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Classical and differential hardness -aspects of quantifying the deformation response in indentation experiments
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In depth sensing nanoindentation the load -depth-curve F(h) is acquired from which a single value for the hardness H and a second one for the indentation modulus E ind are inferred. This is a very poor output since F(h) is a source of much more information. The paper describes a technique to extract the hardness H(h) as a continuous depth dependent function from the load-depth-curve. This was accomplished by assigning each depth h a corresponding contact depth h C = h C (h) that can be calculated using an iteration algorithm. The hardness is then simply

For very simple area functions A C an analytical solution h C (h; F) can even be found. Furthermore, the differential hardness H d is introduced as an additional hardness quantity which is obtained when dividing the load increment ∆F by the resulting increase of contact area ∆A C It turns out, that H and H d are identical quantities for a material of constant hardness only. When the hardness is depth and therefore size dependent, H d differs from H in a definite way that depends on the hardness evolution with depth, i.e. on the indentation size effect of the material under investigation. The differential hardness proves particularly useful for inhomogeneous samples and situations where the hardness is time -dependent.

Introduction

The "classical" hardness measurement is a two-step process where first an impression is made, and after unloading the contact area is visualised using a suitable microscopy technique (light microscopy as well as electron microscopy or atomic force microscopy AFM) [1][2][3]. Its particular advantage is the easy separation of elastic and inelastic ("plastic") deformation. However, each experiment delivers one hardness quantity only, and elastic properties can only be derived in indirect manners (one possibility is the calculation of the elastic modulus from the shallowing of the impression grove [4]. The elastic redeformation in the centre of the impression is larger than at the brim, resulting in differences between the shapes of residual impression and impression body, respectively, from which the modulus may be inferred). In order to study the depth and size dependence of the hardness, impressions at different loads must be performed. The lateral sample inhomogeneity proves therefore an additional source of error for such investigations. Making the loads increasingly smaller complicates the localisation of the resulting impressions, and the relative error of the contact area measurement grows. These problems are mastered using the depth sensing indentation technique where load F and penetration depth h are continuously sampled [5]. This allows for a tracking of the complete penetration process.

Some of the new generation nanoindentation machines are equipped with continuous stiffness measurement (CSM) facilities [6]. In this case a small force oscillation is superimposed onto the force ramping, and the depth response to this force modulation is recorded during penetration. This permits to continuously record load, depth and contact stiffness. For samples of constant elastic modulus the contact stiffness is easily related to the contact area (see equation 5), hence load F, depth h, contact area A C and therefore hardness H = F/A C are derived as continuous depth functions. However, this is by far not implemented at all indentation equipment, and traditional indentation data analysis, based on the Oliver-Pharr-method [7,8], delivers one single hardness value H and one value of the indentation modulus E ind per indentation cycle only. The Oliver-Pharr-technique uses the unloading curve as predominant source of information, whereas the loading curve is not taken advantage of in this analysis approach. When having in mind, that the loading curve contains a lot of hidden information on the deformation response of the indented sample during the entire indentation process, a single value for both E ind and H proves a very poor output. A much better output is accomplished in multicycling indentation tests [9]. Such a test consists of a series of i cycles of loading -partial unloading with stepwise increase of the maximum applied load. The partial unloading to a certain percentage of the applied load (typically10%...20%) is necessary, since the Oliver-Pharr-technique uses the initial elastic unloading stiffness S for the determination of the contact area A C . Each cycle (cycle index i) delivers a set of data (F i , h i , h Ci , A Ci , S i ), from which the hardness (mean contact pressure)

H i = F i /A Ci (1) 
and the indentation modulus

E ind , i = π π π π / i C i A S 2 (2)
are deduced (F i : maximum cycle load, h i : total penetration for the load F i , h Ci : contact depth for the load F i , A Ci : contact area, S i : stiffness dF/dh at the beginning of unloading) . Though being a very efficient tool to obtain an overview on the evolution of hardness and indentation modulus with depth, there are good reasons why the multicycling is not applicable in every case: i) The multicycling test lasts comparatively long, up to some minutes -depending on the number of cycles. Consequently, drift avoidance and precise drift correction are important issues. In case of instable thermal laboratory conditions the data, inferred from long lasting multicycling tests, are not reliable. ii) A second point concerns the fact, that multicycling delivers discrete data only. There are many cases, where mechanical properties are required as continuous functions of the depth. A load-depth curve with discontinuities (pop-in events [10,11]) is a typical example. One wants to know the pressure at which initial yielding is initiated; and the pressure release due to the depth excursion is of interest, too. Since both load and depth excursion amplitude of a strain burst are subject to random scattering one cannot know in advance where one would have to unload to determine the pressures of interest by the multicycling technique. iii) Point three hints at the fact that there are samples that do not stand repeated loading / unloading, since this can induce cracks or may result in indentation fatigue. iv) Finally, indentation creep may result in strong deviations between mechanical properties, derived from a single cycle, and from multicycling experiments, respectively. Between creep speed dh/dt and applied stress σ a power law dh/dt ~ σ n

(3) is mostly found. Especially for hard materials (refractory metals, ceramics, glass) the stress exponent n is often very high, n > 10. This implies that a small load reduction drastically reduces the indentation creep. Hence the creep during unloading and reloading is negligible, apart from the direct neighbourhood of the maximum load of the indentation cycle, where the large stress results in a measurable indentation creep. The situation is very different for a small stress exponent n in the range of 1 as found with plastics, e.g.. In this case creep persists during entire partial unloading and reloading; unloading and reloading curves do not coincide. Consequently, materials that exhibit a strong creep and a small stress exponent of the creep velocity are not suitable for multicycling indentation tests. In figure 1 the impact of indentation creep on load-depth curve F(h) is schematically drawn for two materials with the same creep speed at maximum load of the cycle, but with different values of stress exponent n.
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Figure 1

Principal sketch of the unloading-reloading-behaviour for materials with a small stress exponent n of creep (left graph) and a large stress exponent (right graph). For large values of n significant creep occurs in the vicinity of the maximum load only; for small n creep persists during entire unloading and reloading.

Summarizing we can state that the deduction of H(h) from a single indentation cycle has some important advantages over the inference of discrete values H i (h i ) from multicycling testing. The basic idea of the determination of H(h) is to calculate the unloading curve for every point of the loading curve instead of measuring it. This requires the knowledge of the indentation modulus E ind (h) as a function of indentation depth h. The calculation is particularly easy for a homogeneous sample with constant elastic properties. In case of an inhomogeneous sample one can gain profit from the fact that E ind (h) will be a slowly varying function even in case of vary strong gradients of the elastic modulus E(h) as for a multilayer system. To prove this one can argue that the indentation modulus E ind is obtained from an elastically deformed volume the dimensions of which are large if compared to the indenter penetration depth. Consequently, E ind can only vary in a limited way, and it cannot exhibit discontinuities.

It is therefore possible to measure E ind , i (h i ) for a small number of different depths h i using either a multicycling test or some single tests at different loads, and to fit the discrete values E ind , i to a continuous function E ind (h) that represents the real depth evolution of E ind with sufficient precision.

Calculation of the depth dependent hardness H(h)

The key point of the hardness calculation is to assign every total depth h a corresponding contact depth h C . According to the Oliver-Pharr-algorithm [7,8] this fundamental entity is given by

h C = h -εF/S (4) 
with ε being an indenter geometry-dependent constant, which does -and this is a real fortune -not much deviate from a mean value of 0.75 that is used in the following. The contact stiffness S writes

S = (dF/dh) = 2 E ind √A C /π (5) 
We thus obtain

π π π π ε ε ε ε - -- - = = = = / C r C A E F h h 2 (6) 
In this equation h C occurs twice: in explicit form on the left side; implicitly it is contained in the contact area which is a function of h C : A C = A C (h C ). Equation 6 is suitable for iterative determination of h C , which is necessary when A C is a complicated mathematical function. This is normally the case when fitting the experimentally determined contact areas of a calibration procedure to a function

A C (h C ) = C 2 h C 2 + C 1 h C 1 + C 1/2 h C 1/2 + C 1/4 h C 1/4 + C 1/8 h C 1/8 + ... (7) 
as suggested by Oliver and Pharr [7].

Figure 2 shows the load-depth curves of both a single indent and a multi-indent into single-crystalline CdS (0001) using a comparatively blunt cube corner indenter. The maximum load is 3.9mN. For ease of recognition the single indent was shifted by 0.3mN. It is obvious that the loading curves of single indent and multi-indent are almost parallel, i. e. extended loading-unloading procedures do not strongly influence the sample hardness. In an indentation creep test the behaviour of CdS was found to be similar to that one which is schematically drawn in the right part of fig. 1. We can therefore expect that hardness values inferred from the multi-indent are approximately equivalent to those calculated from the F(h)-curve. This is demonstrated in fig. 3. It exhibits the hardness curves H(h) of three successive iteration cycles which converge very rapidly. The deviation between calculated and measured hardness is smaller than 4%. 2). The iteration procedure converges rapidly (iteration 2 is almost identical to iteration 1) and the obtained results are in good agreement to the multiindentation data.

For very simple area functions A C (h C ) one can even find a closed analytical solution. For a cone or sphere A C is simply given by

A C = C A h C 2 (8)
C A is a constant that amounts to C A = 1.5√3 = 2.6 for a cube corner indenter, C A = 24.5 for the Berkovich geometry, and C A = π tan 2 α for a cone with α being half the angle at the tip of the cone [12]. We thus come to

π π π π ε ε ε ε - -- - + + + + = = = = π π π π ε ε ε ε - -- - = = = = / / A ind 2 C ind C C E F h h A E F h h 2 4 2 2 ( 9 
)
E ind is considered as either constant or expressed as a function of total penetration depth h t .

When a sphere of radius R is impressed down to a contact depth h C , the corresponding contact radius r C obeys the relation

r C 2 = h C (2R -h C ) ≈ 2Rh C for R >> h C ( 10 
)
The contact area is 

A C = π r C 2 = 2πR h C ( 11 
h C 3 -2h h C 2 + h 2 h C -Q 2 = 0 Q = C r h R E F 2 2 ε ε ε ε (12)
A solution of this third order equation can be found using the Cardanian solution formula, for practical purposes it is, however, more convenient to apply the iteration technique.

In the following let us consider a very interesting application of the h C -calculation for a spherical indenter. In order to get deeper inside into the formation of dislocations as a result of a pop -in event one would like to know the irreversible plastic work connected to the depth excursion [10,13]. This requires the determination of the area of the hysteresis loop formed by the F(h)-curves of elastic loading, depth excursion and elastic unloading immediately after the pop in (figure 4, left). This is experimentally difficult to accomplish since the load at which the strain burst is initiated (in the following called pop-load F pop ) and the amplitude of the depth excursion h pop exhibit random scattering. As a consequence the expression

W pop ≈ F pop h pop ( 13 
)
is simply used in literature [13], that is -however -too small. Owing to the increase of the contact area the unloading curve is stiffer than the loading curve. The maximum elastic penetration at which the strain burst occurs is called δ prepop ; δ postpop is the complete elastic recovery after the pop-in event. It can be concluded from fig. 4 that

W pop = F pop h pop + W I -W II , (14) 
where W I and W II denote the areas beneath loading and unloading curve, respectively. Since the first pop-in mostly appears at tiny penetrations the part of the indenter tip in contact with the sample can be regarded as a sphere. For the elastic loading using a sphere HERTZ [14,15] established a relation between load F and elastic penetration δ. The energy of elastic loading from δ = 0 to δ = δ max is thus

F = K δ 3/2 (15) 
W elast = ∫ Fd δ = = (2/5) F max δ max (16) 
Introducing this into equation (14) gives

W pop = F pop h pop + 0.4 F pop (δ prepop -δ postpop ) (17) 
It is now necessary to express δ postpop as a function of δ prepop and h pop . From equation (15) it follows, that the initial unloading stiffness S = dF/dδ can be written as

S prepop = 1.5 F pop /δ prepop S postpop = 1.5 F pop / δ postpop ( 18 
)
Since E ind before and after the pop-in event are equivalent the combination of ( 18) with ( 2) and ( 11) results in According to HERTZ the elastic contact depth is half the total elastic penetration, i.e.

h C,prepop = 0.5δ prepop h C,postpop = h t -0.5δ postpop ( 20 
) prepop postpop t prepop prepop , C postpop , C prepop postpop δ δ h δ h h δ δ 0.5 0.5 - -- - = = = = = = = = (21) 
Equation ( 21) is suitable for iteration. For ease of demonstration let us consider the situation of δ postpop = h pop = a. We thus have a total depth h t = 2a and h C,prepop = a/2; starting the iteration with δ pospop,0 = a gives h C,postpop,0 = 1.5a. We obtain 

= = = = - -- - = = = = / ) ( /
For the situation h pop = δ prepop a ratio δ postpop / δ prepop = 0.54 ± 0.005 was found after 3 steps of iteration.

An interesting finding of the presented analysis is that the depth h r of the remaining impression can be considerably larger than the depth excursion during the pop-in event. For the given example one obtains h r = 2a -δ postpop = 1.46a = 1.46h pop . In table 1 numerical values for the ratios (δ prepop /δ postpop ) and (h r /h pop ) and for the plastic energy W pop are displayed as a function of the relative depth excursion α = h pop /δ prepop . It turns out that for tiny pop events, i.e. small values of α, the final depth is three times as large as the depth excursion, and the plastic energy approaches a value of W pop = 1.8 F pop h pop . This can be shown as follows: 

δ h δ δ h h A A δ δ - -- - + + + + = = = = = = = = = = = = (22) ) / ( ) / ( prepop postpop prepop pop prepop postpop δ δ δ h δ δ - -- - + + + + = = = = 2 2 1 (23)
We now introduce δ postpop /δ prepop = 1 -2α and obtain with

h pop /δ prepop = α α α α δ δ 2 1 4 1 4 1 1 - -- - ≈ ≈ ≈ ≈ - -- - ≈ ≈ ≈ ≈ + + + + = = = = prepop postpop (24) 
i.e. we obtain a result which is consistent to the introduced prediction. Furthermore one gets The most interesting outcome of table 1 is that for small pop-in events the remaining depth oh the impression grove is three times as large as the depth excursion, and the plastic work is almost double the value of F pop h pop . This theoretical finding was confirmed by experiments. Figure 5 displays the load-depth curve F(h) for a Berkovich nanoindent into single-crystalline GaAs(100). The maximum load was 100µN, and this was by chance only a bit larger than the pop-in force of approximately 90µN. The depth excursion amounts to h pop = 2nm, whereas the remaining depth is 6nm, i.e. three times as large. The average spacing between loading and unloading curve is d = 0.5(2nm + 6nm) = 4nm, i.e. twice as large as h pop . The content of the loading-unloading loop amounts to Cube corner nanoindentation into GaAs (100). By chance the pop-in event occurs close to the termination of the loading segment which permits an experimental test of the predictions of Table 1.

h r = δ prepop + h pop -δ postpop = h pop + 2α δ prepop (25) h r /h pop = 1 + 2α (δ prepop /h pop ) = 1 + 2α (1/α) = 3 (26) δ postpop -δ prepop = 2α δ prepop = 2h pop ( 27 
)
W pop = F pop h pop + 0.4 F pop (δ postpop -δ prepop ) = 1.
A loop = W pop ≈ F pop d ≈ 2 F pop h pop in good agreement to the theoretical value of W pop = 1.8 F pop h pop .

The concept of differential hardness

The traditional nanohardness H = F/A C is the mean pressure inside the contact area of the indenter. If considering a multi-indentation test one can also divide the load increment ∆F from cycle to cycle by the corresponding increase of the contact area ∆A C . This quantity is now introduced as "differential" hardness H d :

H d = ∆F/∆A C (29) 
The multi-indent delivers discrete values of H d . In figure 6A values of H and H d derived from multi-indentation testing of Cu (100) are depicted. The differential hardness was found to be smaller than the traditional hardness. As will be shown below this difference is related to the indentation size effect of Cu, i.e. the general decrease of hardness with increasing penetration depth in the nanorange. When considering materials of constant hardness, the values of H and H d are equivalent. The differential hardness can also be derived from a single indent: where h C and h are the values of contact depth and total depth taken from the final unloading procedure. This results in

F o r P e e r
H d = (dF/dh)/[(dA C /dh C )*(dh C /dh)] ≈ (h/h C )*(dF/dh)/(dA C /dh C ) (33)

Relation between traditional hardness H and differential hardness H d

We start with the definition of classical hardness H = F/A C and perform some simple transformations:

HA C = F (34) h h A H h h A A F F HA d d d d d d d d d * * * * C d C C C ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ = = = = = = = = = = = = (35) 
After the operations (d/dh) and division by (dA C /dh) one obtains

) / )( / ( * C C C C d h h h A A h H H H d d d d d d + + + + = = = = ( 36 
)
For an ideal pointed indenter (pyramid / cone) the area function is

A C = C A h C 2 , resulting in dA C /dh C = 2C A h C. This in combination with dh C /dh ≈ h C /h delivers h h H H H * d d d 2 1 + + + + = = = = (37) 
We see that for missing indentation size effect (dH/dh = 0) the relation H d = H is obtained. The normal indentation size effect (dH/dh < 0) results in a differential hardness which is smaller than H. Such a situation can be found with tiny indentations into single-crystalline metals where the hardness can be described following the model of geometrical necessary dislocations [16,17] 

= = = = + + + + = = = = (39)
A closer look to figure 6B reveals that H d /H indeed scatters around 0.75 with a slight tendency to increase with deeper penetration which is further discussed in the following section.

Application of differential hardness and conclusions

The differential hardness as a differential entity is of course more inclined to scatter and it is more sensitive to measurement errors than traditional hardness or integral techniques as the derivation of an energetic hardness from the plastic work during indentation, e.g. Since H d and H have the same value for homogeneous materials and self-similar indents the application of the differential hardness concept to such situations does indeed not provide new information. The situation is completely different with inhomogeneous samples, as layer systems, e. g. It should be noticed here that even a small pyramid indent into a single crystal will not obey the criteria of selfsimilarity though the indentation body is self similar. The deformation can be roughly separated into two stages: Stage I: Small penetrations where the indent size is not much larger than the mean distance between hardness determining crystal defects. Here the hardness is governed by dislocations and other defects created by the indenter itself. The density of these defects depends on indent size, consequently the situation is not self-similar, and the hardness varies. Stage II: Large penetrations, where the hardness is determined by intrinsically existing lattice defects. Provided the defect distribution is homogeneous the indent is selfsimilar, and the hardness is constant. Then dH/dh = 0, and H d /H = 1 is found. The slow increase of H d /H in figure 6B indicates the transition from stage I to stage II, and from the trend may be concluded that stage II will dominate after about 2µm of penetration.

In case of "really" inhomogeneous specimens as layered materials one wants to know the single layer properties, but even the depth dependent hardness is no direct measure of the material property at the corresponding depth owing to the averaging over a larger deformed volume. To extract the real material property in a certain depth a deconvolution must be made. To do this one has to know to what extent material properties at a depth h + ∆h contribute to the measured data at depth h. It is reasonable to assume, that these contributions to H and H d are different. Hence H d is an additional source of information to make the deconvolution procedure more straightforward.

Another field of application are processes that occur during the indentation test itself and modify the sample hardness. As an example the photoplastic effect (PPE) shall be considered here. Some materials -II-VI-semiconductors in particular -change their hardness reversibly when illuminated by light the photon energy of which is sufficient to initiate the internal photo-electric effect. This finding is explained by electrical charging of dislocations [18]; indentation studies of the PPE in ZnSe have been reported in [19]. Figure 7 displays two load-depth-curves F(h) of nanoindentations into the II-VI-semiconductor ZnSe. The sudden change of the slope of curve 1 was induced by turning a laser on which resulted in a positive photoplastic effect (reverse material hardening). Curve 2 belongs to an indentation completely performed in darkness. The difference of the final penetrations between curves 1 and 2 is about 30nm or 5% of the total depth, resulting in about 10% hardness change, only (for pyramid indenters the relative hardness change is about twice the relative depth variation). This apparently small effect originates from the fact that the illumination was turned on close to the end of the indentation process when most of the deformation was already done. On the other hand the slope changes from (dF/dh) dark = 47µN/nm to (dF/dh) light = 83µN/nm. This means, that the differential hardness -representing the instantaneous deformation resistance -has almost doubled in contrast to the "traditional" hardness, which increased by 10%. When modulating the light intensity the penetration curve oscillates, and the differential hardness proves a suitable tool to track the corresponding hardness evolution. Summarizing we can say, that the differential hardness may be particularly advantageous when time dependent processes that affect the hardness occur during the indentation process itself. Principal sketch of the unloading-reloading-behaviour for materials with a small stress exponent n of creep (left graph) and a large stress exponent (right graph). For large values of n significant creep occurs in the vicinity of the maximum load only; for small n creep persists during entire unloading and reloading. Fig. 2. Load -depth-curves F(h) of cube-corner indentations into CdS(0001) Curve 1: Single indent Curve 2: Multi-indent (18 cycles) For better comparison curve 1 was vertically shifted by 0.3mN. Fig. 3. Hardness values derived from iterative analysis of a single indent (graph 1 in figure 2) compared to corresponding values inferred from a multicycling indentation (graph 2 in figure 2). The iteration procedure converges rapidly (iteration 2 is almost identical to iteration 1) and the obtained results are in good agreement to the multi-indentation data.

Figure 4

Schematical representation of the hysteresis loop of a strain burst event (left part). The areas beneath loading and unloading curves (regions I and II) are not equivalent, since the unloading is stiffer, resulting in δ prepop < δ postpop . Consequently, W pop > F pop h pop (right part). Fig. 5 Cube corner nanoindentation into GaAs (100). By chance the pop-in event occurs close to the termination of the loading segment which permits an experimental test of the predictions of table 1. In depth sensing nanoindentation the load -depth-curve F(h) is acquired from which a single value for the hardness H and a second one for the indentation modulus E ind are inferred. This is a very poor output since F(h) is a source of much more information. The paper describes a technique to extract the hardness H(h) as a continuous depth dependent function from the load-depth-curve. This was accomplished by assigning each depth h a corresponding contact depth h C = h C (h) that can be calculated using an iteration algorithm. The hardness is then simply

H(h) = F(h)/A C (h C (h)).
For very simple area functions A C an analytical solution h C (h; F) can even be found. Furthermore, the differential hardness H d is introduced as an additional hardness quantity which is obtained when dividing the load increment ∆F by the resulting increase of contact area ∆A C It turns out, that H and H d are identical quantities for a material of constant hardness only. When the hardness is depth and therefore size dependent, H d differs from H in a definite way that depends on the hardness evolution with depth, i.e. on the indentation size effect of the material under investigation. The differential hardness proves particularly useful for inhomogeneous samples and situations where the hardness is time -dependent.
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Introduction

The "classical" hardness measurement is a two-step process where first an impression is made, and after unloading the contact area is visualised using a suitable microscopy technique (light microscopy as well as electron microscopy or atomic force microscopy AFM) [1][2][3]. Its particular advantage is the easy separation of elastic and inelastic ("plastic") deformation. However, each experiment delivers one hardness quantity only, and elastic properties can only be derived in indirect manners (one possibility is the calculation of the elastic modulus from the shallowing of the impression grove [4]. The elastic redeformation in the centre of the impression is larger than at the brim, resulting in differences between the shapes of residual impression and impression body, respectively, from which the modulus may be inferred). In order to study the depth and size dependence of the hardness, impressions at different loads must be performed. The lateral sample inhomogeneity proves therefore an additional source of error for such investigations. Making the loads increasingly smaller complicates the localisation of the resulting impressions, and the relative error of the contact area measurement grows. These problems are mastered using the depth sensing indentation technique where load F and penetration depth h are continuously sampled [5]. This allows for a tracking of the complete penetration process. Some of the new generation nanoindentation machines are equipped with continuous stiffness measurement (CSM) facilities [6]. In this case a small force oscillation is superimposed onto the force ramping, and the depth response to this force modulation is recorded during penetration. This permits to continuously record load, depth and contact stiffness. For samples of constant elastic modulus the contact stiffness is easily related to the contact area (see equation 5), hence load F, depth h, contact area A C and therefore hardness H = F/A C are derived as continuous depth functions. However, this is by far not implemented at all indentation equipment, and traditional indentation data analysis, based on the Oliver-Pharr-method [7,8], delivers one single hardness value H and one value of the indentation modulus E ind per indentation cycle only. The Oliver-Pharr-technique uses the unloading curve as predominant source of information, whereas the loading curve is not taken advantage of in this analysis approach. When having in mind, that the loading curve contains a lot of hidden information on the deformation response of the indented sample during the entire indentation process, a single value for both E ind and H proves a very poor output. A much better output is accomplished in multicycling indentation tests [9]. Such a test consists of a series of i cycles of loading -partial unloading with stepwise increase of the maximum applied load. The partial unloading to a certain percentage of the applied load (typically10%...20%) is necessary, since the Oliver-Pharr-technique uses the initial elastic unloading stiffness S for the determination of the contact area A C . Each cycle (cycle index i) delivers a set of data (F i , h i , h Ci , A Ci , S i ), from which the hardness (mean contact pressure)

H i = F i /A Ci (1) 
and the indentation modulus

E ind , i = π π π π / i C i A S 2 (2)
are deduced (F i : maximum cycle load, h i : total penetration for the load F i , h Ci : contact depth for the load F i , A Ci : contact area, S i : stiffness dF/dh at the beginning of unloading) . Though being a very efficient tool to obtain an overview on the evolution of hardness and indentation modulus with depth, there are good reasons why the multicycling is not applicable in every case: i) The multicycling test lasts comparatively long, up to some minutes -depending on the number of cycles. Consequently, drift avoidance and precise drift correction are important issues. In case of instable thermal laboratory conditions the data, inferred from long lasting multicycling tests, are not reliable. ii) A second point concerns the fact, that multicycling delivers discrete data only. There are many cases, where mechanical properties are required as continuous functions of the depth. A load-depth curve with discontinuities (pop-in events [10,11]) is a typical example. One wants to know the pressure at which initial yielding is initiated; and the pressure release due to the depth excursion is of interest, too. Since both load and depth excursion amplitude of a strain burst are subject to random scattering one cannot know in advance where one would have to unload to determine the pressures of interest by the multicycling technique. iii) Point three hints at the fact that there are samples that do not stand repeated loading / unloading, since this can induce cracks or may result in indentation fatigue. iv) Finally, indentation creep may result in strong deviations between mechanical properties, derived from a single cycle, and from multicycling experiments, respectively. Between creep speed dh/dt and applied stress σ a power law dh/dt ~ σ n

(3) is mostly found. Especially for hard materials (refractory metals, ceramics, glass) the stress exponent n is often very high, n > 10. This implies that a small load reduction drastically reduces the indentation creep. Hence the creep during unloading and reloading is negligible, apart from the direct neighbourhood of the maximum load of the indentation cycle, where the large stress results in a measurable indentation creep. The situation is very different for a small stress exponent n in the range of 1 as found with plastics, e.g.. In this case creep persists during entire partial unloading and reloading; unloading and reloading curves do not coincide. Consequently, materials that exhibit a strong creep and a small stress exponent of the creep velocity are not suitable for multicycling indentation tests. In figure 1 the impact of indentation creep on load-depth curve F(h) is schematically drawn for two materials with the same creep speed at maximum load of the cycle, but with different values of stress exponent n.
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Summarizing we can state that the deduction of H(h) from a single indentation cycle has some important advantages over the inference of discrete values H i (h i ) from multicycling testing. The basic idea of the determination of H(h) is to calculate the unloading curve for every point of the loading curve instead of measuring it. This requires the knowledge of the indentation modulus E ind (h) as a function of indentation depth h. The calculation is particularly easy for a homogeneous sample with constant elastic properties. In case of an inhomogeneous sample one can gain profit from the fact that E ind (h) will be a slowly varying function even in case of vary strong gradients of the elastic modulus E(h) as for a multilayer system. To prove this one can argue that the indentation modulus E ind is obtained from an elastically deformed volume the dimensions of which are large if compared to the indenter penetration depth.

Consequently, E ind can only vary in a limited way, and it cannot exhibit discontinuities.

It is therefore possible to measure E ind , i (h i ) for a small number of different depths h i using either a multicycling test or some single tests at different loads, and to fit the discrete values E ind , i to a continuous function E ind (h) that represents the real depth evolution of E ind with sufficient precision.

Calculation of the depth dependent hardness H(h)

The key point of the hardness calculation is to assign every total depth h a corresponding contact depth h C . According to the Oliver-Pharr-algorithm [7,8] this fundamental entity is given by with ε being an indenter geometry-dependent constant, which does -and this is a real fortune -not much deviate from a mean value of 0.75 that is used in the following. The contact stiffness S writes

h C = h -εF/S (4) 
S = (dF/dh) = 2 E ind √A C /π (5)
We thus obtain

π π π π ε ε ε ε - -- - = = = = / C r C A E F h h 2 (6) 
In this equation h C occurs twice: in explicit form on the left side; implicitly it is contained in the contact area which is a function of h C : 6is suitable for iterative determination of h C , which is necessary when A C is a complicated mathematical function. This is normally the case when fitting the experimentally determined contact areas of a calibration procedure to a function

A C = A C (h C ). Equation
A C (h C ) = C 2 h C 2 + C 1 h C 1 + C 1/2 h C 1/2 + C 1/4 h C 1/4 + C 1/8 h C 1/8 + ... ( 7 
)
as suggested by Oliver and Pharr [7].

Figure 2 shows the load-depth curves of both a single indent and a multi-indent into single-crystalline CdS (0001) using a comparatively blunt cube corner indenter. The maximum load is 3.9mN. For ease of recognition the single indent was shifted by 0.3mN. It is obvious that the loading curves of single indent and multi-indent are almost parallel, i. e. extended loading-unloading procedures do not strongly influence the sample hardness. In an indentation creep test the behaviour of CdS was found to be similar to that one which is schematically drawn in the right part of fig. 1. We can therefore expect that hardness values inferred from the multi-indent are approximately equivalent to those calculated from the F(h)-curve. This is demonstrated in fig. 3. It exhibits the hardness curves H(h) of three successive iteration cycles which converge very rapidly. The deviation between calculated and measured hardness is smaller than 4%. For a cone or sphere A C is simply given by

A C = C A h C 2 (8)
C A is a constant that amounts to C A = 1.5√3 = 2.6 for a cube corner indenter, C A = 24.5 for the Berkovich geometry, and C A = π tan 2 α for a cone with α being half the angle at the tip of the cone [12]. We thus come to

π π π π ε ε ε ε - -- - + + + + = = = = π π π π ε ε ε ε - -- - = = = = / / A ind 2 C ind C C E F h h A E F h h 2 4 2 2 ( 9 
)
E ind is considered as either constant or expressed as a function of total penetration depth h t .

When a sphere of radius R is impressed down to a contact depth h C , the corresponding contact radius r C obeys the relation

r C 2 = h C (2R -h C ) ≈ 2Rh C for R >> h C (10) 
The contact area is

A C = π r C 2 = 2πR h C (11) 
and it increases like a linear function with h C . Combining equations ( 6) and ( 11) delivers

h C 3 -2h h C 2 + h 2 h C -Q 2 = 0 Q = C r h R E F 2 2 ε ε ε ε (12)
A solution of this third order equation can be found using the Cardanian solution formula, for practical purposes it is, however, more convenient to apply the iteration technique.

In the following let us consider a very interesting application of the h C -calculation for a spherical indenter. In order to get deeper inside into the formation of dislocations as a result of a pop -in event one would like to know the irreversible plastic work connected to the depth excursion [10,13]. This requires the determination of the area of the hysteresis loop formed by the F(h)-curves of elastic loading, depth excursion and elastic unloading immediately after the pop in (figure 4, left). This is experimentally difficult to accomplish since the load at which the strain burst is initiated (in the following called pop-load F pop ) and the amplitude of the depth excursion h pop exhibit random scattering. As a consequence the expression

W pop ≈ F pop h pop (13) 
is simply used in literature [13], that is -however -too small. Owing to the increase of the contact area the unloading curve is stiffer than the loading curve. The maximum elastic penetration at which the strain burst occurs is called δ prepop ; δ postpop is the complete elastic recovery after the pop-in event. It can be concluded from fig. 4 that

INSERT FIGURE 4 ABOUT HERE

W pop = F pop h pop + W I -W II , (14) 
where W I and W II denote the areas beneath loading and unloading curve, respectively. Since the first pop-in mostly appears at tiny penetrations the part of the indenter tip in contact with the sample can be regarded as a sphere. For the elastic loading using a sphere HERTZ [14,15] established a relation

F = K δ 3/2 (15) 
between load F and elastic penetration δ. The energy of elastic loading from δ = 0 to δ = δ max is thus

W elast = ∫ Fd δ = = (2/5) F max δ max (16) 
Introducing this into equation (14) gives

W pop = F pop h pop + 0.4 F pop (δ prepop -δ postpop ) (17) 
It is now necessary to express δ postpop as a function of δ prepop and h pop . From equation ( 15) it follows, that the initial unloading stiffness S = dF/dδ can be written as

S prepop = 1.5 F pop /δ prepop S postpop = 1.5 F pop / δ postpop (18) 
Since E ind before and after the pop-in event are equivalent the combination of ( 18) with ( 2) and ( 11) results in According to HERTZ the elastic contact depth is half the total elastic penetration, i.e.

h C,prepop = 0.5δ prepop h C,postpop = h t -0.5δ postpop (20) prepop postpop t prepop prepop , C postpop , C prepop postpop δ δ h δ h h δ δ 0.5 0.5 - -- - = = = = = = = = (21) 
Equation ( 21) is suitable for iteration. For ease of demonstration let us consider the situation of δ postpop = h pop = a. We thus have a total depth h t = 2a and h C,prepop = a/2; starting the iteration with δ pospop,0 = a gives h C,postpop,0 = 1.5a. We obtain a a a a a δ 0.58 3 0.5 1.5

1 postpop = = = = = = = = = = = = / / / , a a a a a δ 0.541 0.5 0.29 2 2 postpop, = = = = - -- - = = = = / ) ( / a a a a a δ 0.538 0.5 0.27 2 3 postpop, = = = = - -- - = = = = / ) ( /
For the situation h pop = δ prepop a ratio δ postpop / δ prepop = 0.54 ± 0.005 was found after 3 steps of iteration.

An interesting finding of the presented analysis is that the depth h r of the remaining impression can be considerably larger than the depth excursion during the pop-in event. For the given example one obtains h r = 2a -δ postpop = 1.46a = 1.46h pop . In table 1 numerical values for the ratios (δ prepop /δ postpop ) and (h r /h pop ) and for the plastic energy W pop are displayed as a function of the relative depth excursion α = h pop /δ prepop . It turns out that for tiny pop events, i.e. small values of α, the final depth is three times as large as the depth excursion, and the plastic energy approaches a value of W pop = 1.8 F pop h pop . This can be shown as follows: We now introduce δ postpop /δ prepop = 1 -2α and obtain with

h pop /δ prepop = α α α α δ δ 2 1 4 1 4 1 1 - -- - ≈ ≈ ≈ ≈ - -- - ≈ ≈ ≈ ≈ + + + + = = = = prepop postpop (24) 
i.e. we obtain a result which is consistent to the introduced prediction. Furthermore one gets

h r = δ prepop + h pop -δ postpop = h pop + 2α δ prepop (25) h r /h pop = 1 + 2α (δ prepop /h pop ) = 1 + 2α (1/α) = 3 (26) δ postpop -δ prepop = 2α δ prepop = 2h pop (27) 
W pop = F pop h pop + 0.4 F pop (δ postpop -δ prepop ) = 1.8 F pop h pop (28) 

INSERT TABLE 1 ABOUT HERE

The most interesting outcome of table 1 is that for small pop-in events the remaining depth oh the impression grove is three times as large as the depth excursion, and the plastic work is almost double the value of F pop h pop . This theoretical finding was confirmed by experiments. Figure 5 displays the load-depth curve F(h) for a Berkovich nanoindent into single-crystalline GaAs(100). The maximum load was 100µN, and this was by chance only a bit larger than the pop-in force of approximately 90µN. The depth excursion amounts to h pop = 2nm, whereas the remaining depth is 6nm, i.e. three times as large. The average spacing between loading and unloading curve is d = 0.5(2nm + 6nm) = 4nm, i.e. twice as large as h pop . The content of the loading-unloading loop amounts to A loop = W pop ≈ F pop d ≈ 2 F pop h pop in good agreement to the theoretical value of W pop = 1.8 F pop h pop .

INSERT FIGURE 5 ABOUT HERE

The concept of differential hardness

The traditional nanohardness H = F/A C is the mean pressure inside the contact area of the indenter. If considering a multi-indentation test one can also divide the load increment ∆F from cycle to cycle by the corresponding increase of the contact area ∆A C . This quantity is now introduced as "differential" hardness H d : 

H d = ∆F/∆A C (

Relation between traditional hardness H and differential hardness H d

We start with the definition of classical hardness H = F/A C and perform some simple transformations:

HA C = F (34) h h A H h h A A F F HA d d d d d d d d d * * * * C d C C C ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ = = = = = = = = = = = = ( 35 
)
After the operations (d/dh) and division by (dA C /dh) one obtains

) / )( / ( * C C C C d h h h A A h H H H d d d d d d + + + + = = = = ( 36 
)
For an ideal pointed indenter (pyramid / cone) the area function is 

A C = C A h C 2 , resulting in dA C /dh C = 2C A h C.
= = = = (38)
with H 0 and h* being scaling parameters that depend on the defect structure of the metal. This delivers

H h dh dH H H d (3/4) 2 1 = = = = + + + + = = = = (39)
A closer look to figure 6B reveals that H d /H indeed scatters around 0.75 with a slight tendency to increase with deeper penetration which is further discussed in the following section.

Application of differential hardness and conclusions

The differential hardness as a differential entity is of course more inclined to scatter and it is more sensitive to measurement errors than traditional hardness or integral techniques as the derivation of an energetic hardness from the plastic work during indentation, e.g. Since H d and H have the same value for homogeneous materials and self-similar indents the application of the differential hardness concept to such situations does indeed not provide new information. The situation is completely different with inhomogeneous samples, as layer systems, e. g. It should be noticed here that even a small pyramid indent into a single crystal will not obey the criteria of selfsimilarity though the indentation body is self similar. The deformation can be roughly separated into two stages: Stage I: Small penetrations where the indent size is not much larger than the mean distance between hardness determining crystal defects. Here the hardness is governed by dislocations and other defects created by the indenter itself. The density of these defects depends on indent size, consequently the situation is not self-similar, and the hardness varies. Stage II: Large penetrations, where the hardness is determined by intrinsically existing lattice defects. Provided the defect distribution is homogeneous the indent is selfsimilar, and the hardness is constant. Then dH/dh = 0, and H d /H = 1 is found. The slow increase of H d /H in figure 6B indicates the transition from stage I to stage II, and from the trend may be concluded that stage II will dominate after about 2µm of penetration.

In case of "really" inhomogeneous specimens as layered materials one wants to know the single layer properties, but even the depth dependent hardness is no direct measure of the material property at the corresponding depth owing to the averaging over a larger deformed volume. To extract the real material property in a certain depth a deconvolution must be made. To do this one has to know to what extent material properties at a depth h + ∆h contribute to the measured data at depth h. It is reasonable to assume, that these contributions to H and H d are different. Hence H d is an additional source of information to make the deconvolution procedure more straightforward.

Another field of application are processes that occur during the indentation test itself and modify the sample hardness. As an example the photoplastic effect (PPE) shall be considered here. Some materials -II-VI-semiconductors in particular -change their hardness reversibly when illuminated by light the photon energy of which is sufficient to initiate the internal photo-electric effect. This finding is explained by electrical charging of dislocations [18]; indentation studies of the PPE in ZnSe have been reported in [19]. Figure 7 displays two load-depth-curves F(h) of nanoindentations into the II-VI-semiconductor ZnSe. The sudden change of the slope of curve 1 was induced by turning a laser on which resulted in a positive photoplastic effect (reverse material hardening). Curve 2 belongs to an indentation completely performed in darkness. The difference of the final penetrations between curves 1 and 2 is about 30nm or 5% of the total depth, resulting in about 10% hardness change, only (for pyramid indenters the relative hardness change is about twice the relative depth variation). This apparently small effect originates from the fact that the illumination was turned on close to the end of the indentation process when most of the deformation was already done. On the other hand the slope changes from (dF/dh) dark = 47µN/nm to (dF/dh) light = 83µN/nm. This means, that the differential hardness -representing the instantaneous deformation resistance -has almost doubled in contrast to the "traditional" hardness, which increased by 10%. When modulating the light intensity the penetration curve oscillates, and the differential hardness proves a suitable tool to track the corresponding hardness evolution. Summarizing we can say, that the differential hardness may be particularly advantageous when time dependent processes that affect the hardness occur during the indentation process itself. Principal sketch of the unloading-reloading-behaviour for materials with a small stress exponent n of creep (left graph) and a large stress exponent (right graph). For large values of n significant creep occurs in the vicinity of the maximum load only; for small n creep persists during entire unloading and reloading. Fig. 2. Load -depth-curves F(h) of cube-corner indentations into CdS(0001) Curve 1: Single indent Curve 2: Multi-indent (18 cycles) For better comparison curve 1 was vertically shifted by 0.3mN. Fig. 3. Hardness values derived from iterative analysis of a single indent (graph 1 in figure 2) compared to corresponding values inferred from a multicycling indentation (graph 2 in figure 2). The iteration procedure converges rapidly (iteration 2 is almost identical to iteration 1) and the obtained results are in good agreement to the multi-indentation data.
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Figure 4

Schematical representation of the hysteresis loop of a strain burst event (left part). The areas beneath loading and unloading curves (regions I and II) are not equivalent, since the unloading is stiffer, resulting in δ prepop < δ postpop . Consequently, W pop > F pop h pop (right part). Fig. 5 Cube corner nanoindentation into GaAs (100). By chance the pop-in event occurs close to the termination of the loading segment which permits an experimental test of the predictions of table 1. 
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  Figure 6 A) Traditional nanohardness data H = F/A C compared to corresponding values of the differential hardness H d = ∆F/∆A C as taken from multi-indentation testing of Cu (100). B) Ratio H d /H for the measurement of figure 6A exhibiting a typical value of H d /H ≈ 0.75 with the tendency of a slight increase from about 0.73 to 0.85 with increasing depth as indicated by the trend line.
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 7 Figure 7. Response of the load-depth-curve of a Berkovich nanoindention into ZnSe (111) to sudden illumination by laser light (λ = 543nm, intensity I = 120mW/cm 2 ). Curve 1: starting the indent in darkness the laser was turned on at a total depth h = 600nm. Curve 2: indentation in permanent darkness.
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  For very simple area functions A C (h C ) one can even find a closed analytical solution.
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		δ	postpop	h	r	Plastic energy
		δ	prepop	h	pop	W pop
	2	0.423	1.288	1.12 F pop h pop
	1	0.537	1.463	1.19 F pop h pop
	0.5	0.653	1.694	1.27 F pop h pop
	0,2	0.788	2.06	1.42 F pop h pop
	0.1	0.867	2.33	1.53 F pop h pop
	0.01	0.981	2.90	1.77 F pop h pop
	0.001	0.9980	3.00	1.80 F pop h pop
	α << 1	1 -2α	3.00	1.80 F pop h pop

8 F pop h pop
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relative depth excursion α = h pop /δ prepop quantities of a loading-unloading loop involving a depth excursion. The data were calculated as a function of the relative depth excursion amplitude α = h pop /δ prepop

  To calculate H d we need the differential quotient dF/dh which is simply the slope of the F(h)-curve. Additionally, dA C /dh is required which is not directly accessible from the experiment. However, we know A C as a function of contact depth h C . Thus we can write

	dA C /dh = (dA C /dh C )*(dh C /dh)	(31)
	(dA C /dh C ) is accessible from the indenter shape calibration. Furthermore, we can
	assume that (dh C /dh) is a function that exhibits small variations with depth h only.
	Thus we can write	
	dh C /dh ≈ h C /h	(32)
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H d = dF/dA C = (dF/dh)/(dA C /dh)

(30)
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  The multi-indent delivers discrete values of H d . In figure6Avalues of H and H d derived from multi-indentation testing of Cu (100) are depicted. The differential hardness was found to be smaller than the traditional hardness. As will be shown below this difference is related to the indentation size effect of Cu, i.e. the general decrease of hardness with increasing penetration depth in the nanorange. When considering materials of constant hardness, the values of H and H d are equivalent.To calculate H d we need the differential quotient dF/dh which is simply the slope of the F(h)-curve. Additionally, dA C /dh is required which is not directly accessible from the experiment. However, we know A C as a function of contact depth h C . Thus we can write
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	The differential hardness can also be derived from a single indent:	
	H d = dF/dA C = (dF/dh)/(dA C /dh)	(30)
	F o r	
	P dA C /dh = (dA C /dh C )*(dh C /dh)	(31)
	(dA C /dh C ) is accessible from the indenter shape calibration. Furthermore, we can e assume that (dh C /dh) is a function that exhibits small variations with depth h only. Thus we can write e r dh C /dh ≈ h C /h (32)
	where h C and h are the values of contact depth and total depth taken from the final R unloading procedure. This results in e e i v H d = (dF/dh)/[(dA C /dh C )*(dh C /dh)] ≈ (h/h C )*(dF/dh)/(dA C /dh C ) (33)
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  This in combination with dh C /dh ≈ h C /h delivers hardness which is smaller than H. Such a situation can be found with tiny indentations into single-crystalline metals where the hardness can be described following the model of geometrical necessary dislocations[16, 17], as in the case of copper, e.g. . The model of geometrical necessary dislocations predicts a depth dependence of H according to
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	H	d	= = = =	H	+ + + +	2 1	h H d d	*	h	(37)
	We see that for missing indentation size effect (dH/dh = 0) the relation H d = H is
	obtained. The normal indentation size effect (dH/dh < 0) results in a differential
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	relative depth excursion	δ	postpop	h	r	Plastic energy
	α = h pop /δ prepop	δ	prepop	h	pop	W pop
	2	0.423	1.288	1.12 F pop h pop
	1	0.537	1.463	1.19 F pop h pop
	0.5	0.653	1.694	1.27 F pop h pop
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	0.1	0.867	2.33	1.53 F pop h pop
	0.01	0.981	2.90	1.77 F pop h pop
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