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Classical and differential hardness – aspects of quantifying the deformation 

response in indentation experiments 

 

BODO WOLF 

 

Fachhochschule Lausitz , Fachbereich IEM, Großenhainer Straße 57, D-01968 

Senftenberg, Germany 

 

In depth sensing nanoindentation the load – depth-curve F(h) is acquired 

from which a single value for the hardness H and a second one for the 

indentation modulus Eind are inferred. This is a very poor output since F(h) 

is a source of much more information. The paper describes a technique to 

extract the hardness H(h) as a continuous depth dependent function from 

the load-depth-curve. This was accomplished by assigning each depth h a 

corresponding contact depth hC = hC(h) that can be calculated using an 

iteration algorithm. The hardness is then simply H(h) = F(h)/AC(hC(h)). 

For very simple area functions AC an analytical solution hC(h; F) can even 

be found. Furthermore, the differential hardness Hd is introduced as an 

additional hardness quantity which is obtained when dividing the load 

increment ∆F by the resulting increase of contact area ∆AC It turns out, 

that H and Hd are identical quantities for a material of constant hardness 

only. When the hardness is depth and therefore size dependent, Hd differs 

from H in a definite way that depends on the hardness evolution with 

depth, i.e. on the indentation size effect of the material under investigation. 

The differential hardness proves particularly useful for inhomogeneous 

samples and situations where the hardness is time – dependent.  

 

Keywords: Instrumented nanoindentation; Hardness; Elastic properties;  

Indentation modulus, Differential hardness, Indentation size  

effect 

 

1. Introduction 

 

The “classical” hardness measurement is a two-step process where first an impression 

is made, and after unloading the contact area is visualised using a suitable microscopy 

technique (light microscopy as well as electron microscopy or atomic force 

microscopy AFM) [1-3]. Its particular advantage is the easy separation of elastic and 

inelastic (“plastic”) deformation. However, each experiment delivers one hardness 

quantity only, and elastic properties can only be derived in indirect manners (one 

possibility is the calculation of the elastic modulus from the shallowing of the 

impression grove [4]. The elastic redeformation in the centre of the impression is 

larger than at the brim, resulting in differences between the shapes of residual 

impression and impression body, respectively, from which the modulus may be 

inferred). In order to study the depth and size dependence of the hardness, impressions 

at different loads must be performed. The lateral sample inhomogeneity proves 

therefore an additional source of error for such investigations. Making the loads 

increasingly smaller complicates the localisation of the resulting impressions, and the 

relative error of the contact area measurement grows. These problems are mastered 

using the depth sensing indentation technique where load F and penetration depth h 
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are continuously sampled [5]. This allows for a tracking of the complete penetration 

process.  

    Some of the new generation nanoindentation machines are equipped with 

continuous stiffness measurement (CSM) facilities [6]. In this case a small force 

oscillation is superimposed onto the force ramping, and the depth response to this 

force modulation is recorded during penetration. This permits to continuously record 

load, depth and contact stiffness. For samples of constant elastic modulus the contact 

stiffness is easily related to the contact area (see equation 5), hence load F, depth h, 

contact area AC and therefore hardness H = F/AC are derived as continuous depth 

functions. However, this is by far not implemented at all indentation equipment, and  

traditional indentation data analysis, based on the Oliver-Pharr-method [7, 8], delivers 

one single hardness value H and one value of the indentation modulus Eind per 

indentation cycle only. The Oliver-Pharr-technique uses the unloading curve as 

predominant source of information, whereas the loading curve is not taken advantage 

of in this analysis approach. When having in mind, that the loading curve contains a 

lot of hidden information on the deformation response of the indented sample during 

the entire indentation process, a single value for both Eind and H proves a very poor 

output. A much better output is accomplished in multicycling indentation tests [9]. 

Such a test consists of a series of i cycles of loading - partial unloading with stepwise 

increase of the maximum applied load. The partial unloading to a certain percentage of 

the applied load (typically10%...20%) is necessary, since the Oliver-Pharr-technique 

uses the initial elastic unloading stiffness S for the determination of the contact area 

AC. Each cycle (cycle index i) delivers a set of data (Fi, hi, hCi, ACi, Si), from which the 

hardness (mean contact pressure)  
 

Hi = Fi/ACi            (1) 
 

and the indentation modulus  
 

Eind,i = 
ππππ/

iC

i

A

S

2
          (2) 

 

are deduced (Fi: maximum cycle load, hi: total penetration for the load Fi, hCi: contact 

depth for the load Fi, ACi: contact area, Si: stiffness dF/dh at the beginning of 

unloading) . Though being a very efficient tool to obtain an overview on the evolution 

of hardness and indentation modulus with depth, there are good reasons why the 

multicycling is not applicable in every case: 

i) The multicycling test lasts comparatively long, up to some minutes – depending on 

the number of cycles. Consequently, drift avoidance and precise drift correction are 

important issues. In case of instable thermal laboratory conditions the data, inferred 

from long lasting multicycling tests, are not reliable. 

ii) A second point concerns the fact, that multicycling delivers discrete data only. 

There are many cases, where mechanical properties are required as continuous 

functions of the depth. A load-depth curve with discontinuities (pop-in events [10,11]) 

is a typical example. One wants to know the pressure at which initial yielding is 

initiated; and the pressure release due to the depth excursion is of interest, too. Since 

both load and depth excursion amplitude of a strain burst are subject to random 

scattering one cannot know in advance where one would have to unload to determine 

the pressures of interest by the multicycling technique.  
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iii) Point three hints at the fact that there are samples that do not stand repeated loading 

/ unloading, since this can induce cracks or may result in indentation fatigue.  

iv) Finally, indentation creep may result in strong deviations between mechanical 

properties, derived from a single cycle, and from multicycling experiments, 

respectively. Between creep speed dh/dt and applied stress σ a power law 
 

dh/dt ~ σ 
n           

(3) 
 

is mostly found. Especially for hard materials (refractory metals, ceramics, glass) the 

stress exponent n is often very high, n > 10. This implies that a small load reduction 

drastically reduces the indentation creep. Hence the creep during unloading and 

reloading is negligible, apart from the direct neighbourhood of the maximum load of 

the indentation cycle, where the large stress results in a measurable indentation creep.  

The situation is very different for a small stress exponent n in the range of 1 as found 

with plastics, e.g.. In this case creep persists during entire partial unloading and 

reloading; unloading and reloading curves do not coincide. Consequently, materials 

that exhibit a strong creep and a small stress exponent of the creep velocity are not 

suitable for multicycling indentation tests. In figure 1 the impact of indentation creep 

on load-depth curve F(h) is schematically drawn for two materials with the same creep 

speed at maximum load of the cycle, but with different values of stress exponent n. 

 

L
o

a
d

 F

Penetration depth  h
 

L
o

a
d

 F

Penetration depth  h  

 
Figure 1 

Principal sketch of the unloading-reloading-behaviour for materials with a small stress 

exponent n of creep (left graph) and a large stress exponent (right graph). For large values of 

n significant creep occurs in the vicinity of the maximum load only; for small n creep persists 

during entire unloading and reloading. 

 

Summarizing we can state that the deduction of H(h) from a single indentation cycle 

has some important advantages over the inference of discrete values Hi (hi) from 

multicycling testing. The basic idea of the determination of H(h) is to calculate the 

unloading curve for every point of the loading curve instead of measuring it. This 

requires the knowledge of the indentation modulus Eind(h) as a function of indentation 

depth h. The calculation is particularly easy for a homogeneous sample with constant 

elastic properties. In case of an inhomogeneous sample one can gain profit from the 

fact that Eind(h) will be a slowly varying function even in case of vary strong gradients 

of the elastic modulus E(h) as for a multilayer system. To prove this one can argue that 

the indentation modulus Eind is obtained from an elastically deformed volume the 

dimensions of which are large if compared to the indenter penetration depth. 
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Consequently, Eind can only vary in a limited way, and it cannot exhibit discontinuities. 

It is therefore possible to measure Eind,i (hi) for a small number of different depths hi 

using either a multicycling test or some single tests at different loads, and to fit the 

discrete values Eind,i to a continuous function Eind(h) that represents the real depth 

evolution of Eind with sufficient precision. 

 

 

2. Calculation of the depth dependent hardness H(h) 

 

The key point of the hardness calculation is to assign every total depth h a 

corresponding contact depth hC. According to the Oliver-Pharr-algorithm [7, 8] this 

fundamental entity is given by 
 

hC = h – εF/S           (4) 
 

with ε being an indenter geometry-dependent constant, which does – and this is a real 

fortune – not much deviate from a mean value of 0.75 that is used in the following. 

The contact stiffness S writes 
 

S = (dF/dh) = 2 Eind √AC/π          (5) 
 

We thus obtain 
 

ππππ

εεεε
−−−−====

/Cr

C
AE

F
hh

2
         (6) 

 

In this equation hC occurs twice: in explicit form on the left side; implicitly it is 

contained in the contact area which is a function of hC : AC = AC(hC). Equation 6 is 

suitable for iterative determination of hC, which is necessary when AC is a complicated 

mathematical function. This is normally the case when fitting the experimentally 

determined contact areas of a calibration procedure to a function 

 

AC(hC) = C2 hC
2
 + C1 hC

1
+ C1/2 hC 

1/2
 + C1/4 hC 

1/4
 + C1/8 hC 

1/8
+ ...   (7) 

 

as suggested by Oliver and Pharr [7].  

    Figure 2 shows the load-depth curves of both a single indent and a multi-indent into 

single-crystalline CdS (0001) using a comparatively blunt cube corner indenter. The 

maximum load is 3.9mN. For ease of recognition the single indent was shifted by 

0.3mN. It is obvious that the loading curves of single indent and multi-indent are 

almost parallel, i. e. extended loading-unloading procedures do not strongly influence 

the sample hardness. In an indentation creep test the behaviour of CdS was found to be 

similar to that one which is schematically drawn in the right part of fig. 1. We can 

therefore expect that hardness values inferred from the multi-indent are approximately 

equivalent to those calculated from the F(h)-curve. This is demonstrated in fig. 3. It 

exhibits the hardness curves H(h) of three successive iteration cycles which converge 

very rapidly. The deviation between calculated and measured hardness is smaller than 

4%.  
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Fig. 2. 

Load – depth-curves F(h) of cube-

corner indentations into CdS(0001) 

Curve 1: Single indent 

Curve 2: Multi-indent (18 cycles) 

For better comparison curve 1 has 

been vertically shifted by 0.3mN.  
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Fig. 3. 

Hardness values derived from 

iterative analysis of a single indent 

(graph 1 in figure 2) compared to 

corresponding values inferred from 

a multicycling indentation (graph 2 

in figure 2). The iteration 

procedure converges rapidly 

(iteration 2 is almost identical to 

iteration 1) and the obtained results 

are in good agreement to the multi-

indentation data.  

 

    For very simple area functions AC(hC) one can even find a closed analytical solution. 

For a cone or sphere AC is simply given by 
 

AC = CA hC
2
           (8) 

 

CA is a constant that amounts to CA = 1.5√3 = 2.6 for a cube corner indenter, CA = 24.5 

for the Berkovich geometry, and CA = π tan
2α for a cone with α being half the angle at 

the tip of the cone [12]. We thus come to 
 

ππππ

εεεε
−−−−++++====

ππππ

εεεε
−−−−====

// Aind

2

Cind

C
CE

Fhh

AE

F
hh

2422
     (9) 

 

Eind is considered as either constant or expressed as a function of total penetration 

depth ht. 
 

   When a sphere of radius R is impressed down to a contact depth hC, the 

corresponding contact radius rC obeys the relation 
 

rC
2 

= hC(2R – hC) ≈ 2RhC   for R >> hC       (10) 
 

The contact area is  
 

AC = π rC
2
 = 2πR hC          (11) 
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and it increases like a linear function with hC. Combining equations (6) and (11) 

delivers 
 

 

hC
3
 – 2h hC

2
 + h

2 
hC – Q

2
 = 0  Q = 

Cr hRE

F

22

εεεε
    (12) 

 

A solution of this third order equation can be found using the Cardanian solution 

formula, for practical purposes it is, however, more convenient to apply the iteration 

technique.  

    In the following let us consider a very interesting application of the hC – calculation 

for a spherical indenter. In order to get deeper inside into the formation of dislocations 

as a result of a pop – in event one would like to know the irreversible plastic work 

connected to the depth excursion [10, 13]. This requires the determination of the area 

of the hysteresis loop formed by the F(h)-curves of elastic loading, depth excursion 

and elastic unloading immediately after the pop in (figure 4, left). This is 

experimentally difficult to accomplish since the load at which the strain burst is 

initiated (in the following called pop-load Fpop) and the amplitude of the depth 

excursion hpop exhibit random scattering. As a consequence the expression 
 

Wpop ≈ Fpop hpop          (13) 
 

is simply used in literature [13], that is – however – too small. Owing to the increase 

of the contact area the unloading curve is stiffer than the loading curve.  
 

 
 

 

Figure 4 

Schematical representation of the hysteresis loop of a strain burst event (left part). The areas 

beneath loading and unloading curve (regions I and II) are not equivalent, since the unloading 

is stiffer, resulting in δprepop < δpostpop . Consequently, Wpop > Fpop hpop (right part). 
 

    The maximum elastic penetration at which the strain burst occurs is called δprepop; 

δpostpop is the complete elastic recovery after the pop-in event. It can be concluded from 

fig. 4 that  
 

Wpop = Fpop hpop + WI – WII  ,         (14) 
 

where WI and WII denote the areas beneath loading and unloading curve, respectively. 

Since the first pop-in mostly appears at tiny penetrations the part of the indenter tip in 

contact with the sample can be regarded as a sphere. For the elastic loading using a 

sphere HERTZ [14, 15] established a relation  
 

F = K δ3/2
           (15) 
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between load F and elastic penetration δ. The energy of elastic loading from δ = 0 to  

δ = δmax is thus 
 

Welast = ∫ Fd
 
δ = = (2/5) Fmax δmax        (16) 

 

Introducing this into equation (14) gives 
 

Wpop = Fpop hpop + 0.4 Fpop (δprepop – δpostpop)      (17) 
 

It is now necessary to express δpostpop as a function of δprepop and hpop. From equation 

(15) it follows, that the initial unloading stiffness S = dF/dδ can be written as 
 

Sprepop = 1.5 Fpop /δprepop Spostpop = 1.5 Fpop / δpostpop      (18) 
 

Since Eind before and after the pop-in event are equivalent the combination of (18) with 

(2) and (11) results in 
 

postpop,C

prepop,C

postpop,C

prepop,C

prepop

postpop

h

h

A

A

δ

δ
========        (19) 

 

According to HERTZ the elastic contact depth is half the total elastic penetration, i.e. 
 

hC,prepop = 0.5δprepop  hC,postpop = ht - 0.5δpostpop     (20) 
 

prepop

postpopt

prepop

prepop,C

postpop,C

prepop

postpop

δ

δh

δ

h

h

δ
δ

0.5

0.5−−−−
========        (21) 

 

Equation (21) is suitable for iteration. For ease of demonstration let us consider the 

situation of δpostpop = hpop = a. We thus have a total depth ht = 2a and hC,prepop = a/2; 

starting the iteration with δpospop,0 = a gives hC,postpop,0 = 1.5a. We obtain 
 

aaaaaδ 0.5830.51.51postpop ============ ///,  

aaaaaδ 0.5410.50.2922postpop, ====−−−−==== /)(/  

aaaaaδ 0.5380.50.2723postpop, ====−−−−==== /)(/  

 

For the situation hpop = δprepop a ratio δpostpop / δprepop = 0.54 ± 0.005 was found after 3 

steps of iteration.  

    An interesting finding of the presented analysis is that the depth hr of the remaining 

impression can be considerably larger than the depth excursion during the pop-in 

event. For the given example one obtains hr = 2a – δpostpop = 1.46a = 1.46hpop . In table 

1 numerical values for the ratios (δprepop/δpostpop) and (hr/hpop) and for the plastic energy 

Wpop are displayed as a function of the relative depth excursion α = hpop/δprepop. It turns 

out that for tiny pop events, i.e. small values of α, the final depth is three times as large 

as the depth excursion, and the plastic energy approaches a value of Wpop = 1.8 Fpop 

hpop. This can be shown as follows: 
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)/(

/

postpoppopprepop

prepop

postpop,C

prepop,C

postpop,C

prepop,C

prepop

postpop

2

2

δhδ

δ

h

h

A

A

δ

δ

−−−−++++
============     (22) 

)/()/( prepoppostpopprepoppopprepop

postpop

δδδhδ

δ

−−−−++++
====

22

1
     (23) 

 

We now introduce δpostpop/δprepop = 1 – 2α and obtain with hpop/δprepop = α  

αα
αδ

δ
2141

41

1
−−−−≈≈≈≈−−−−≈≈≈≈

++++
====

prepop

postpop
       (24) 

 

i.e. we obtain a result which is consistent to the introduced prediction. Furthermore 

one gets 
 

hr = δprepop + hpop – δpostpop = hpop + 2α δprepop      (25) 
 

hr/hpop = 1 + 2α (δprepop/hpop) = 1 + 2α (1/α) = 3      (26) 
 

δpostpop – δprepop = 2α δprepop = 2hpop        (27) 
 

Wpop = Fpop hpop + 0.4 Fpop (δpostpop – δprepop) = 1.8 Fpop hpop    (28) 
 

 

relative depth excursion 
 

α = hpop/δprepop prepop

postpop

δ

δ
 

pop

r

h

h
 

 

Plastic energy 
 

Wpop 

2 0.423 1.288 1.12 Fpop hpop 

1 0.537 1.463 1.19 Fpop hpop 

0.5 0.653 1.694 1.27 Fpop hpop 

0,2 0.788 2.06 1.42 Fpop hpop 

0.1 0.867 2.33 1.53 Fpop hpop 

0.01 0.981 2.90 1.77 Fpop hpop 

0.001 0.9980 3.00 1.80 Fpop hpop 

α << 1 1 – 2α 3.00 1.80 Fpop hpop 
 

Table 1 

Characteristic quantities of a loading-unloading loop involving a depth excursion. The data 

were calculated as a function of the relative depth excursion amplitude α = hpop/δprepop 

 

    The most interesting outcome of table 1 is that for small pop-in events the remaining 

depth oh the impression grove is three times as large as the depth excursion, and the 

plastic work is almost double the value of Fpop hpop. This theoretical finding was 

confirmed by experiments. Figure 5 displays the load-depth curve F(h) for a 

Berkovich nanoindent into single-crystalline GaAs(100). The maximum load was 

100µN, and this was by chance only a bit larger than the pop-in force of approximately 

90µN. The depth excursion amounts to hpop = 2nm, whereas the remaining depth is 

6nm, i.e. three times as large. The average spacing between loading and unloading 

curve is d = 0.5(2nm + 6nm) = 4nm, i.e. twice as large as hpop. The content of the 

loading-unloading loop amounts to Aloop = Wpop ≈ Fpop d ≈ 2 Fpop hpop in good 

agreement to the theoretical value of Wpop = 1.8 Fpop hpop.  
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Fig. 5 

Cube corner nanoindentation into 

GaAs (100). By chance the pop-in 

event occurs close to the termination 

of the loading segment which permits 

an experimental test of the predictions 

of Table 1. 

 

3. The concept of differential hardness 
 

The traditional nanohardness H = F/AC is the mean pressure inside the contact area of 

the indenter. If considering a multi-indentation test one can also divide the load 

increment ∆F from cycle to cycle by the corresponding increase of the contact area 

∆AC. This quantity is now introduced as “differential” hardness Hd : 
 

Hd = ∆F/∆AC           (29) 
 

The multi-indent delivers discrete values of Hd. In figure 6A values of H and Hd 

derived from multi-indentation testing of Cu (100) are depicted. The differential 

hardness was found to be smaller than the traditional hardness. As will be shown 

below this difference is related to the indentation size effect of Cu, i.e. the general 

decrease of hardness with increasing penetration depth in the nanorange. When 

considering materials of constant hardness, the values of H and Hd are equivalent.  
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Figure 6 

A) Traditional nanohardness data H = F/AC compared to corresponding values of the  

      differential hardness Hd = ∆F/∆AC as taken from multi-indentation testing of Cu (100). 

B) Ratio Hd /H for the measurement of figure 6A exhibiting a typical value of Hd /H ≈ 0.75  

     with the tendency of a slight increase from about 0.73 to 0.85 with increasing depth as 

     indicated by the trend line. 

 

The differential hardness can also be derived from a single indent: 
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Hd = dF/dAC = (dF/dh)/(dAC/dh)        (30) 
 

To calculate Hd we need the differential quotient dF/dh which is simply the slope of 

the F(h)-curve. Additionally, dAC/dh is required which is not directly accessible from 

the experiment. However, we know AC as a function of contact depth hC. Thus we can 

write  
 

dAC/dh = (dAC/dhC)*(dhC/dh)        (31) 
 

(dAC/dhC) is accessible from the indenter shape calibration. Furthermore, we can 

assume that (dhC/dh) is a function that exhibits small variations with depth h only. 

Thus we can write 
 

dhC/dh ≈ hC/h          (32) 
 

where hC and h are the values of contact depth and total depth taken from the final 

unloading procedure. This results in 
 

Hd = (dF/dh)/[(dAC/dhC)*(dhC/dh)] ≈ (h/hC)*(dF/dh)/(dAC/dhC)   (33) 
 

 

4. Relation between traditional hardness H and differential hardness Hd 
 

We start with the definition of classical hardness H = F/AC and perform some simple 

transformations: 
 

HAC = F           (34) 
 

h
h

A
Hh

h

A

A

F
FHA d

d

d
d

d

d

d

d
d **** C

d
C

C

C ∫∫∫∫∫∫∫∫∫∫∫∫ ============       (35) 

 

After the operations (d/dh) and division by (dAC/dh) one obtains 
 

)/)(/(
*

CCC

C
d

hhhA

A

h

H
HH

ddddd

d
++++====        (36) 

For an ideal pointed indenter (pyramid / cone) the area function is AC = CAhC
2
, 

resulting in dAC/dhC = 2CAhC.  This in combination with dhC/dh ≈ hC/h delivers 
 

h
h

H
HH *d

d

d

2

1
++++====           (37) 

 

We see that for missing indentation size effect (dH/dh = 0) the relation Hd = H is 

obtained. The normal indentation size effect (dH/dh < 0) results in a differential 

hardness which is smaller than H. Such a situation can be found with tiny indentations 

into single-crystalline metals where the hardness can be described following the model 

of geometrical necessary dislocations [16, 17], as in the case of copper, e.g. . The 

model of geometrical necessary dislocations predicts a depth dependence of H 

according to 
 

h

*h
HH 0====           (38) 

with H0 and h* being scaling parameters that depend on the defect structure of the 

metal. This delivers 
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Hh
dh

dH
HH d (3/4)

2

1
====++++====          (39) 

A closer look to figure 6B reveals that Hd /H indeed scatters around 0.75 with a slight 

tendency to increase with deeper penetration which is further discussed in the 

following section. 

 

5. Application of differential hardness and conclusions 
 

The differential hardness as a differential entity is of course more inclined to scatter 

and it is more sensitive to measurement errors than traditional hardness or integral 

techniques as the derivation of an energetic hardness from the plastic work during 

indentation, e.g. Since Hd and H have the same value for homogeneous materials and 

self-similar indents the application of the differential hardness concept to such 

situations does indeed not provide new information. The situation is completely 

different with inhomogeneous samples, as layer systems, e. g. It should be noticed here 

that even a small pyramid indent into a single crystal will not obey the criteria of self-

similarity though the indentation body is self similar. The deformation can be roughly 

separated into two stages: 

Stage I: Small penetrations where the indent size is not much larger than the mean 

distance between hardness determining crystal defects. Here the hardness is governed 

by dislocations and other defects created by the indenter itself. The density of these 

defects depends on indent size, consequently the situation is not self-similar, and the 

hardness varies. 

Stage II: Large penetrations, where the hardness is determined by intrinsically existing 

lattice defects. Provided the defect distribution is homogeneous the indent is self-

similar, and the hardness is constant. Then dH/dh = 0, and Hd/H = 1 is found. 

The slow increase of Hd /H in figure 6B indicates the transition from stage I to stage II, 

and from the trend may be concluded that stage II will dominate after about 2µm of 

penetration. 

    In case of “really” inhomogeneous specimens as layered materials one wants to 

know the single layer properties, but even the depth dependent hardness is no direct 

measure of the material property at the corresponding depth owing to the averaging 

over a larger deformed volume. To extract the real material property in a certain depth 

a deconvolution must be made. To do this one has to know to what extent material 

properties at a depth h + ∆h contribute to the measured data at depth h. It is reasonable 

to assume, that these contributions to H and Hd are different. Hence Hd is an additional 

source of information to make the deconvolution procedure more straightforward.  

    Another field of application are processes that occur during the indentation test itself 

and modify the sample hardness. As an example the photoplastic effect (PPE) shall be 

considered here. Some materials – II-VI-semiconductors in particular – change their 

hardness reversibly when illuminated by light the photon energy of which is sufficient 

to initiate the internal photo-electric effect. This finding is explained by electrical 

charging of dislocations [18]; indentation studies of the PPE in ZnSe have been 

reported in [19]. Figure 7 displays two load-depth-curves F(h) of nanoindentations into 

the II-VI-semiconductor ZnSe. The sudden change of the slope of curve 1 was induced 

by turning a laser on which resulted in a positive photoplastic effect (reverse material 

hardening). Curve 2 belongs to an indentation completely performed in darkness. The 

difference of the final penetrations between curves 1 and 2 is about 30nm or 5% of the 

total depth, resulting in about 10% hardness change, only (for pyramid indenters the 
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relative hardness change is about twice the relative depth variation). This apparently 

small effect originates from the fact that the illumination was turned on close to the 

end of the indentation process when most of the deformation was already done. On the 

other hand the slope changes from (dF/dh)dark = 47µN/nm to (dF/dh)light = 83µN/nm. 

This means, that the differential hardness – representing the instantaneous deformation 

resistance – has almost doubled in contrast to the “traditional” hardness, which 

increased by 10%. When modulating the light intensity the penetration curve 

oscillates, and the differential hardness proves a suitable tool to track the 

corresponding hardness evolution. Summarizing we can say, that the differential 

hardness may be particularly advantageous when time dependent processes that affect 

the hardness occur during the indentation process itself. 
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Figure 7. 

Response of the load-depth-curve of a Berkovich nanoindention into ZnSe (111) to sudden 

illumination by laser light (λ = 543nm, intensity I = 120mW/cm
2
). Curve 1: starting the indent 

in darkness the laser was turned on at a total depth h = 600nm. Curve 2: indentation in 

permanent darkness. 
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Figure Captions / Table Legends 
 

Figure 1 

Principal sketch of the unloading-reloading-behaviour for materials with a small stress 

exponent n of creep (left graph) and a large stress exponent (right graph). For large 

values of n significant creep occurs in the vicinity of the maximum load only; for 

small n creep persists during entire unloading and reloading. 
 

Fig. 2. 

Load – depth-curves F(h) of cube-corner indentations into CdS(0001) 

Curve 1: Single indent 

Curve 2: Multi-indent (18 cycles) 

For better comparison curve 1 was vertically shifted by 0.3mN. 
 

Fig. 3. 

Hardness values derived from iterative analysis of a single indent (graph 1 in figure 2) 

compared to corresponding values inferred from a multicycling indentation (graph 2 in 

figure 2). The iteration procedure converges rapidly (iteration 2 is almost identical to 

iteration 1) and the obtained results are in good agreement to the multi-indentation 

data. 
 

Figure 4 

Schematical representation of the hysteresis loop of a strain burst event (left part). The 

areas beneath loading and unloading curves (regions I and II) are not equivalent, since 

the unloading is stiffer, resulting in δprepop < δpostpop . Consequently, Wpop > Fpop hpop 

(right part). 
 

Fig. 5 

Cube corner nanoindentation into GaAs (100). By chance the pop-in event occurs 

close to the termination of the loading segment which permits an experimental test of 

the predictions of table 1. 
 

Figure 6 

A) Traditional nanohardness data H = F/AC compared to corresponding values of the  

differential hardness Hd = ∆F/∆AC as taken from multi-indentation testing of Cu (100). 

B) Ratio Hd /H for the measurement of figure 6A exhibiting a typical value of Hd /H ≈ 

0.75 with the tendency of a slight increase from about 0.73 to 0.85 with increasing 

depth as indicated by the trend line. 
 

Figure 7. 

Response of the load-depth-curve of a Berkovich nanoindention into ZnSe (111) to 

sudden illumination by laser light (λ = 543nm, intensity I = 120mW/cm
2
). Curve 1: 

starting the indent in darkness the laser was turned on at a total depth h = 600nm. 

Curve 2: indentation in permanent darkness. 

 

Table legends 
 

Table 1 

Characteristic quantities of a loading-unloading loop involving a depth excursion. The 

data were calculated as a function of the relative depth excursion amplitude α = 

hpop/δprepop 
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Classical and differential hardness – aspects of quantifying the deformation 

response in indentation experiments 

 

BODO WOLF 

 

Fachhochschule Lausitz , Fachbereich IEM, Großenhainer Straße 57, D-01968 

Senftenberg, Germany 

 

In depth sensing nanoindentation the load – depth-curve F(h) is acquired 

from which a single value for the hardness H and a second one for the 

indentation modulus Eind are inferred. This is a very poor output since F(h) 

is a source of much more information. The paper describes a technique to 

extract the hardness H(h) as a continuous depth dependent function from 

the load-depth-curve. This was accomplished by assigning each depth h a 

corresponding contact depth hC = hC(h) that can be calculated using an 

iteration algorithm. The hardness is then simply H(h) = F(h)/AC(hC(h)). 

For very simple area functions AC an analytical solution hC(h; F) can even 

be found. Furthermore, the differential hardness Hd is introduced as an 

additional hardness quantity which is obtained when dividing the load 

increment ∆F by the resulting increase of contact area ∆AC It turns out, 

that H and Hd are identical quantities for a material of constant hardness 

only. When the hardness is depth and therefore size dependent, Hd differs 

from H in a definite way that depends on the hardness evolution with 

depth, i.e. on the indentation size effect of the material under investigation. 

The differential hardness proves particularly useful for inhomogeneous 

samples and situations where the hardness is time – dependent.  

 

Keywords: Instrumented nanoindentation; Hardness; Elastic properties;  

Indentation modulus, Differential hardness, Indentation size  

effect 

 

1. Introduction 

 

The “classical” hardness measurement is a two-step process where first an impression 

is made, and after unloading the contact area is visualised using a suitable microscopy 

technique (light microscopy as well as electron microscopy or atomic force 

microscopy AFM) [1-3]. Its particular advantage is the easy separation of elastic and 

inelastic (“plastic”) deformation. However, each experiment delivers one hardness 

quantity only, and elastic properties can only be derived in indirect manners (one 

possibility is the calculation of the elastic modulus from the shallowing of the 

impression grove [4]. The elastic redeformation in the centre of the impression is 

larger than at the brim, resulting in differences between the shapes of residual 

impression and impression body, respectively, from which the modulus may be 

inferred). In order to study the depth and size dependence of the hardness, impressions 

at different loads must be performed. The lateral sample inhomogeneity proves 

therefore an additional source of error for such investigations. Making the loads 

increasingly smaller complicates the localisation of the resulting impressions, and the 

relative error of the contact area measurement grows. These problems are mastered 

using the depth sensing indentation technique where load F and penetration depth h 
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are continuously sampled [5]. This allows for a tracking of the complete penetration 

process.  

    Some of the new generation nanoindentation machines are equipped with 

continuous stiffness measurement (CSM) facilities [6]. In this case a small force 

oscillation is superimposed onto the force ramping, and the depth response to this 

force modulation is recorded during penetration. This permits to continuously record 

load, depth and contact stiffness. For samples of constant elastic modulus the contact 

stiffness is easily related to the contact area (see equation 5), hence load F, depth h, 

contact area AC and therefore hardness H = F/AC are derived as continuous depth 

functions. However, this is by far not implemented at all indentation equipment, and  

traditional indentation data analysis, based on the Oliver-Pharr-method [7, 8], delivers 

one single hardness value H and one value of the indentation modulus Eind per 

indentation cycle only. The Oliver-Pharr-technique uses the unloading curve as 

predominant source of information, whereas the loading curve is not taken advantage 

of in this analysis approach. When having in mind, that the loading curve contains a 

lot of hidden information on the deformation response of the indented sample during 

the entire indentation process, a single value for both Eind and H proves a very poor 

output. A much better output is accomplished in multicycling indentation tests [9]. 

Such a test consists of a series of i cycles of loading - partial unloading with stepwise 

increase of the maximum applied load. The partial unloading to a certain percentage of 

the applied load (typically10%...20%) is necessary, since the Oliver-Pharr-technique 

uses the initial elastic unloading stiffness S for the determination of the contact area 

AC. Each cycle (cycle index i) delivers a set of data (Fi, hi, hCi, ACi, Si), from which the 

hardness (mean contact pressure)  
 

Hi = Fi/ACi            (1) 
 

and the indentation modulus  
 

Eind,i = 
ππππ/

iC

i

A

S

2
          (2) 

 

are deduced (Fi: maximum cycle load, hi: total penetration for the load Fi, hCi: contact 

depth for the load Fi, ACi: contact area, Si: stiffness dF/dh at the beginning of 

unloading) . Though being a very efficient tool to obtain an overview on the evolution 

of hardness and indentation modulus with depth, there are good reasons why the 

multicycling is not applicable in every case: 

i) The multicycling test lasts comparatively long, up to some minutes – depending on 

the number of cycles. Consequently, drift avoidance and precise drift correction are 

important issues. In case of instable thermal laboratory conditions the data, inferred 

from long lasting multicycling tests, are not reliable. 

ii) A second point concerns the fact, that multicycling delivers discrete data only. 

There are many cases, where mechanical properties are required as continuous 

functions of the depth. A load-depth curve with discontinuities (pop-in events [10,11]) 

is a typical example. One wants to know the pressure at which initial yielding is 

initiated; and the pressure release due to the depth excursion is of interest, too. Since 

both load and depth excursion amplitude of a strain burst are subject to random 

scattering one cannot know in advance where one would have to unload to determine 

the pressures of interest by the multicycling technique.  
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iii) Point three hints at the fact that there are samples that do not stand repeated loading 

/ unloading, since this can induce cracks or may result in indentation fatigue.  

iv) Finally, indentation creep may result in strong deviations between mechanical 

properties, derived from a single cycle, and from multicycling experiments, 

respectively. Between creep speed dh/dt and applied stress σ a power law 
 

dh/dt ~ σ 
n           

(3) 
 

is mostly found. Especially for hard materials (refractory metals, ceramics, glass) the 

stress exponent n is often very high, n > 10. This implies that a small load reduction 

drastically reduces the indentation creep. Hence the creep during unloading and 

reloading is negligible, apart from the direct neighbourhood of the maximum load of 

the indentation cycle, where the large stress results in a measurable indentation creep.  

The situation is very different for a small stress exponent n in the range of 1 as found 

with plastics, e.g.. In this case creep persists during entire partial unloading and 

reloading; unloading and reloading curves do not coincide. Consequently, materials 

that exhibit a strong creep and a small stress exponent of the creep velocity are not 

suitable for multicycling indentation tests. In figure 1 the impact of indentation creep 

on load-depth curve F(h) is schematically drawn for two materials with the same creep 

speed at maximum load of the cycle, but with different values of stress exponent n. 

 

INSERT FIGURE 1 ABOUT HERE 

 

Summarizing we can state that the deduction of H(h) from a single indentation cycle 

has some important advantages over the inference of discrete values Hi (hi) from 

multicycling testing. The basic idea of the determination of H(h) is to calculate the 

unloading curve for every point of the loading curve instead of measuring it. This 

requires the knowledge of the indentation modulus Eind(h) as a function of indentation 

depth h. The calculation is particularly easy for a homogeneous sample with constant 

elastic properties. In case of an inhomogeneous sample one can gain profit from the 

fact that Eind(h) will be a slowly varying function even in case of vary strong gradients 

of the elastic modulus E(h) as for a multilayer system. To prove this one can argue that 

the indentation modulus Eind is obtained from an elastically deformed volume the 

dimensions of which are large if compared to the indenter penetration depth. 

Consequently, Eind can only vary in a limited way, and it cannot exhibit discontinuities. 

It is therefore possible to measure Eind,i (hi) for a small number of different depths hi 

using either a multicycling test or some single tests at different loads, and to fit the 

discrete values Eind,i to a continuous function Eind(h) that represents the real depth 

evolution of Eind with sufficient precision. 

 

 

2. Calculation of the depth dependent hardness H(h) 
 

The key point of the hardness calculation is to assign every total depth h a 

corresponding contact depth hC. According to the Oliver-Pharr-algorithm [7, 8] this 

fundamental entity is given by 
 

hC = h – εF/S           (4) 
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with ε being an indenter geometry-dependent constant, which does – and this is a real 

fortune – not much deviate from a mean value of 0.75 that is used in the following. 

The contact stiffness S writes 
 

S = (dF/dh) = 2 Eind √AC/π          (5) 
 

We thus obtain 
 

ππππ

εεεε
−−−−====

/Cr

C
AE

F
hh

2
         (6) 

 

In this equation hC occurs twice: in explicit form on the left side; implicitly it is 

contained in the contact area which is a function of hC : AC = AC(hC). Equation 6 is 

suitable for iterative determination of hC, which is necessary when AC is a complicated 

mathematical function. This is normally the case when fitting the experimentally 

determined contact areas of a calibration procedure to a function 

 

AC(hC) = C2 hC
2
 + C1 hC

1
+ C1/2 hC 

1/2
 + C1/4 hC 

1/4
 + C1/8 hC 

1/8
+ ...   (7) 

 

as suggested by Oliver and Pharr [7].  

    Figure 2 shows the load-depth curves of both a single indent and a multi-indent into 

single-crystalline CdS (0001) using a comparatively blunt cube corner indenter. The 

maximum load is 3.9mN. For ease of recognition the single indent was shifted by 

0.3mN. It is obvious that the loading curves of single indent and multi-indent are 

almost parallel, i. e. extended loading-unloading procedures do not strongly influence 

the sample hardness. In an indentation creep test the behaviour of CdS was found to be 

similar to that one which is schematically drawn in the right part of fig. 1. We can 

therefore expect that hardness values inferred from the multi-indent are approximately 

equivalent to those calculated from the F(h)-curve. This is demonstrated in fig. 3. It 

exhibits the hardness curves H(h) of three successive iteration cycles which converge 

very rapidly. The deviation between calculated and measured hardness is smaller than 

4%.  
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INSERT FIGURES 2 AND 3 ABOUT HERE 

 

    For very simple area functions AC(hC) one can even find a closed analytical solution. 

For a cone or sphere AC is simply given by 
 

AC = CA hC
2
           (8) 

 

CA is a constant that amounts to CA = 1.5√3 = 2.6 for a cube corner indenter, CA = 24.5 

for the Berkovich geometry, and CA = π tan
2α for a cone with α being half the angle at 

the tip of the cone [12]. We thus come to 
 

ππππ

εεεε
−−−−++++====

ππππ

εεεε
−−−−====

// Aind

2

Cind

C
CE

Fhh

AE

F
hh

2422
     (9) 

 

Eind is considered as either constant or expressed as a function of total penetration 

depth ht. 
 

   When a sphere of radius R is impressed down to a contact depth hC, the 

corresponding contact radius rC obeys the relation 
 

rC
2 

= hC(2R – hC) ≈ 2RhC   for R >> hC       (10) 
 

The contact area is  
 

AC = π rC
2
 = 2πR hC          (11) 

 

and it increases like a linear function with hC. Combining equations (6) and (11) 

delivers 
 

 

hC
3
 – 2h hC

2
 + h

2 
hC – Q

2
 = 0  Q = 

Cr hRE

F

22

εεεε
    (12) 

 

A solution of this third order equation can be found using the Cardanian solution 

formula, for practical purposes it is, however, more convenient to apply the iteration 

technique.  

    In the following let us consider a very interesting application of the hC – calculation 

for a spherical indenter. In order to get deeper inside into the formation of dislocations 

as a result of a pop – in event one would like to know the irreversible plastic work 

connected to the depth excursion [10, 13]. This requires the determination of the area 

of the hysteresis loop formed by the F(h)-curves of elastic loading, depth excursion 

and elastic unloading immediately after the pop in (figure 4, left). This is 

experimentally difficult to accomplish since the load at which the strain burst is 

initiated (in the following called pop-load Fpop) and the amplitude of the depth 

excursion hpop exhibit random scattering. As a consequence the expression 
 

Wpop ≈ Fpop hpop          (13) 
 

is simply used in literature [13], that is – however – too small. Owing to the increase 

of the contact area the unloading curve is stiffer than the loading curve.  
 

 

INSERT FIGURE 4 ABOUT HERE 
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    The maximum elastic penetration at which the strain burst occurs is called δprepop; 

δpostpop is the complete elastic recovery after the pop-in event. It can be concluded from 

fig. 4 that  
 

Wpop = Fpop hpop + WI – WII  ,         (14) 
 

where WI and WII denote the areas beneath loading and unloading curve, respectively. 

Since the first pop-in mostly appears at tiny penetrations the part of the indenter tip in 

contact with the sample can be regarded as a sphere. For the elastic loading using a 

sphere HERTZ [14, 15] established a relation  
 

F = K δ3/2
           (15) 

 

between load F and elastic penetration δ. The energy of elastic loading from δ = 0 to  

δ = δmax is thus 
 

Welast = ∫ Fd
 
δ = = (2/5) Fmax δmax        (16) 

 

Introducing this into equation (14) gives 
 

Wpop = Fpop hpop + 0.4 Fpop (δprepop – δpostpop)      (17) 
 

It is now necessary to express δpostpop as a function of δprepop and hpop. From equation 

(15) it follows, that the initial unloading stiffness S = dF/dδ can be written as 
 

Sprepop = 1.5 Fpop /δprepop Spostpop = 1.5 Fpop / δpostpop      (18) 
 

Since Eind before and after the pop-in event are equivalent the combination of (18) with 

(2) and (11) results in 
 

postpop,C

prepop,C

postpop,C

prepop,C

prepop

postpop

h

h

A

A

δ

δ
========        (19) 

 

According to HERTZ the elastic contact depth is half the total elastic penetration, i.e. 
 

hC,prepop = 0.5δprepop  hC,postpop = ht - 0.5δpostpop     (20) 
 

prepop

postpopt

prepop

prepop,C

postpop,C

prepop

postpop

δ

δh

δ

h

h

δ
δ

0.5

0.5−−−−
========        (21) 

 

Equation (21) is suitable for iteration. For ease of demonstration let us consider the 

situation of δpostpop = hpop = a. We thus have a total depth ht = 2a and hC,prepop = a/2; 

starting the iteration with δpospop,0 = a gives hC,postpop,0 = 1.5a. We obtain 
 

aaaaaδ 0.5830.51.51postpop ============ ///,  

aaaaaδ 0.5410.50.2922postpop, ====−−−−==== /)(/  

aaaaaδ 0.5380.50.2723postpop, ====−−−−==== /)(/  

 

For the situation hpop = δprepop a ratio δpostpop / δprepop = 0.54 ± 0.005 was found after 3 

steps of iteration.  

    An interesting finding of the presented analysis is that the depth hr of the remaining 

impression can be considerably larger than the depth excursion during the pop-in 
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event. For the given example one obtains hr = 2a – δpostpop = 1.46a = 1.46hpop . In table 

1 numerical values for the ratios (δprepop/δpostpop) and (hr/hpop) and for the plastic energy 

Wpop are displayed as a function of the relative depth excursion α = hpop/δprepop. It turns 

out that for tiny pop events, i.e. small values of α, the final depth is three times as large 

as the depth excursion, and the plastic energy approaches a value of Wpop = 1.8 Fpop 

hpop. This can be shown as follows: 
 

)/(

/

postpoppopprepop

prepop

postpop,C

prepop,C

postpop,C

prepop,C

prepop

postpop

2

2

δhδ

δ

h

h

A

A

δ

δ

−−−−++++
============     (22) 

)/()/( prepoppostpopprepoppopprepop

postpop

δδδhδ

δ

−−−−++++
====

22

1
     (23) 

 

We now introduce δpostpop/δprepop = 1 – 2α and obtain with hpop/δprepop = α  

αα
αδ

δ
2141

41

1
−−−−≈≈≈≈−−−−≈≈≈≈

++++
====

prepop

postpop
       (24) 

 

i.e. we obtain a result which is consistent to the introduced prediction. Furthermore 

one gets 
 

hr = δprepop + hpop – δpostpop = hpop + 2α δprepop      (25) 
 

hr/hpop = 1 + 2α (δprepop/hpop) = 1 + 2α (1/α) = 3      (26) 
 

δpostpop – δprepop = 2α δprepop = 2hpop        (27) 
 

Wpop = Fpop hpop + 0.4 Fpop (δpostpop – δprepop) = 1.8 Fpop hpop    (28) 
 

 

INSERT TABLE 1 ABOUT HERE 

 

    The most interesting outcome of table 1 is that for small pop-in events the remaining 

depth oh the impression grove is three times as large as the depth excursion, and the 

plastic work is almost double the value of Fpop hpop. This theoretical finding was 

confirmed by experiments. Figure 5 displays the load-depth curve F(h) for a 

Berkovich nanoindent into single-crystalline GaAs(100). The maximum load was 

100µN, and this was by chance only a bit larger than the pop-in force of approximately 

90µN. The depth excursion amounts to hpop = 2nm, whereas the remaining depth is 

6nm, i.e. three times as large. The average spacing between loading and unloading 

curve is d = 0.5(2nm + 6nm) = 4nm, i.e. twice as large as hpop. The content of the 

loading-unloading loop amounts to Aloop = Wpop ≈ Fpop d ≈ 2 Fpop hpop in good 

agreement to the theoretical value of Wpop = 1.8 Fpop hpop.  

 

INSERT FIGURE 5 ABOUT HERE 

 

3. The concept of differential hardness 
 

The traditional nanohardness H = F/AC is the mean pressure inside the contact area of 

the indenter. If considering a multi-indentation test one can also divide the load 

increment ∆F from cycle to cycle by the corresponding increase of the contact area 

∆AC. This quantity is now introduced as “differential” hardness Hd : 
 

Hd = ∆F/∆AC           (29) 
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The multi-indent delivers discrete values of Hd. In figure 6A values of H and Hd 

derived from multi-indentation testing of Cu (100) are depicted. The differential 

hardness was found to be smaller than the traditional hardness. As will be shown 

below this difference is related to the indentation size effect of Cu, i.e. the general 

decrease of hardness with increasing penetration depth in the nanorange. When 

considering materials of constant hardness, the values of H and Hd are equivalent.  
 

INSERT FIGURE 6 ABOUT HERE 

 

The differential hardness can also be derived from a single indent: 
 

Hd = dF/dAC = (dF/dh)/(dAC/dh)        (30) 
 

To calculate Hd we need the differential quotient dF/dh which is simply the slope of 

the F(h)-curve. Additionally, dAC/dh is required which is not directly accessible from 

the experiment. However, we know AC as a function of contact depth hC. Thus we can 

write  
 

dAC/dh = (dAC/dhC)*(dhC/dh)        (31) 
 

(dAC/dhC) is accessible from the indenter shape calibration. Furthermore, we can 

assume that (dhC/dh) is a function that exhibits small variations with depth h only. 

Thus we can write 
 

dhC/dh ≈ hC/h          (32) 
 

where hC and h are the values of contact depth and total depth taken from the final 

unloading procedure. This results in 
 

Hd = (dF/dh)/[(dAC/dhC)*(dhC/dh)] ≈ (h/hC)*(dF/dh)/(dAC/dhC)   (33) 
 

 

4. Relation between traditional hardness H and differential hardness Hd 
 

We start with the definition of classical hardness H = F/AC and perform some simple 

transformations: 
 

HAC = F           (34) 
 

h
h

A
Hh

h

A

A

F
FHA d

d

d
d

d

d

d

d
d **** C

d
C

C

C ∫∫∫∫∫∫∫∫∫∫∫∫ ============       (35) 

 

After the operations (d/dh) and division by (dAC/dh) one obtains 
 

)/)(/(
*

CCC

C
d

hhhA

A

h

H
HH

ddddd

d
++++====        (36) 

For an ideal pointed indenter (pyramid / cone) the area function is AC = CAhC
2
, 

resulting in dAC/dhC = 2CAhC.  This in combination with dhC/dh ≈ hC/h delivers 
 

h
h

H
HH *d

d

d

2

1
++++====           (37) 

 

We see that for missing indentation size effect (dH/dh = 0) the relation Hd = H is 

obtained. The normal indentation size effect (dH/dh < 0) results in a differential 

Page 22 of 30

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 9 

hardness which is smaller than H. Such a situation can be found with tiny indentations 

into single-crystalline metals where the hardness can be described following the model 

of geometrical necessary dislocations [16, 17], as in the case of copper, e.g. . The 

model of geometrical necessary dislocations predicts a depth dependence of H 

according to 
 

h

*h
HH 0====           (38) 

with H0 and h* being scaling parameters that depend on the defect structure of the 

metal. This delivers 

Hh
dh

dH
HH d (3/4)

2

1
====++++====          (39) 

A closer look to figure 6B reveals that Hd /H indeed scatters around 0.75 with a slight 

tendency to increase with deeper penetration which is further discussed in the 

following section. 

 

5. Application of differential hardness and conclusions 
 

The differential hardness as a differential entity is of course more inclined to scatter 

and it is more sensitive to measurement errors than traditional hardness or integral 

techniques as the derivation of an energetic hardness from the plastic work during 

indentation, e.g. Since Hd and H have the same value for homogeneous materials and 

self-similar indents the application of the differential hardness concept to such 

situations does indeed not provide new information. The situation is completely 

different with inhomogeneous samples, as layer systems, e. g. It should be noticed here 

that even a small pyramid indent into a single crystal will not obey the criteria of self-

similarity though the indentation body is self similar. The deformation can be roughly 

separated into two stages: 

Stage I: Small penetrations where the indent size is not much larger than the mean 

distance between hardness determining crystal defects. Here the hardness is governed 

by dislocations and other defects created by the indenter itself. The density of these 

defects depends on indent size, consequently the situation is not self-similar, and the 

hardness varies. 

Stage II: Large penetrations, where the hardness is determined by intrinsically existing 

lattice defects. Provided the defect distribution is homogeneous the indent is self-

similar, and the hardness is constant. Then dH/dh = 0, and Hd/H = 1 is found. 

The slow increase of Hd /H in figure 6B indicates the transition from stage I to stage II, 

and from the trend may be concluded that stage II will dominate after about 2µm of 

penetration. 

    In case of “really” inhomogeneous specimens as layered materials one wants to 

know the single layer properties, but even the depth dependent hardness is no direct 

measure of the material property at the corresponding depth owing to the averaging 

over a larger deformed volume. To extract the real material property in a certain depth 

a deconvolution must be made. To do this one has to know to what extent material 

properties at a depth h + ∆h contribute to the measured data at depth h. It is reasonable 

to assume, that these contributions to H and Hd are different. Hence Hd is an additional 

source of information to make the deconvolution procedure more straightforward.  

    Another field of application are processes that occur during the indentation test itself 

and modify the sample hardness. As an example the photoplastic effect (PPE) shall be 
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considered here. Some materials – II-VI-semiconductors in particular – change their 

hardness reversibly when illuminated by light the photon energy of which is sufficient 

to initiate the internal photo-electric effect. This finding is explained by electrical 

charging of dislocations [18]; indentation studies of the PPE in ZnSe have been 

reported in [19]. Figure 7 displays two load-depth-curves F(h) of nanoindentations into 

the II-VI-semiconductor ZnSe. The sudden change of the slope of curve 1 was induced 

by turning a laser on which resulted in a positive photoplastic effect (reverse material 

hardening). Curve 2 belongs to an indentation completely performed in darkness. The 

difference of the final penetrations between curves 1 and 2 is about 30nm or 5% of the 

total depth, resulting in about 10% hardness change, only (for pyramid indenters the 

relative hardness change is about twice the relative depth variation). This apparently 

small effect originates from the fact that the illumination was turned on close to the 

end of the indentation process when most of the deformation was already done. On the 

other hand the slope changes from (dF/dh)dark = 47µN/nm to (dF/dh)light = 83µN/nm. 

This means, that the differential hardness – representing the instantaneous deformation 

resistance – has almost doubled in contrast to the “traditional” hardness, which 

increased by 10%. When modulating the light intensity the penetration curve 

oscillates, and the differential hardness proves a suitable tool to track the 

corresponding hardness evolution. Summarizing we can say, that the differential 

hardness may be particularly advantageous when time dependent processes that affect 

the hardness occur during the indentation process itself. 

 

INSERT FIGURE 7 ABOUT HERE 
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Figure Captions / Table Legends 
 

Figure 1 

Principal sketch of the unloading-reloading-behaviour for materials with a small stress 

exponent n of creep (left graph) and a large stress exponent (right graph). For large 

values of n significant creep occurs in the vicinity of the maximum load only; for 

small n creep persists during entire unloading and reloading. 
 

Fig. 2. 

Load – depth-curves F(h) of cube-corner indentations into CdS(0001) 

Curve 1: Single indent 

Curve 2: Multi-indent (18 cycles) 

For better comparison curve 1 was vertically shifted by 0.3mN. 
 

Fig. 3. 

Hardness values derived from iterative analysis of a single indent (graph 1 in figure 2) 

compared to corresponding values inferred from a multicycling indentation (graph 2 in 

figure 2). The iteration procedure converges rapidly (iteration 2 is almost identical to 

iteration 1) and the obtained results are in good agreement to the multi-indentation 

data. 
 

Figure 4 

Schematical representation of the hysteresis loop of a strain burst event (left part). The 

areas beneath loading and unloading curves (regions I and II) are not equivalent, since 

the unloading is stiffer, resulting in δprepop < δpostpop . Consequently, Wpop > Fpop hpop 

(right part). 
 

Fig. 5 

Cube corner nanoindentation into GaAs (100). By chance the pop-in event occurs 

close to the termination of the loading segment which permits an experimental test of 

the predictions of table 1. 
 

Figure 6 

A) Traditional nanohardness data H = F/AC compared to corresponding values of the  

differential hardness Hd = ∆F/∆AC as taken from multi-indentation testing of Cu (100). 

B) Ratio Hd /H for the measurement of figure 6A exhibiting a typical value of Hd /H ≈ 

0.75 with the tendency of a slight increase from about 0.73 to 0.85 with increasing 

depth as indicated by the trend line. 
 

Figure 7. 

Response of the load-depth-curve of a Berkovich nanoindention into ZnSe (111) to 

sudden illumination by laser light (λ = 543nm, intensity I = 120mW/cm
2
). Curve 1: 

starting the indent in darkness the laser was turned on at a total depth h = 600nm. 

Curve 2: indentation in permanent darkness. 

 

Table legends 
 

Table 1 

Characteristic quantities of a loading-unloading loop involving a depth excursion. The 

data were calculated as a function of the relative depth excursion amplitude α = 

hpop/δprepop 
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Figure 1 

Principal sketch of the unloading-reloading-behaviour for materials with a small stress 

exponent n of creep (left graph) and a large stress exponent (right graph). For large values of 

n significant creep occurs in the vicinity of the maximum load only; for small n creep persists 

during entire unloading and reloading. 
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Fig. 2. 

Load – depth-curves F(h) of cube-

corner indentations into CdS(0001) 

Curve 1: Single indent 

Curve 2: Multi-indent (18 cycles) 

For better comparison curve 1 has 

been vertically shifted by 0.3mN.  
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Fig. 3. 

Hardness values derived from 

iterative analysis of a single indent 

(graph 1 in figure 2) compared to 

corresponding values inferred from 

a multicycling indentation (graph 2 

in figure 2). The iteration 

procedure converges rapidly 

(iteration 2 is almost identical to 

iteration 1) and the obtained results 

are in good agreement to the multi-

indentation data.  
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Figure 4 

Schematical representation of the hysteresis loop of a strain burst event (left part). The areas 

beneath loading and unloading curve (regions I and II) are not equivalent, since the unloading 

is stiffer, resulting in δprepop < δpostpop . Consequently, Wpop > Fpop hpop (right part). 
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Fig. 5 

Cube corner nanoindentation into GaAs (100). By chance the pop-in event occurs close to the 

termination of the loading segment which permits an experimental test of the predictions of 

Table 1. 
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Figure 6 

A) Traditional nanohardness data H = F/AC compared to corresponding values of the  

      differential hardness Hd = ∆F/∆AC as taken from multi-indentation testing of Cu (100). 

B) Ratio Hd /H for the measurement of figure 6A exhibiting a typical value of Hd /H ≈ 0.75  

     with the tendency of a slight increase from about 0.73 to 0.85 with increasing depth as 

     indicated by the trend line. 
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Figure 7. 

Response of the load-depth-curve of a Berkovich nanoindention into ZnSe (111) to sudden 

illumination by laser light (λ = 543nm, intensity I = 120mW/cm
2
). Curve 1: starting the indent 

in darkness the laser was turned on at a total depth h = 600nm. Curve 2: indentation in 

permanent darkness. 
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Classical and differential hardness – aspects of quantifying the deformation 

response in indentation experiments 
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Tables 
 

 

relative depth excursion 
 

α = hpop /δprepop prepop

postpop

δ

δ
 

pop

r

h

h
 

 

Plastic energy 
 

Wpop 

2 0.423 1.288 1.12 Fpop hpop 

1 0.537 1.463 1.19 Fpop hpop 

0.5 0.653 1.694 1.27 Fpop hpop 

0,2 0.788 2.06 1.42 Fpop hpop 

0.1 0.867 2.33 1.53 Fpop hpop 

0.01 0.981 2.90 1.77 Fpop hpop 

0.001 0.9980 3.00 1.80 Fpop hpop 

α << 1 1 – 2α 3.00 1.80 Fpop hpop 
 

Table 1 
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