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ABSTRACT.  

It is usual to think of Focal Conic Domains (FCD) as perfect geometric constructions in which the layers 

are folded into Dupin cyclides about an ellipse and a hyperbola that are conjugate.  This ideal picture is often far 

from reality.  We have investigated in detail the FCDs in several materials that have a transition from a smectic A 

(SmA) to a nematic phase (N).  The ellipse and the hyperbola are seldom perfect, and the FCD textures also suffer 

large transformations (in shape or/and in nature) when approaching the transition to the nematic phase, or appear 

imperfect on cooling from the nematic phase.  We interpret these imperfections as due to the interaction of FCDs 

with dislocations.  We analyse theoretically the general principles subtending the interaction mechanisms between 

FCDs and finite Burgers vector dislocations, namely the formation of kinks on disclinations, to which dislocations 

are attached, and we present models relating to some experimental results.  Whereas the principles of the 

interactions are very general, their realizations can differ widely in function of the boundary conditions.  

PACS numbers: 61.30Jf, 61.72Lk 
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I. INTRODUCTION 

 The discussion that follows, about the behavior of defects in the SmA (smectic A) phase is inspired by a 

few experimental polarized light microscopy observations reported in [1] and summarized below.  These 

observations have since been developed [2].  They relate to a domain of temperature that extends approximately 

C°1  below the SmA → N phase transition, some of the most relevant experiments having been done with an 

accuracy of ±1mK.  The very near vicinity of the transition, where phenomena usually qualified of transitional do 

happen, could not be investigated, and then has not been.  It appears, in the domain we have searched, that the focal 

conic domains suffer considerable visible modifications, with remarkable imperfections in shape.  It is the nature of 

these imperfections that we wish to describe in the present article.   

The defects and textures of the SmA and N phases are reasonably well understood at mesoscopic and 

macroscopic scales, at least for their static physical and topological properties.  Contrariwise, the role played by the 

smectic defects at the phase transition has been little investigated.  It is precisely in this region that the FCDs (focal 

conic domains), the only defects that are fully observable in light microscopy, show these large modifications that, 

we shall argue, are essentially due to their interactions with dislocations.  The SmA → N phase transition has been 

the object of many investigations (for a review, see [3]).  The compression modulus   B tends towards a value equal 

to or slightly different from zero, according to the author, see e.g., [4-7]; its variation is noticeable in a large 

temperature range (more than half a degree in the compounds that we have investigated).  Notice that in this range 

    
K

1
 (the splay modulus) stays practically constant.  The question of   K  (the saddle-splay modulus) has been little 

investigated yet, either theoretically or experimentally (see [8] for the nematic phase); the results that follow have 

been interpreted by assuming that   K  too stays practically constant.  
    
K

2
 (the twist modulus) is infinite in layered 

media as long as the director remains along the layer normal (which might be infirmed very close to the 

nematic transition).   

Let us now recall some defect features of the SmA phase. These defects are of two types, focal conic 

domains (which are especial types of disclinations) and dislocations: 

focal conic domains (FCDs): the layers are parallel, so that there is no strain energy but only curvature energy.  The 

normals to the layers envelop two focal surfaces on which the curvature is infinite (the energy diverges).  The focal 

surfaces are degenerate into lines in order to minimize this large curvature energy.  These lines are necessarily two 

confocal conics, an ellipse and a hyperbola, observable by optical microscopy [9-13]. The layers are folded along 

Dupin cyclides, surfaces that have the topology of tori.  And indeed the simplest geometric case is when the ellipse 

E is degenerate into a circle – the confocal hyperbola H being degenerate into a straight line perpendicular to the 

plane of the circle and going through its centre.  In this case the layers are nested tori, restricted in fact to those parts 

of the tori that have negative Gaussian curvature G=σ1σ2. The   G  < 0 case is indeed the most usual case met 

experimentally in generic Dupin cyclides, see [14,15].  We shall not consider in the sequel the situations where the 

layers are restricted to those parts that have positive Gaussian curvature; and as a matter of fact the mixed case is not 

observed.  In the toric case just alluded, the focal conic domain is the region of space occupied by those nested 

layers restricted to their   G  < 0 parts; it is bound by a cylinder parallel to H and whose cross section is E.  In the 

generic case, the region of space where the layers have   G  < 0 is bound by two half-cylinders of revolution, that 
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meet on the ellipse, and whose generatrices are parallel to the hyperbola asymptotes, Fig. 1a.  This is the picture of 

an ideal, complete, FCD.  Fig. 1b illustrates a case where   G  < 0 and   G  > 0 regions are visible in the same FCD; it 

does not correspond to any situation met in practice.  Models for ideal, incomplete FCDs are shown farther ahead 

(Fig. 9a and 9b). The important question how FCDs are packed in space [10, 11] will be approached, but only 

incidentally.   

The curvature energy fFCD of a complete, ideal, focal conic domain depends on K
1

 and K : 

fFCD = fbulk + fcore =
    
4π a(1−e2)K(e2)[K

1
ln2b

ξ
−2K

1
−K ]+ fcore    (1) 

where a is the semi-major axis of the ellipse, b the semi-minor axis, e the eccentricity and 
    
K(e2)  the complete 

elliptic integral of the first species [14].  It has been advanced that the energy fstrain attached to the thickness 

variation of the layers is negligible compared to fFCD [11,14] ; see also [13] for another approach.  Very little is 

known about the core contribution    fcore , but it is usually assumed that it scales as     aK1 . Thus, at a and e constant, 

the FCD total energy does not vary significantly in the domain of temperature under investigation, if our 

assumptions about the temperature variation of K
1

 and K turn to be true.   

screw dislocation lines and edge dislocation lines: their unit length line energies can be written:  

fs = 
1

128

Bbdisl

4

rc,screw

2
+ f core,  fe = 

1

2
K

1
B

bdisl

2

rc,edge

+  f core ,   (2) 

wherebdisl  = n d0 is the dislocation Burgers vector ( d0 is the layer thickness) and rc  is the core radius.  It is visible 

that the elastic contributions (the off-core terms in Eq. 2) decrease when T gets closer to TAN, because   B decreases 

whereas the temperature changes of the core energies can be neglected or even decrease –indeed in a naïve model 

inspired by the solid-liquid transition, these energies are of order kB(TAN − T)
πrc

2

δ2d0

 per unit length of dislocation 

line, i.e. small; 
    
δ2d0  is the volume occupied by a molecule, and rc  is microscopic, practically constant (of order δ  

for a screw dislocation,     d0  for an edge dislocation).  The decrease of   B, as already stated, is effective on a large 

temperature range before the transition, probably larger than 1°C , see [4,6].  The core radii scale as the correlation 

lengths very close to the transition, but this region is of no interest to us. 

Comments on the experimental conditions 

The FCDs are stable and immobile in the lower part of the temperature range we have investigated; they 

however quite often display variations to their ideal shape.  The transformations of the FCDs, when approaching the 

transition, are visible with a simple optical microscopy set up.  They appear as rather sudden phenomena, about half 

a degree below TAN , at a temperature T∗
 that depends slightly on the boundary conditions.  Our observations 

relate to thermotropic compounds, two belonging to the cyanobiphenyl series, 8CB and 9CB.  We also noticed 

that FCD texture of the 10CB compound does not display any conspicuous modifications when T increases, 

but this chemical does not have a nematic phase; the transition is direct to the isotropic phase.  This is in 

contrast with the other compounds, that have a SmA →→→→    N transition.  In these latter cases, either the FCDs 
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disappear by shrinking before the phase transition, or the ellipse and the hyperbola transform into disclinations in 

the nematic phase; the first situation occurs usually for small and medium size (tens of microns in diameter) slowly 

FCDs heated (heating rate lower than 0.1°C/min), the second one occurs for large (hundred of microns and more in 

diameter) FCDs, when they are brought to the transition under faster heating (this linear scaling is conditional, 

depending on the heating rate: at a high heating rate of several degrees per minute, even small FCDs have no time to 

shrink).  When cooling down from the nematic phase, the FCD texture in 8CB and 9CB usually does not display 

ideal FCDs.  Instead FCD fragments grow, join and form focal domains, which in many cases are not ideal.  The 

double helical objects described in [16], which are splitting modes of giant screw dislocations, are obtained this 

way.  These imperfect FCDs (iFCD) can be quenched to lower temperatures where they stabilize because of a 

much reduced mobility (high viscosity).  The boundary conditions play an important role in the definition of the 

final texture.   

 We believe that the transformations of the FCD texture in 8CB, 9CB when approaching the nematic 

phase, as well as the formation of iFCDs when coming from above, are due to the interaction of the FCDs 

with dislocations.  Dislocations are generally not visible by optical microscopy, except when their Burgers vector is 

large (micron size), which situation occurs for edge dislocations clustering into oily streaks [9-11] or screw 

dislocations split into two k=1/2 disclinations [16, 17].  We argue here that the presence of numerous dislocations 

can be revealed via their distorting action on the FCDs, which are visible. 

II. GEOMETRIC RULES FOR IDEAL FOCAL CONIC DOMAINS 

Essential for a better understanding of the modifications suffered by FCDs when interacting with 

dislocations are the following properties, that characterize them when they are in an ideal state. 

(a)- Projected orthogonally upon a plane, along any direction, the ellipse E and the hyperbola H cross at 

right angles, Fig. 2a.  This is a particular case of Darboux’s theorem [18], which states that if a congruence of 

straight lines is orthogonal to a set of parallel surfaces, the two focal surfaces Σ1 and Σ2 (that this congruence 

generically envelops) are such that the planes tangent to Σ1 and Σ2 at the contact points M1 and M2 of any line ∆ 

of the congruence are orthogonal.  This is the reason why the projections of the ellipse E and the hyperbola H 

belonging to the same FCD look orthogonal.  Here the straight line ∆ is a normal to the Dupin cyclides, and 

indicates the average direction of the molecules.  Darboux’s theorem is empirically satisfied by a number of FCDs, 

which in that sense are ideal FCDs; when it is not, (see Fig. 2b), it implies that the FCD in question is geometrically 

interacting with other defects, as we shall discuss in the sequel.   

 (b)- The inner layers of an isolated complete FCD can be continued outside the FCD by planar layers 

perpendicular to the asymptotes (this is obvious from Fig 1a), which can form two sets of parallel planes meeting on 

the plane of the ellipse, along a direction parallel to the minor axis of the ellipse, at an angle ω.  The plane of the 

ellipse is therefore a tilt grain boundary. In a solid crystal, a tilt grain boundary is usually split into edge dislocations 

whose Burgers vectors are perpendicular to its plane.  The same is of course possible for a tilt grain boundary in a 

layered medium.  One expects that some of those dislocations meet the ellipse.  As a matter of fact, the ellipse of an 

isolated FCD is the termination of a set of dislocations whose total Burgers vector bdisl = 4ae = 4c, as explained 

below. 
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(c)- Two neighboring ideal FCDs whose ellipses are in the same plane and tangent at some point M are in 

contact along at least one line segment joining M to a point P at which the two hyperbolae intersect.  This 

geometry, frequently observed, is a particular realization of the law of corresponding cones [9-11], a 

geometrical property that rules the way FCDs pack in space.  A tilt grain boundary whose angle of 

misorientation ω �is neither too small nor too large is usually made of a FCD packing such that the ellipses belong to 

the grain boundary, have a constant eccentricity e = sin
ω
2

, the asymptotes of the hyperbolae being parallel [19], 

see Fig. 3.  And indeed the free interstices of the packing of ellipses in the plane of the grain boundary are filled 

with dislocations [19].  There is a relation of equivalence between dislocations and focal conic domains [20, 21].   

III. KINKS ON DISCLINATIONS 

A. Wedge and twist disclinations. FCD confocal conics are disclinations. 

Disclinations are typical line defects in a medium endowed with a director order parameter [22]. One 

distinguishes wedge disclinations, whose rotation vector Ω Ω Ω Ω is along the disclination line, and twist disclinations, 

whose rotation vector Ω Ω Ω Ω is orthogonal to the disclination line.  As shown in [9, 10], there are necessarily 

dislocations attached to a line segment of twist character.  Let us remind that the focal lines of a FCD, are, by nature, 

disclinations. 

(a)- The hyperbola is a disclination of strength k =1, whose rotation vector (ΩΩΩΩ = 2πt) varies in direction 

(not in length) all along the hyperbola: at each point of the hyperbola it is parallel to the tangent t at this point.  The 

layer geometry is axial-symmetric in the vicinity of the hyperbola.  Insofar as it is a disclination, the hyperbola is of 

wedge character; there are no attached dislocations.   

(b)- If the full cyclides are considered, as in Fig. 1b, the layers that surround the ellipse are axial-symmetric 

about the tangent to the ellipse; the ellipse appears also as a k =1 wedge line. But, if one restricts to the inner G < 

0 layers of the complete FCD, supplemented by the outer planar layers, the ellipse appears as a disclination of 

strength k =
1

2
, whose rotation vector (ΩΩΩΩ = πt) varies (in direction but not in length) all along the ellipse; t is in 

the plane of the ellipse and tangent to the layer inside the ellipse, Fig. 4.  This disclination is of mixed character; the 

attached dislocations are precisely those that form the tilt boundary [15, 19, 23] whose existence has been 

established above; see below for more details. 

B. Kinks, generic properties. 

Modifications to the twist/wedge character of a disclination can be achieved in the generic case by 

attaching/detaching new dislocations to the line.  Such operations modify the shape of the line, by the introduction 

of kinks, Fig. 5.  For instance, in order to attach at some point A on a wedge line L a set of dislocations of total 

Burgers vector bdisl, one has to introduce a kink AB, with a component perpendicular to L, (i.e. a segment AB 

having a twist component), such that  
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bdisl = 2sin
Ω
2

t × AB,       (3) 

where t  is an unit vector tangent to the line and Ω Ω Ω Ω (Ω=Ω=Ω=Ω= tΩ )    is the rotation invariant carried by the disclination; 

see [11, 23] and the Appendix for a demonstration of Eq. (3).  In practice lines of interest are of strength k =
1

2
, 

   ΩΩΩΩ = π .  Reciprocally, the presence of a kink reveals the presence of dislocations attached to the line. The above 

picture of a kink says nothing about the nature (edge or screw) of the attached dislocations, and the way they relax 

and disperse through space about the disclination line. The line flexibility, i.e. the main property at work when the 

medium is deformed, elastically or by flow, takes its origin here, in this interplay of the disclination line with 

dislocations. 

A kink can be infinitesimally small;  

dbdisl = 2sin
Ω
2

t × ds ,       (4) 

where ds  is an infinitesimal element along the line [23].  A density of infinitesimally small kinks modifies the 

curvature of the line.  A dislocation attached to an infinitesimally small kink has an infinitesimally small Burgers 

vector; a dislocation attached to a finite kink may have a finite Burgers vector, as we see now. 

C. Kinks in a SmA 

 Let us now consider in more detail the geometry of the attachment of dislocations to a focal line in a FCD.  

We first state some general properties, and then consider separately the case of the ellipse and the case of the 

hyperbola.   

Again, the dislocations emanating from the kink have to belong to one of the two following 

categories: they are either dislocations with infinitesimal Burgers vectors whose directions are parallel to the 

layer dislocations of the layer stacking, or with Burgers vectors bdisl=nd0  perpendicular to the layer (these 

are the usual SmA quantified dislocations).  Note that in both cases the Burgers vectors are translation 

symmetry vectors; they are perfect Burgers vectors in the sense of the Volterra process.  We consider them 

successively. 

Infinitesimal Burgers vectors relate to dislocation densities that relax by the effect of viscosity; they affect 

the curvature of the layers and consequently, as alluded just above, they also affect their thickness, since the layers 

have to keep in contact.  We shall not expatiate on such defects, which are not relevant to our subject.  Just note 

that the theory has been developed for solids since long, (see [24] for a general review) and is related to the 

concept of densities of infinitesimal dislocations in nematics and cholesterics introduced first in [23]; see also 

[11, 17].  An essential point worth emphasizing is that a continuous density of infinitesimal dislocations can be 

attended by a strainless, elastically relaxed, state.  In our case, this would correspond to a state where the layers have 

curvature and keep parallel.  Continuous dislocations with Burgers vectors parallel to the layers do not introduce any 

kind of singularity of the SmA order parameter.  Eq. (4) indicates that the related kink ds and that t  are both 

perpendicular to dbdisl , which condition does not specify any special direction for ds.   

Finite Burgers vectors: this case is better represented by Eq. (3), because the Burgers vector and the kink 
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AB are both finite.  AB and t  have both to be in a plane tangent to the local layer.  To an elementary dislocation 

bdisl = d0  corresponds an elementary kink.  An elementary kink is microscopic (with k =
1

2
,  Ω = π , one has 

AB = 2d0); one can thus possibly have a density of such elementary kinks, rendering the line curved when 

observed at a mesoscopic scale.  This does not exclude the possibility that infinitesimally small dislocations are 

attached to finite kinks.  

Simple as they look, the application of these criteria requires however some care.   

D. Quantified Burgers vectors attached to an ellipse.   

Fig. 4 is a schematic view of the properties of an ellipse, belonging to an ideal FCD, in relation to its 

k =
1

2
 disclination character.  The layer geometry is different inside and outside the ellipse.  Inside, the Dupin 

cyclide layers intersect the plane of the ellipse perpendicularly.  Outside, the layers are planar and perpendicular 

to the asymptotic directions. The change of geometry between the inside and the outside is achieved by a rotation 

of the layers about the local rotation vector Ω=Ω=Ω=Ω= tΩ ; ΩΩΩΩ �is parallel to the layers (inside and outside) and is along the 

intersection of the layers with the plane of the ellipse, inside. 

The layer at M (M being a running point on the ellipse) is indeed folded inside about the local t direction, 

is singular at M (it is a conical point), and extends outside along a fold made of two half planes symmetrical with 

respect the ellipse plane, each perpendicular to one or the other of the two asymptotic directions of the confocal 

hyperbola, and thereby making an angle ω=2sin–1e  about a direction parallel to the minor axis of the ellipse (see 

[11], chapter 10).  The ellipse plane outside the ellipse is therefore a tilt boundary of misorientation angle ωωωω, 

which can be accommodated by edge dislocations of Burgers vectors multiple of d0, perpendicular to the 

plane of the tilt boundary, i.e. the plane of the ellipse outside.  There is one such dislocation bdisl = 2d0  per 

layer counted inside the ellipse.  These results are similar to those obtained in section II; they also justify the choice 

of ΩΩΩΩ  we have done for the disclination rotation along the ellipse. 

The same result can be obtained by using Eq. (4).  Let us parameterize the ellipse in polar coordinates with 

the origin at the physical focus, Fig. 6.   

r =
p

1+ ecosφ
,        (5) 

where p =
b2

a
and φ  is the polar angle.  Applying Eq. (4), one then finds that the k =

1

2
 ellipse disclination has an 

attached Burgers vector density 

dbdisl = 2dr ,         (6) 

The total Burgers vector attached to the ellipse is dbdislφ = 0

φ= π

∫ = 4c , as indicated above.  If one takes dr = d0 , – an 

approximation which makes sense (up to second order), since d0 is so small compared to the size a of the ellipse – it 

is visible that the points M{r,φ} and N{r + dr,φ + dφ} are on two parallel smectic layers at a distance d0 .  
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Notice that the density of dislocations is constant if measured along the major axis:
dbdisl

dx
= –2e. There are no 

dislocations attached to the singular circle of a toric FCD, as the eccentricity e  vanishes.  An ellipse can be thought 

of as a circle kinked at the layer scale.   

IV. KINKED FOCAL CONIC DOMAINS 

A. Frequent geometries for  a kinked ellipse.  

The kinking of the ellipse takes different geometries, whether the dislocations at stake are located 

inside the ellipse (where bdisl  = nd0 is in the plane of the ellipse, the layers being perpendicular to this plane) 

or outside (where bdisl  = nd0 is perpendicular to the plane of the ellipse). 

Outside the FCD; in that case the kinking of the ellipse is in its plane.  This in-plane kinked ellipse, we call it a 

Mouse (Fig. 7).  If the dislocation lines attached to the ellipse disperse away outside the focal conic domain, i.e. 

in a region of space where the layers are in the plane of the ellipse, t, which varies in direction all along the 

ellipse, is in this plane.  Applying Eq. (3), it appears that the kinks have to be in the plane of the ellipse.  This 

configuration has been observed, in a situation where the kinks are so small and have such a high density that the 

kinked ellipse appears to be continuous, but its shape departs considerably from a ‘perfect’ ellipse; it is smoothly 

distorted by the in-plane kinks: this is the reason why we use the term of Mouse (Fig. 7a).  Fig. 7b provides a 

model for such kinks, (which always go by pairs), drawn here at a scale which has no relation with the real scale.  

The photograph of Fig. 7a is taken from the rim of a free-standing film, in a region where the thickness of the film is 

quickly changing, and the wedge angle ω(r) between the opposite free boundaries varies monotonically. The 

anchoring conditions are homeotropic; there is therefore a tilt boundary in the mid-plane of the film, but with a 

variable misorientation angle. The Mouse is in this mid-plane; the extra dislocations attached to the kinks (edge 

dislocations in the mid-plane) relax the variation of ωωωω by contributing to the modification of the density 

d bdisl /ds of dislocations in this plane; see [2] for a more detailed account. 

Inside the FCD; in that case the kinking of the ellipse brings a part of it out its plane.  This off-plane kinked 

ellipse, we call it a Turtle (Fig. 8). The layers rotate about t by an angle of π; hence they become perpendicular to 

the plane of the ellipse, inside the FCD.  Therefore the dislocations that disperse away inside are attached to kinks 

that are perpendicular to the plane of the ellipse, on average.  A pair of elementary kinks (not at scale at all in the 

figure), symmetric with respect to the major axis, can be linked by a unique dislocation (Fig. 8b).  Our observations 

(Fig. 8a) indicate the existence of another mode of kinking, with screw dislocation segments joining the kinks (of 

macroscopic size) to the hyperbola.  There is no kink on the hyperbola, because the two screw segments are of 

opposite signs, if both oriented e.g. toward the hyperbola; they therefore induce opposite kinks.  We call such a 

departure from the perfect ellipse, distorted by off-plane kinks, a ‘Turtle’.  One can eventually imagine elementary 

kinks of the sort, all of the same sign, having a high density on the ellipse and continuously tilting its plane.   Such 

tilted ellipses have been observed in 8CB and 9CB [1].  The situation observed in Fig. 8a results from the presence 

of a quasi planar pretilted anchoring.  A unique direction of pretilt is in conflict with the presence of an entire ellipse 
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parallel to the boundary in its close vicinity; hence opposite displacements of different parts of the ellipse along the 

vertical direction, to the point that one part gets off the boundary, and is virtual; see [2] for a more detailed 

account of this geometry and other geometries implying different kink types. Fig. 8c illustrates a double-kinked 

ellipse of a Turtle type observed from the side in a thick 8OCB sample (≈ 100µm).  

B. On the origin of deviations from Darboux’s theorem. 

The just alluded kinking processes can bring large deviations to Darboux’s law; reciprocally it is clear that 

the deviations from Darboux’s law mean a modification of the shape of the ideal FCD conics, i.e. the presence of 

kinks (at the scale of the layers, since they are not visible with the optical microscope) and of their attached 

dislocations.  These dislocations necessarily disperse through the medium, outside and/or inside the FCD.  

Infinitesimal dislocations, if alone, would result, as stated above, in an extra curvature of the layers; two cases arise: 

either the deformed layers keep parallel, hence the layer normals keep straight, and one gets eventually a new 

ideal FCD, or there is a deviation to straightness of the layer normals, and consequently a layer thickness variation 

(this case falls within the province of the Kroener’s dislocation densities [24]), i.e. a process of high energy if not 

relaxed, at least in part, by finite edge dislocations.  It suffices then to consider only those latter.  The edge 

components of the attached dislocations that are dispersed inside the FCD break the parallelism of the inside layers.  

The congruence of the layer normals is thus no longer a set of straight lines.  This is another way of explaining the 

variation to Darboux’s theorem.  This could have been stated from the start: edge dislocation densities break 

Darboux’s theorem, because they break layer parallelism.  But this statement comprehends deviations to Darboux’s 

theorem that are more general than those where the focal manifolds are degenerate to lines.  The focal manifolds of 

a congruence of curved normals are generically 2D surfaces, not lines.  We see that the fact that these surfaces 

are degenerate into lines comes from the fact that the attachment of the dislocations in question are to the 

original focal lines.  To conclude, the occurrence of deviations to Darboux’s theorem for a set of focal lines means 

that the conics are (densely) kinked and dislocations attached to those kinks. 

C. The kinked (split) hyperbola.   

The shape of the layers is cylindrical about the central zone of the hyperbola, near its apex (which is also 

the physical focus of the ellipse).  But the layers are practically perpendicular to the hyperbola at a distance from the 

plane of the ellipse of order a; the wedge disclination smoothly vanishes far from the ellipse plane.  In between, the 

layers display cusps, the lesser pronounced the more distant from the ellipse.  Hyperbolae are lines of easy 

coalescence of screw dislocations, as observed long ago [25].  

The presence of kinks on the hyperbola is a delicate matter; because it is a k = 1 wedge disclination (Ω = 

2π.), Eq. (3) and (4) do not apply directly.  A way of solving the question is to consider that the line is made of two 

k = 1
2

 lines, indicating that dislocations with total Burgers vectors twice as large can attach to a kink of the same 

size as in the k = 1
2

 case.  

Another situation is worth considering.  In incomplete focal domains of the type represented Fig. 9b (called 

fragmented domains), the hyperbola belongs to the boundary of the domain.  It is then no longer a k = 1 disclination 
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but a k = 1
2

 disclination, as if it were split all along its length.  Fragmented FCDs, noted fFCD for short, already 

recognized by G. Friedel [10], are easily obtained in a confined sample with degenerate boundary conditions.  

A fFCD is bound by a segment of the ellipse and by a segment of the hyperbola, and four fragments of cones 

of revolution.  Thus both segments are k = 1
2

 disclination line segments.  

As a consequence, fFCDs are generally aligned, attached by the ends of the disclination segments, such 

attachments being required by the conservation of the disclination strength.  But observe that a hyperbola H (resp. an 

ellipse E) can be attached indifferently either to another H (resp. an E) or to an E (resp. a H).   

One can imagine that the ellipse E1 of a FCD1 is attached to H2 of a FCD2, while the hyperbola H1 

of the FCD1 is attached to E2 of the FCD2.  Such a set of line segments attached by their 

extremities is topologically equivalent to a double helix.  This geometry, with sequences of the 

…HEHEH… type, was observed long ago by C. E. Williams [16] at the N → Sm transition; it is 

at the origin of helical giant screw dislocations.  Fig. 10a shows an elementary fFCD having the 

shape of a tetrahedron; the disclination segments are of opposite ‘concavities’, which implies that 

the ellipse segment is chosen close to the physical focus. Such tetrahedra are documented in [10].  

Fig 10b shows the abuting of several tetrahedra, which are no longer perfect fFCD volumes. 

Let us also mention the observation, also reported in [1], of a mobile kink (several microns long) 

perpendicular to the k = 1
2

 hyperbola of a fFCD, moving in the direction of the physical focus, but nucleated far 

from it, at a distance large compared to a.  There is no doubt that dislocations, dragged along the hyperbola, are 

attached to this mobile kink; their Burgers vectors, that are perpendicular to the layers, are practically parallel to the 

asymptotic direction of the hyperbola, at a distance from the ellipse plane, which indicates that they are of screw 

character.  This might be an indication of a mechanism by which screw dislocations align along a (split) hyperbola.   

D. Focal Conic Domains at the Sm →→→→ N transition 

FCDs that are immersed in the bulk (they are of the type represented Fig. 9a, and generally gather into tilt 

boundaries) disappear rather suddenly about 0.5°C before the transition, by an instability mechanism that might 

imply a sudden multiplication of dislocations. The spontaneous multiplication of screw dislocations close to the 

SmA→  N transition is a well-documented fact in lyotropic systems [26-27], which inclines us to believe that the 

phenomenon of spontaneous multiplication of dislocations (screw but also edge) is very general.  The capture of free 

edge dislocations by the ellipse modifies its geometric features e and a, Fig. 11.  Free dislocations of the same (resp. 

opposite) sign as the dislocations attached to the ellipse, if captured, would increase (resp. decrease) its size 

( 2a → 2a + bdisl ), either at e constant (then the asymptotic directions stay constant), or not.  Boundary conditions 

play a dominant role in this relaxation process.  Notice that, after a possible increase in size, the ellipses 

eventually always decrease in size when the temperature increases, the smallest ellipses disappearing first.  For the 

ellipses belonging to a grain boundary, this implies that the boundary area occupied by dislocations (the so-called 

residual boundary) increases with temperature.  This is in agreement with the model developed in [19], which relates 
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the residual boundary to the material constants; in particular a decrease of the compression modulus  B must result in 

an increase of the residual area.   

V. CONCLUSION  

This paper investigates from a theoretical point of view some features of the FCD transformations that have 

been observed, in the smectic phase, when approaching the nematic phase.  These very spectacular phenomena 

happen in a large temperature domain (∆T = TAN – T* ≈ half a degree in 8CB, which is the chemical we used for 

quantitative observations; the other compounds yield qualitatively equivalent results) in which it is believed that the 

variations of the material constant B are large enough to allow significant variations of the dislocation line energy 

and the multiplication of fresh dislocations.  At the same time K1  and also K  (as we assume) do not vary in 

comparable proportion, so that the energy of focal conic domains is not appreciably changed.   

We have tried to discuss the general principles at the origin of these transformations that are due to the direct 

interaction between FCDs and finite Burgers vector dislocations. There is no doubt that infinitesimally small 

Burgers vector dislocations are also playing a role, in particular in the phenomena of viscous relaxation [11,28], but 

this is not discussed.  The general principles that we advance are geometrical and topological in essence.  The 

mechanisms that obey these principles seem to be plenty, depending in particular on the boundary conditions and 

the precise FCD texture.  The examples we have given are few, and are chosen for the sake of illustration.  A 

description of several more observed transformations, interpreted in the same terms, will be given somewhere 

else.   

The SmA → N transition is one of the most debated liquid crystal phase transitions [3, 29-31].  This is not the 

place to enter into the detail of this debate, inasmuch as our results, even if they stress the importance of defect 

interplays in the critical region, are not directly related to the very proximity of the transition, which has been 

examined by several authors with great accuracy (e.g. [7]).  

The question that is at stake is rather why the interactions occur at temperatures definitively lower than TAN 

and result in an instability of the FCDs.  More details about the instability will be given in a forthcoming 

publication [2]. 

 

VI. APPENDIX 

 

 We envision a curved disclination line L, carrying a rotation vector ΩΩΩΩ constant in length and in direction.  

Let P be a point on the cut surface bound by L. 

 We first assume that ΩΩΩΩ    is attached to some well-defined point O, Fig. 12.  The relative displacement of the 

two lips of the cut surface at P is 

 dP(O) = ΩΩΩΩ ×OP        (7) 

which is large on the line L if P is taken at some point M on L.  Consequently in the generic case L (0, ΩΩΩΩ) has a 

very large core singularity, thus large accompanying stresses and a large core energy.  On the other hand the cut 
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surface displacement vanishes at M if ΩΩΩΩ is attached toL at M, but then it does not vanish at N = M + dM.  There 

is still a large core singularity along L, except at M.  The Volterra process, when applied in its standard form, does 

not provide a solution to the construction of a curved disclination with well relaxed stresses.   

 An extended conception of the Volterra process solves the problem. Assume that there is a copy of 

the rotation vector ΩΩΩΩ attached to all the points of L, and consider the effect of such rotation vectors on a 

point P belonging to the cut surface of all these ΩΩΩΩ ’s.  We have, for each other M belonging to L, another a 

value of the relative displacement of the lips of the cut surface which can be written: 

dP(M) = ΩΩΩΩ ×××× MP        (8) 

Each M on L yields another value of the relative displacement at the same point P of the cut surface, 

but this difficulty can be solved by the introduction of a set of infinitesimal dislocations attached to the 

disclination line all along L, Fig. 13.  Indeed, let M and N = M + dM be two infinitesimally close points on 

L.  We have: 

dP(M + dM) – dP(M) = ΩΩΩΩ ×dM      (9) 

which is independent of P.  The quantity db(M) = ΩΩΩΩ ×dM is the infinitesimal Burgers vector of the infinitesimal 

dislocation attached to L at point M [23]. 

 The above equations are established for a small angle of rotation vector |ΩΩΩΩ|.  In the general case Ω Ω Ω Ω has to 

be replaced by 
    

1
2

sinΩ
2

t , where ΩΩΩΩ = Ω    t. 
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Fig. 1. (Color on line) a)- Complete FCD with negative Gaussian curvature Dupin cyclides, sitting inside two 

cylinders of revolution meeting on the ellipse.  The cyclides cross the ellipse plane at right angles; their intersections 

with the ellipse and the hyperbola, when they exist, are conical points. b)- Dupin cyclide fragments with positive 

and negative Gaussian curvature, so chosen that the ellipse is still singular but the hyperbola has no physical 

realization.  A FCD with positive and negative Gaussian curvature both present, the hyperbola singular and ellipse 

not physically realized, is illustrated in [11]. 

Fig. 2. (Color on line) In a ideal FCD the ellipse and the hyperbola project orthogonally along two conics which 

intersect at right angles. (Photographs longer edges ≈ 200µm): a)- 8OCB, between two untreated glass substrates, 

sample thickness approx. 200µm, 7°C below the transition, polarized light microscopy; Darboux’s theorem obeyed; 

the FCDs with parallel hyperbola asymptotes form a tilt boundary of the type schematised Fig. 3; b)- 8CB, 0.5°C 

below the transition, polarized light microscopy; Darboux’s theorem disobeyed as demonstrated in the lower 

photograph: the solid lines are tangent to the disclinations and the dashed lines perpendicular to them; a very visible 

deviation from Darboux’s theorem is encircled on the upper photograph. 

Fig. 3. (Color on line) Tilt boundary split into FCDs. TOP: schematic, adapted from [11]; BOTTOM: 8CB, 

polarized light microscopy; the tilt boundary is seen edge-on; edge of the photograph ≈ 100µm long. 

Fig. 4. F, the physical focus, is the centre of the (circular) intersections of the layers with the plane of the ellipse, 

inside the ellipse; t
r

 is a unit vector along the local rotation vector; the k = 1/2 disclination ellipse is of mixed (twist-

wedge) character all along, except at the ends of the major axis, where it is wedge.   

Fig. 5. Kink on a wedge disclination line, see text 

Fig. 6. The ellipse in polar coordinates. The radius of curvature of the circle centred in the focus F and tangent to the 

apex is a - c, which is smaller than the radius of curvature b
2
/a of the ellipse at the apex. This circle is thus entirely 

inside the ellipse.  All the circles and the arcs of circles of the figure are centered in F.  They figure intersections of 

the smectic layers with the plane of the ellipse. 

Fig. 7. Double kinks with dislocations outside the FCD; a)- Mouse patterns in 8CB, free standing film, rim region; 

the thickness decreases downward; longer edge of the photograph ≈ 200µm; b)- model. 

Fig. 8. Views of a double kink with a dislocation inside the FCD; longer edge of the photograph ≈ 200µm; a)- turtle 

patterns in 8CB, demonstrating that the ellipses are divided into two parts not located at the same level, the screw 

dislocations attached to the kinks are visible; b)- model of a double kink linked by a unique dislocation located 

inside the FCD; c)- a double kinked ellipse (kinks are indicated by arrows) of the turtle type observed from the side 

(8CB in a gap of thickness ≈ 100µm between two untreated glass substrates). 

Fig. 9. (Color on line) Incomplete FCDs. a)- FCD bound by two cones of revolution meeting on the ellipse, with 

apices at the terminations of the hyperbola segment; b)- A hyperbola-split fragmented FCD (fFCD).  The fFCD is 

bound by i) two fragments of cones of revolution with apices at the terminations of the hyperbola segment and 

limited to the ellipse segment, ii) two fragments of cones of revolution with apices at the terminations of the ellipse 

segment and limited to the hyperbola segment.  The director field on the boundaries is indicated, not the cyclide 

intersections with these boundaries. 
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Fig. 10. (Color on line) a)- elementary tetrahedra fFCD liable to form a portion of a double helix 

due to the favourable concavities; b)- abuting of several tetrahedra. 

Fig. 11. Edge dislocations mobile in the plane of a perfect ellipse (belonging to a ideal FCD) and attached to it.  

The consecutive modification of the FCD results from a relaxation process towards a new ideal FCD; this process 

has to respect the boundary conditions, e.g. e = const. if the misorientation ω is fixed. 

Fig. 12. The classic Volterra process for a rotation vector ΩΩΩΩ attached to O. At a point P on the cut surface, the lips 

of the cut surface suffer a relative displacement OP×Ω=)(OPd . 

Fig. 13. The extended Volterra process for a rotation vector ΩΩΩΩ attached locally to each point on £. Infinitesimal 

dislocations are attached all along the disclination line. 
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Fig. 1a, Kleman et al.
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Fig. 2a, Kleman et al.
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Fig. 2b, Kleman et al.

Page 18 of 33

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Fig. 3, Kleman et al.
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Fig. 6, Kleman et al.
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Fig. 7b, Kleman et al.
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Fig. 8a, Kleman et al.

h

Page 24 of 33

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
B�

A

B

A�

b
disl

Fig. 8b, Kleman et al.
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Fig. 8c, Kleman et al.
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Fig. 9a, Kleman et al.
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Fig. 9b, Kleman et al.
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Figure 10a, Kleman et al.
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