacking faults and/or dislocations acting as sources of new defects activated by REDM. It has been shown recently [16] that the simultaneous influence of electron beam irradiation and specimen heating (above 420K) leads to the degradation of the active layer by nucleation and propagation of structural defects, associated with a climb mechanism. Dislocation multiplication is strongly activated by the electron beam; indeed, when the electron beam is off, the microstructure is not modified by annealing in the studied temperature range. Thus the climb mechanisms involved in the degradation process are assisted by the non-radiative recombination of electron hole pairs created by the electron beam.

We focus here on the behaviour of as-grown defects, in connection with the strain relaxation mechanisms in this material.

4.1. Experimental details

Samples are (001) ZnSe/GaAs heterostructures grown by Molecular Beam Epitaxy (MBE) at 280°C at the Centre de Recherche sur l’Hetero-Epitaxie et ses Applications (CRHEA), Valbonne (France), with an excess of Se [17]. The layer is 250 nm thick, larger than the critical thickness (130nm). However, X-ray diffraction experiments reveal that the ZnSe layer is not fully relaxed [18] (see also below). The lattice parameter of ZnSe is slightly larger than that of GaAs, so that the layer is in compression (misfit 0.27%) Comparing the thermal expansion coefficients of ZnSe and GaAs indicates that the misfit compression increases during heat treatment. TEM plan-view specimens are prepared by chemical etching of GaAs substrate and subsequent ion milling from the back side until perforation [18].

Conventional TEM and in situ heating experiments (in the range room temperature-570 K) are done in a JEOL 2010 FX TEM, operated at 200kV. In these experiments, the electron beam intensity is varied by changing the excitation of the condenser lens. Large angle
convergent beam electron diffraction (LACBED) experiments are done in a Philips CM30 TEM.

As the sphalerite structure is non-centrosymmetric, the absolute polarity of the sample has to be determined. In the course of this study a novel method has been used: CBED on \{001\} plan view samples [19].

4.2. The as-grown defect microstructure in the ZnSe layer

A large variety of defects are observed in the ZnSe/GaAs heterostructures, depending on the growth conditions, the initial treatment of the growth surface, the doping of the ZnSe layer, etc… The defects present in our samples are described below: they are predominantly undissociated misfit dislocations and stacking faults.

4.2.1. Misfit dislocations. An array of misfit dislocations is present in the material (figure 3). Their Burgers vector \(1/2\langle011\rangle\) is inclined to the interface. Few are along \(\langle110\rangle\) directions (marked B on the figure); most of them lie along unusual \(\langle310\rangle\) directions (marked A) and show slight undulations. Taking into account the efficient Burgers vector component (i.e. the component of the Burgers vector in the interface plane, perpendicular to the misfit dislocation line) dislocations A are more efficient to relax the misfit strain than dislocations B\(^\dagger\). It was recently shown that the early stages of stress relaxation in this heterostructure proceeds by activation of secondary \(1/2\langle011\rangle\{133\}\) slip systems [20]. From the efficient Burgers vector component and the mean distance between interfacial dislocations, the misfit strain that is released by this network is estimated as \(6\times10^{-4}\), to be compared to the crystallographic misfit: \(27\times10^{-4}\). This is another indication that the layer is not completely relaxed.

4.2.2. Isolated triangular “stacking faults”. Figure 4 shows an example of this defect, which are randomly distributed in the layer. They look like triangular stacking faults, the

\(^\dagger\) Since the Burgers vector of dislocations A is inclined to the interface, these are not the most efficient strain-releasing misfit dislocations. Dislocations lying along \(\langle110\rangle\) directions within the interface plane and with in-plane \(1/2\langle110\rangle\) Burgers vector are most efficient (see § 4.3.5)
apex of the triangle being located close to the interface; it is noteworthy that they are present only in two \{111\} planes with the same polarity: (111) and (\(\bar{1}\overline{1}1\)). Their TEM diffraction contrast is similar to that of an extrinsic stacking fault (figure 4(b)). The bounding dislocations are straight. One partial is of Shockley type, as determined by contrast analysis [18], but we failed to determine the exact nature of the second partial. Nevertheless it is not of Frank type. In this material a high resolution TEM investigation of defects exhibiting such an extrinsic stacking fault contrast in strong beam conditions showed that they were extrinsic-intrinsic fault pairs at a spacing 7-10 nm [21]. Consistent with this result we do not observe line splitting in the LACBED patterns of the defect (figure 4(c)), suggesting that the net fault vector is a lattice translation, as it is expected from an intrinsic-extrinsic fault pair. Under electron excitation (see below), it is observed that the Shockley partial is glissile. This is not consistent with the defect being a stacking fault trapezoid limited by stair rods as described by Fung et al. [22]. Further work is needed to understand the crystallographic nature of this defect.

4.2.3. Paired triangular stacking faults (figure 5). These defects, which look like a bow tie, are oppositely oriented stacking faults bound by Shockley partials, the apex of the triangle being close to the interface. Diffraction contrast experiments, as well as LACBED experiments indicate that all the stacking faults are intrinsic. The stacking faults lie either in the two \{111\} planes in the [1\(\overline{1}\)0] zone, or in the two \{111\} planes in the [\(\bar{1}\overline{1}0\)] zone; both configurations are equally observed, indicating that there is no polarity effect in this particular configuration. Similar defects have been observed in ZnSe-based heterostructures [9, 23]. This configuration is suggested to result from the dissociation of a prismatic half-loop of Burgers vector 1/2\(<110>\) (in the interface plane) in two \{111\} planes in the Burgers vector zone, according to the reactions (written here for a dislocation with Burgers vector 1/2[\(\bar{1}\overline{1}0\)]):

- in the (111) plane: 1/2[\(\bar{1}\overline{1}0\)] \(\rightarrow\) 1/6[2\(\overline{1}\overline{1}\)] + 1/6[2\(\bar{1}\overline{1}\)]
- in the (\(\bar{1}\overline{1}1\)) plane: 1/2[\(\bar{1}\overline{1}0\)] \(\rightarrow\) 1/6[2\(\bar{1}\overline{1}\)] + 1/6[2\(\bar{1}\overline{1}\)]

Note that the total prismatic dislocation is edge in character.
The stacking faults are observed to be widened in the vicinity of the sample surface. This is accounted for by considering the force acting on each partial, due to the misfit stress. Indeed, calculations indicate that the glide components are orientated in such a way that they lead to a widening of the stacking fault ribbon in each plane (note that there is no force acting on the total dislocation). This widening effect could be enhanced by the contribution of image forces. Note that this results in an increase of the dislocation lengths. In thicker layers, this stress effect is certainly balanced by the increase of the line energy of the Shockley partials and a narrowing of the fault ribbon is observed [23].

4.2.4. Concluding remarks. It is noteworthy that no Frank stacking faults are present in our samples [18]. This is at variance with the results of the literature on both single triangular faults [9, 23] and paired stacking faults [24]. This is certainly related to the growth conditions of the ZnSe layer [25-27].

4.3. Evolution of the defect microstructure during TEM in situ heating experiments. Observations and discussion.

The defect microstructure in the ZnSe layer changes during TEM observations. Indeed, as detailed below, the as-grown stacking faults may transform into new defects, because of dislocation movements, activated by the temperature increase and/or the electron excitation. In addition, new defects are generated, which contribute to strain relaxation in the ZnSe layer. Finally, as indicated above, a complete degradation of the layer is observed. Before going into details, an important point has to be stressed. No alteration of the layer microstructure is observed after a several hours of annealing the sample in the heating stage of the holder at a temperature as high as 520 K, while the electron beam is off. That means that the below-described events are not only thermally activated (they are enhanced by a temperature increase), but also affected by the electronic excitation.

4.3.1. Misfit dislocations. These dislocations play a role in the degradation process. Above 420 K, small perfect dislocation loops nucleate on pre-existing interfacial dislocations by
point defect accumulation consistent with a radiation enhanced climb mechanism. This has been described in another paper [16] and will not be discussed further here.

4.3.2. Triangular stacking faults. Even if the exact nature of this defect is not completely understood, one of the bounding dislocations is identified as a Shockley partial. Under electron excitation this partial is mobile and moves towards the second (immobile) dislocation and the stacking fault in between is eliminated. This is illustrated on figure 6, which shows three pictures taken from a video recording. It is seen that in a first step the mobile partial bends in the stacking fault plane and finally recombines with the second dislocation. Note that the surface acts as a pinning site. That process (complete elimination of the fault) takes 24 seconds at room temperature and only 3 seconds at $373 \, K$; that is the dislocation movement is thermally activated.

From this experiment, one can estimate the activation energy for dislocation motion under electron excitation. TEM in situ straining experiments in single phase ZnSe crystals [28] have demonstrated that the dislocation mobility is independent of the electron beam intensity for $I \geq 1000 \, A/m^2$, which is the intensity level in our experiments on the ZnSe/GaAs structure, that is η (equation (3)) could be considered as a constant. Moreover, the length of the mobile dislocation is fixed by the thickness of the ZnSe layer, which is constant in all experiments (250 nm), so that we are not concerned with a possible length effect on dislocation velocity. Finally the pre-exponential factor in the expression for dislocation velocity (equation (3)) depends linearly on the shear stress τ. Then, considering two experiments performed at temperatures $T_1 = \text{room temperature}$ and $T_2 = 373 \, K$, labelled (1) and (2), respectively, one has:

$$E_i = k \frac{T_1 T_2}{T_2 - T_1} \ln \frac{\tau_1}{\tau_2} \frac{v_2}{v_1}$$

(4)

The shear stress ratio is proportional to the misfit stress ratio, so it is proportional to the misfit parameter (f); we assume that the dislocation velocity is inversely proportional to the recombination time (t). We end up with:

$$E_i = k \frac{T_1 T_2}{T_2 - T_1} \ln \frac{f_1}{f_2} \frac{t_1}{t_2}$$

(5)
With \(f_1 = 0.27\% \), \(f_2 = 0.29\% \) (calculated from the variations of the thermal expansion coefficients of GaAs and ZnSe) and \(t_1 = 24\text{s}, t_2 = 3\text{s} \), as determined from \textit{in situ} experiments, we estimate \(E_i = 0.25 \text{ eV} \). The comparison with the activation energy in the absence of electron excitation is not straightforward: indeed experimental data on Shockley partials are still lacking. However the activation energy for perfect dislocation glide in the absence of electron excitation has been estimated in single phase ZnSe crystals: \(E_d = 0.7\pm0.1 \text{ eV} \) \cite{29}\. It has been shown that in the parent compound ZnS, the activation energies for both partial and perfect dislocations are very similar \cite{15}\. If we assume that this is also the case for ZnSe, then we can take this as another evidence of a REDM effect in this compound.

Finally, it should be noticed that the dislocation mechanism described here does not play a role in the strain relaxation mechanisms, since no dislocations are generated at the interface.

\subsection{4.3.3. Paired stacking faults.} This particular defect configuration acts as a source for heterogeneous nucleation of screw misfit dislocations in the interface. This is illustrated on figure 7, which is taken from a video recording \((T = 373 \text{ K})\). It is seen that the two partials bounding one of the two stacking faults recombine in a perfect dislocation of edge character. Then this perfect dislocation glides and bows out in its own \{111\} glide plane (note again that the surface acts as a pinning site). After the dislocation has escaped from its surface pinning point it moves very rapidly, leaving a screw dislocation in the interface. A similar mechanism is observed to occur on the second stacking fault of the pair. At this temperature the “recombination and unpinning” sequence takes 7 min; in contrast the dislocation glide is very rapid since screw dislocations of lengths longer than 10 \(\mu \text{m} \) are formed in less than 10 s. A similar mechanism has already been reported in ZnS\(_x\)Se\(_{1-x}\)/GaAs heterostructures \((x \approx 0.05)\) \cite{9}\. In that case the active layer was about 450 nm thick, and the stacking fault ribbons are very narrow (see § 4.2.3. above). Then the recombination phase is probably easier in this

\footnote{This value is in good agreement with the results of a recent investigation on the strength of ZnSe by means of compressive deformation, where the activation energy for dislocation motion was estimated to be 0.5-0.7eV\cite{30}\
}
material. Another transformation of these paired stacking faults leading to the formation of Frank stacking faults has been observed in 70 nm thick ZnS_{0.04}Se_{0.94} [31]. It is suggested that in this case, the mechanism described above is not operative, because the recombination of the partials is too difficult.

The driving force for the formation of this network of screw dislocations is not completely understood. First, as indicated above, the net glide force acting on the total (recombined) dislocation due to the misfit stress is zero; nevertheless the dislocation bows out in its slip plane. Second, an arrangement of screw dislocations at the interface does not release the misfit stress, unless some shear stress is present. We have to admit that some stress inhomogeneities are present in our samples. These stress inhomogeneities could be due either to stacking errors during the growth process or to the thinning process, which could induce a loss of the local fourfold symmetry of the (001) sample.

4.3.4. Formation and extension of extrinsic stacking faults bounded by Shockley partial dislocations. Half-loops of Shockley partial dislocations bounding an extrinsic stacking fault are nucleated at the sample surface during the TEM observation (figure 8). The extrinsic nature of the fault, as well as the Burgers vector of the bounding partial have been determined from diffraction contrast experiments in dynamical 2-beam conditions, as well as from LACBED experiments [18]. Like the isolated triangular stacking faults (§ 4.2.2), they are formed only in the {111} planes belonging to the [110] zone: (111) and (1̅1̅1), which have the same polarity. The Burgers vector of the Shockley partial is perpendicular to [110].

The nucleation site is some heterogeneity at the sample surface. In the first stage, the defect size is very short. Further annealing at temperatures higher than 373 K causes the expansion of the loop in the fault plane, leading to the formation of a wide stacking fault (a few micrometer wide, figure 8). At the interface, the Shockley partial is edge in character. The dislocation movement is smooth and regular (viscous glide), indicating that it is subjected to lattice friction. At 373 K, an estimate of the velocity of the threading segments is 40 ± 10 nm/s, of the same order of magnitude as the velocity of the Shockley partials bounding the isolated triangular faults.
The sense of dislocation movement is consistent with the sense of the force due to the misfit stress. Equivalently, the efficient Burgers vector component (1/6<110>) is consistent with a slight plastic relaxation of the misfit strain.

Only extrinsic stacking faults present a polarity effect. Although, previously, investigators do not seem to have paid attention to this, examination of the literature [9, 23, 27, 32] indicates that there is a systematic correlation between the extrinsic nature of the stacking fault and the polarity of the sample, even when the observed configurations are different from those observed in our samples.

In the present study, we suggest that this polarity effect is related to the chemical nature of the atomic row in the dislocation core. Modelling of the dislocation core indicates that partials bounding an extrinsic stacking fault, nucleated at the sample surface and moving towards the interface in {111} planes belonging to the [\bar{1}10] zone have Se atoms in their core; “efficient” partials moving in the two other {111} planes would have Zn atoms in their core. (These dislocations are labelled Se- and Zn-dislocations, respectively) **. Then we conclude that nucleation and propagation of Se-dislocations is easier than nucleation and propagation of Zn-dislocations also. This is consistent with an earlier investigation of dislocation mobility in bulk ZnSe by etch pit experiments. Indeed Kirichenko et al. [33] have shown that the mobility of perfect Se-dislocations (i.e. of \(\alpha\) type) is more than 100 times higher than that of perfect Zn-dislocations (\(\beta\) type). This large asymmetry is certainly valid for partial dislocations.

4.3.5. Complete relaxation of the ZnSe layer by formation of a network of edge dislocations (figure 9). Heating the sample up to 523 K under electron beam causes the sudden formation of a cross grid of perfect edge dislocations with 1/2<110> Burgers vectors in the interface (figure 9(a)). These dislocations are very efficient to completely relax both the misfit stress and the thermal stress. The formation of this array is very fast so that the generation mechanism could not be detailed: it is observed (figure 9(b)) that new misfit dislocations are formed at the interface during only one video frame (frame duration 1/50 s).

** The labelling \(\alpha\) or \(\beta\) could be confusing in the case of Shockley partials bounding an extrinsic stacking fault: indeed these partials could be regarded as composite partials moving on two adjacent planes.
Again it should be stressed that these events are greatly enhanced by electron excitation since annealing of the sample “in the dark” did not lead to a noticeable modification of the defect microstructure at the ZnSe/GaAs interface.

5. Conclusion.

Since the pioneering work of Hirsch et al. [34], who were the first to report dislocation movements under thermal stresses generated by the electron beam, our knowledge of the dislocation dynamics under various excitations has been tremendously improved. In this paper we have focused on the effect of electronic excitation on the properties of dislocations in semiconducting materials. In ZnS, the elementary dislocation mechanisms that are affected by non radiative recombination of charge carriers have been identified, thanks to TEM in situ straining experiments at different temperatures and different electron beam intensities. In ZnSe/GaAs heterostructures, a complex defect microstructure is present in as-grown samples. Heating the sample under electron irradiation induces a variety of dislocation behaviours, some of them being related to misfit strain relaxation. Again dislocation movements are enhanced by electron excitation. TEM in situ also experiments provide a useful tool to study the degradation processes in this compound in real time.
Références

[34] P.B. Hirsch, J.W. Horne and M. J. Whelan, Phil. Mag. 1, 677 (1956)
Tables

Table 1. Activation parameters for dislocation glide as estimated from TEM *in situ* straining experiments. Experimental data are analysed in the frame of the kink diffusion model.

<table>
<thead>
<tr>
<th>Material</th>
<th>Dislocation</th>
<th>Temperature (K)</th>
<th>Stress (MPa)</th>
<th>X (µm)</th>
<th>$F_{kp} (\tau)$ (eV)</th>
<th>W_m (eV)</th>
<th>F_k (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si 60°, screw</td>
<td>793-888</td>
<td>240</td>
<td>1.2</td>
<td>1.3</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si 60°, screw</td>
<td>813</td>
<td>550</td>
<td>0.4</td>
<td>0.9</td>
<td>1.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Ge 60°</td>
<td>703</td>
<td>40</td>
<td>0.55</td>
<td>0.8</td>
<td>0.85</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Ge screw</td>
<td>678</td>
<td>35</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>InSb screw, 60°β</td>
<td>523</td>
<td>50</td>
<td>> 5</td>
<td>0.8-1.2</td>
<td>< 0.4</td>
<td>0.5-0.65</td>
<td></td>
</tr>
<tr>
<td>InP screw, 60°β</td>
<td>623</td>
<td>50</td>
<td>> 0.7</td>
<td>0.8-1.5</td>
<td>< 0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs screw, 60°β</td>
<td>623</td>
<td>50</td>
<td>> 3</td>
<td>1.1-1.6</td>
<td>< 0.5</td>
<td>0.65-0.9</td>
<td></td>
</tr>
<tr>
<td>ZnS 60°, screw</td>
<td>473</td>
<td>25-40</td>
<td>> 0.4</td>
<td>0.85-1.15</td>
<td>< 0.3</td>
<td>0.5-0.65</td>
<td></td>
</tr>
</tbody>
</table>
Figures Captions

Figure 1: Dislocation source in ZnS: slip system 1/2[01\bar{1}](111). $T = 293$ K; $I= 5600$ A/m2; $\tau = 40\pm10$ MPa.

Figure 2: The velocity per unit length vs. electron beam intensity in ZnS. Room temperature; $\tau = 25\pm5$ MPa.

Figure 3: Misfit dislocations at the ZnSe/GaAs interface; their Burgers vector is inclined to the interface: (A): dislocations along $<310>$; (B) dislocations along $<110>$; (T) threading dislocation.

Figure 4: (a) Three isolated triangular stacking faults, randomly distributed in the ZnSe layer, bright field, $g = (220)$; (b) Dark field image ($g = (220)$) showing the extrinsic-like contrast of the stacking fault: the opposite of the diffraction vector points towards a dark fringe; (c) LACBED pattern (the stacking fault appears as a shadow image): there is no shift of the diffraction lines.

Figure 5: Paired stacking faults (a) Bright field image; (b) Schematics of the two possible configurations as observed in (001) projection; (c) Schematics of the observed configuration, which can be regarded as a prismatic half loop dissociated in two secant planes.

Figure 6: Electron excitation induced elimination of a triangular stacking fault by glide of the bounding Shockley partial, room temperature (a) $t = 0$ s; (b) $t = 8$ s; (c) $t = 24$ s.

Figure 7: Electron excitation induced evolution of a paired stacking faults, $T = 373$ K (a) $t = 0$ s; (b) $t = 420$ s the two partials have recombined and the perfect dislocation bows out in its slip plane; (c) $t = 440$ s the dislocation movement leaves a screw dislocation at the interface; (d) $t = 960$ s a similar transformation is achieved on the second stacking fault of the pair.
Figure 8: Half loops of Shockley partials limiting an extrinsic stacking fault, $T = 373$ K (a) Just after the nucleation stage; (b) One of the half loops expands in its plane to reach the interface.

Figure 9: $T = 523$ K (a) Formation of a cross grid of edge dislocations which completely relax the misfit strain; (b) Two micrographs taken 10 s apart: each of the newly formed dislocations (arrowed) appeared during a video frame duration (1/50s); one family is out of contrast.
Figure 1
figure 4b
Figure 5
Figure 7
Figure 8
figure 9a
Figure 9b