

CHARACTERISING DISLOCATION STRUCTURE EVOLUTION DURING CYCLIC DEFORMATION USING ELECTRON CHANNELLING CONTRAST IMAGING

Jaoued Ahmed, Steve G Roberts, Angus Wilkinson

▶ To cite this version:

Jaoued Ahmed, Steve G Roberts, Angus Wilkinson. CHARACTERISING DISLOCATION STRUCTURE EVOLUTION DURING CYCLIC DEFORMATION USING ELECTRON CHANNELLING CONTRAST IMAGING. Philosophical Magazine, 2006, 86 (29-31), pp.4965-4981. 10.1080/14786430600710941. hal-00513697

HAL Id: hal-00513697 https://hal.science/hal-00513697

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHARACTERISING DISLOCATION STRUCTURE EVOLUTION DURING CYCLIC DEFORMATION USING ELECTRON CHANNELLING CONTRAST IMAGING

Journal:	Philosophical Magazine & Philosophical Magazine Letters
Manuscript ID:	TPHM-05-Nov-0531.R1
Journal Selection:	Philosophical Magazine
Date Submitted by the Author:	19-Feb-2006
Complete List of Authors:	Ahmed, Jaoued; University of Oxford, University of Oxford, Department of Materials Roberts, Steve; University of Oxford, Materials Science Wilkinson, Angus; University of Oxford, Department of Materials
Keywords:	electron channelling, cyclic deformation, fatigue, SEM
Keywords (user supplied):	ECCI

CHARACTERISING DISLOCATION STRUCTURE EVOLUTION DURING CYCLIC DEFORMATION USING ELECTRON CHANNELLING CONTRAST IMAGING

Jaoued Ahmed, Steve G Roberts, and Angus J Wilkinson[†]

Department of Materials, University Of Oxford Parks Road, Oxford, OX1 3PH, UK

[†]corresponding author tel: 01865 273792 email: angus.wilkinson@materials.ox.ac.uk

ABSTRACT

This paper briefly reviews development of the electron channelling contrast imaging (ECCI) technique, which uses diffraction contrast to reveal dislocation structures underlying the surface of bulk samples imaged in the scanning electron microscope. In particular the application of ECCI to the study of evolution of dislocation structures during cyclic deformation of single crystal copper samples will be described. Quantitative measurements of the vein width, separation and volume fraction within the matrix phase were made and these parameters showed rapid changes during the initial cyclic hardening of the sample, with smaller variations continuing after stress saturation. The volume fraction of persistent slip bands (PSBs) increased continuously with cycling beyond stress saturation. Measurements of PSB widths and spacings indicated that new PSBs tend to form near existing PSBs. The ECCI technique revealed PSBs of finite length with tapered ends. Stress concentrations occurring ahead of the tapered PSBs may be the cause of preferential nucleation of new PSBs close to existing ones.

INTRODUCTION

The electron channelling contrast imaging (ECCI) technique was first suggested as a means of imaging and characterising near surface dislocations in bulk samples by Booker, Shaw, Whelan and Hirsch [1]. The electron-optical conditions required to image dislocations using ECCI was first estimated by Booker [2] who realised that the local tilting of lattice planes near a dislocation was of the order of 10^{-3} rad at 30 nm from the core which makes it necessary to keep both the beam divergence and the probe diameter small. Since the contrast is also small it was clear that a high brightness electron source would be needed to achieve an acceptable signal to noise ratio. More detailed dynamical diffraction calculations by Clarke and Howie [3] and Spencer, Humphreys and Hirsch [4] confirmed this point.

Early experimental efforts to image dislocations using ECCI were hampered by the lack of good field emission guns and thus were of limited success due to poor signal to noise ratio. Morin *et al* [5] were the first to publish clear images of individual dislocations in Si using ECCI in a dedicated SEM with a field emission gun and a retarding field energy filtered back scattered electron detector. Since then several other groups have imaged individual dislocations without the need for the energy filtered BSE detector (eg Czernuszka et al [6], Wilkinson and Hirsch [7], and Simkin and Crimp [8]). A more detailed review of the development of ECCI can be found in Wilkinson and Hirsch [9].

Over the past decade there has been considerable interest in applying the ECCI to studies of dislocation patterning and other problems in cyclic deformation and fatigue. One of the main reasons for this is that the technique allows dislocation structures to be imaged in bulk specimens. This offers several significant advantages over TEM methods: (a) it allows the study of dislocation sub-structure to be undertaken in the same specimens at many different points through their fatigue

life, (b) it allows a large area of specimen to be examined, and (c) it allows dislocation structures to be directly linked to intrusions, extrusions and cracks that form at the sample surface.

In these studies there is no attempt to image individual dislocation lines and as a result the rather stringent constraints on the electron-optics can be relaxed making the technique much easier to use. In particular the constraint on beam diameter can be significantly relaxed so that groups of dislocations can be imaged without the need for a field emission gun SEM.

Dudarev, Ahmed, Hirsch and Wilkinson [10] have made a careful study of the contrast generated by dislocation walls and veins present in fatigued metals and found that for all useful diffraction conditions the highly dislocated regions appeared bright (i.e. higher yield of back scattered electrons) compared to the low dislocation density channels between them. The contrast is largest when the selected diffraction planes have **g** parallel to the primary Burgers vector **b**, and at a small positive deviation from the exact Bragg condition (i.e. just outside the channelling band edge). The bright nature of the dislocation walls and veins was explained within the dynamical diffraction theory by the decohesion caused by the rapid fluctuations in the displacement field generated by the high dislocation dipole density which occur on a length scale that is significantly shorter than the extinction distance.

The ECCI technique has been used to study dislocation patterning in single crystals of copper fatigued under stress control by Ahmed, Wilkinson & Roberts [11], and Melisova, Weiss and Stickler [12] and under strain control by Li, Hu and Wang [13] and Ahmed, Wilkinson & Roberts [14] for single slip, and by Gong, Wang, Chen and Wang [15] for multiple slip. Schwab *et al* [16] have made similar studies in Ni single crystals deformed under strain control in single slip. Zhang & Wang [17] have used ECCI to examine the effects of grain boundaries on the dislocation patterning in cyclically deformed copper polycrystals. The ECCI technique has been used by Chen *et al* [18] to investigate dislocation structures ahead of long fatigue cracks in polycrystalline copper,

while recent work by Ahmed, Wilkinson & Roberts [19] shows ECCI images of dislocation structures associated with relatively short, naturally initiated stage I and stage II cracks in single crystal copper. The technique has also been applied to fatigue of engineering materials: e.g. single crystal superalloy by Wilkinson, Henderson & Martin [20], and polycrystalline steels by Davidson & Langford [21], and by Zauter *et al* [22].

Cyclic deformation of cubic close-packed metals (in particular single crystals) generally exhibits an initial period of cyclic hardening, followed by a period of quasi-steady state deformation, 'saturation', where the peak stress remains constant with further cycling (see the review by Basinski & Basinski [23]). This saturation régime often takes up a large fraction of the sample life before fatigue failure. Generally for single crystals the peak stress within the saturation régime (τ_{sat}) increases with applied plastic strain amplitude (γ_{pl}) up to approximately 10⁻⁴ and then remains virtually constant in the low strain amplitude region from 10⁻⁴ to 10⁻², before increasing again at higher strain amplitudes [24]. The plateau in the saturation stress – strain amplitude curve is most marked for single slip conditions, and can be reduced or even absent for some multiple slip configurations, as shown by Li, Wang, and Li [25].

In the plateau region, saturation of the peak stress approximately coincides with the nucleation and growth of persistent slip bands (PSBs), in which the plastic strain is highly localised. However, analysis of hysteresis loop shapes by Mughrabi [24] suggests that PSB nucleation may occur before stress saturation as plastic strain amplitude is increased within the plateau regime. Scanning electron microscopy has been used in conjunction with the 'sharp corner polishing' method to study the PSB profiles, which are found to vary somewhat with deformation temperature [23]. The nucleation of short cracks from intrusions and PSBs has also been investigated using such methods by Hunsche and Neumann [26], and by Ma and Laird [27]. Transmission electron microscopy (TEM) has been used to reveal the striking 'ladder' structure of the dislocation configuration within

the PSBs which is markedly different to the dislocation veins (or loop patches) found in the surrounding matrix material (see for example work by Mughrabi, Ackermann, and Hertz [28]).

In this paper, we study copper single crystals fatigued under plastic strain control and use the ECCI technique to (i) follow changes in the matrix vein structure both during hardening and after saturation, (ii) examine the initial stages of PSB formation at saturation and (iii) follow the increase in PSB volume fraction and changes in PSB dislocation structures with continued cycling beyond saturation. Wherever possible quantitative parameterisation of the dislocation structures has been obtained from the ECCI images.

EXPERIMENTAL PROCEDURES

2.1 Materials & Sample Preparation

[541] oriented rods were kindly provided by Prof. Z S Basinski. These had been grown from seed from 99.999% Arsaco copper in prepurified graphite moulds under a vacuum as described by Basinski and Basinski [29]. For the [541] loading axis the primary slip system is $\frac{a}{2}[101](1\overline{1}\overline{1})$. 60 mm long samples with 4 mm x 4 mm square cross-section were prepared with one pair of faces (the 'cross glide faces') parallel to $(1\overline{1}\overline{1})$ and the remaining 'side faces' parallel to $(1\overline{2}3)$. The cross glide faces contain the primary Burgers vector and remain flat during fatigue while the side faces roughen as the PSBs are formed. The sharp corner preparation technique described by Basinski and Basinski [30] was used so that the profiles of intrusions, extrusions and cracks could be clearly observed, so that they could be directly related to dislocation structures using ECCI, as has been reported by Ahmed *et al* [19].

2.2 Mechanical Testing

The specimens oriented with [541] along the load axis were fatigued in push-pull at room temperature, in laboratory air, at constant plastic shear strain amplitudes γ_p of 10^{-3} and 2 x 10^{-3}

measured using a clip-on extensometer (10 mm gauge length) fixed on a side face. An ESH servohydraulic testing machine fitted with a 10kN load cell with a range down to 1kN was used, with specimen alignment ensured by use of a Wood's metal grip system designed and built specifically for this work. Parameters such as total strain, plastic strain, load and number of cycles were recorded during testing. Testing was at 1 Hz with a sine waveform.

2.3 Electron Channelling Contrast Imaging

The SEM studies using ECCI and secondary electron (SE) modes were carried out in a JEOL JSM6300 SEM with a LaB₆ filament. The SEM stage allowed continuous rotation through 360° about an axis perpendicular to the samples' surface and tilting about an orthogonal axis within the samples' surface plane. The sample was tilted/rotated while viewing the electron channelling pattern (ECP) so as to achieve the desired diffraction conditions. The conditions used to observe dislocation substructures from bulk samples of copper single crystals were as follows: incident beam energy of 30 keV, probe current of 2nA, estimated probe divergence of 3 mrad (half angle subtended by a 50 µm aperture diameter at 8 mm working distance), and an estimate probe diameter of 65 nm. ECCI experiments in this work were carried out mainly using the diffraction conditions such that g·b=2 along the (202) band near the [111] zone axes of the cross glide face; the observations were thus made at close to normal incidence. From time to time other diffraction conditions were used and these are specified and shown in ECPs accompanying the ECCI micrographs. The dark outer edge of the (202) band (w>0) was used to image dislocations: $w = |s| \xi_g$ represents the deviation parameter as defined in Hirsch *et al.* [31] where ξ_g is the extinction distance. The detector used to image the flat cross glide face was the standard diode type annular BSE detector mounted below the pole piece in the SEM. Digital image acquisition was carried out using a PC system with an 8 bit frame grabber. In order to reduce noise in the signal, images were averaged over several frames with a typical image acquired over a period of 30 to 60 seconds.

RESULTS

3.1 Mechanical Properties

The cyclic hardening curves obtained at constant plastic strain amplitudes of 10^{-3} and $2x10^{-3}$ were similar to those previously obtained for the same specimen orientation by Basinski *et al.* (1992). Rapid hardening occurs during the first few thousands of cycles before the peak stress reaches a maximum value (after ~5000 cycles) of ~28 MPa. During saturation, the peak stress is constant to a first approximation though a slight decrease can be seen from the maximum value. This is in good agreement with values of the saturation stress in the literature [23] which vary between 27MPa-32MPa depending on testing parameters such as the strain rate, the exact testing temperature etc..

3.2 Dislocations Structures up to Stress Saturation

A specimen cycled at a constant plastic strain amplitude of 2×10^{-3} was examined using ECCI at different numbers of cycles (N) before the stress amplitude reached the saturation value of 28 MPa. Figure 1 shows the matrix vein structure in bright contrast at (a) 50 and (b) 2000 cycles. The dark regions represent the low dislocation density areas ('channels') separating the primary walls. After 50 cycles (Fig. 1a), the matrix dislocation structure already consists of dislocation walls, however these features appeared to be of lower contrast than structures seen further into the fatigue life. With further cycling to N = 2000 cycles (Fig. 1b), the walls thicken along the primary Burgers vector but reduce in height perpendicular to the primary Burgers vector.

With further cycling, the shear stress amplitude approaches the saturation stress and the matrix vein structure undergoes some local changes. Whereas most of the dislocation structure still consists of large thick veins separated by low dislocation density channels, ECCI reveals the presence of some thin dislocation walls embedded within the vein structure. This is illustrated in Figure 2 where the beginning of the formation of PSBs can be observed as the stress reaches 25 MPa after 2500 cycles.

White arrows indicate the formation of thin dislocation walls from the matrix veins; these walls are different from the surrounding structure.

After further fatigue to 5000 cycles the peak stress reaches the saturation value of 28 MPa and at this point ECCI reveals the formation of PSBs from the matrix structure (Figure 3). The dislocation walls characterising these "young" PSBs are inclined, making an angle of about 60° with the primary slip direction, while later in the fatigue life the walls tend to align perpendicular to the slip direction.

Although the resolution attainable by ECCI is significantly lower than that in TEM, it is possible to identify the nucleation of PSB walls from the matrix vein structure. The black arrows in Figure 3 indicate regions where the partial collapse of the loop patches (veins) has taken place and narrow PSB walls connect the two remaining parts of the veins. There appears to be some tendency for the PSB walls to be associated with the edge of the veins from which they have formed.

3.3 Dislocations Structures After Stress Saturation

Figure 4 shows an ECCI micrograph of a bulk sample fatigued well into stress saturation (40000 cycles at a strain amplitude of $2x10^{-3}$). The micrograph is at relatively low magnification and demonstrates the utility of ECCI in examining larger area than would be accessible using TEM. Several well established PSBs are seen within the matrix structure and run across the entire field of view. A considerable range of PSB widths is evident in the image, and in the wider PSBs it is evident that the dislocation walls are approximately perpendicular to the slip direction, and the walls are fairly uniformly spaced at ~1.4 μ m apart.

Several of the thinner PSB (arrowed) do not cross the whole field of view in figure 4. The width of these PSBs is seen to decrease steadily as they taper toward a point in this low magnification image. Figure 5 gives a further example in a sample fatigued for 180000 cycles. There is little evidence for perturbation of the dislocation veins directly ahead of the tip of a PSB. For example in figure 5 the

PSB passes through vein A where 2 small PSB walls can be seen at the vein edges while the next vein B shows little difference from others within the micrograph. Such ECCI observations made on several specimens make it clear that PSBs are not always continuous across the entire width of the single crystal specimen.

In the late saturation regime (fig. 6) locally misoriented regions are evident in the ECCI images as zones of bright or dark contrast which tend to be elongated along the primary Burgers vector and can be several tens of micrometers long. Typically the contrast is relatively constant throughout each zone but changes abruptly at its edge, where the change in orientation is localised. Within a given misoriented zone dislocation walls can be seen across which there is no change in contrast, indicating no change in misorientation.

3.4 Evolution of Matrix Veins

ECCI was used in a quantitative analysis of the dislocation substructures generated during cyclic deformation. The evolution of matrix vein structure was characterised using the following parameters: V - the volume fraction of the veins within the matrix regions, W - the average width of the dislocation veins (measured along the primary Burgers vector), and D - the width of channels between the veins (again measured along the primary Burgers vector). W and D are shown on the schematic diagram in figure 7.

These parameters were determined from the digitally recorded ECCI micrographs of matrix regions in specimens fatigued to different stages of the fatigue life before and after PSB formation. A simple thresholding algorithm was used to distinguish between veins and channels and so produce binary images from which V, W and D were determined. Figure 8 shows the variation of these parameters with the number of fatigue cycles applied. The vein volume fraction V increases significantly in the rapid hardening stage from N=50 to N=5000. After 5000 cycles the stress has saturated and the vein volume fraction remains constant over the next several tens of thousands of cycles. As more cycles are applied the average matrix channel width D decreases, while the average vein width W increases. The most rapid changes again occur during the period of cyclic hardening, however, small but significant reduction in the channel width continues after the first PSBs begin to form (~2000 cycles) and after the stress saturates (~5000 cycles).

3.5 Evolution of Persistent Slip Bands

Quantitative measurements were also made of parameters describing the PSB evolution within the stress saturation régime. The widths of PSBs and matrix regions were measured perpendicular to the slip direction (see figure 7) on ECCI micrographs obtained from the cross glide face of the specimen after different amounts of cyclic deformation. From such measurements the PSB volume fraction (f) was also determined. The measurements were made at three different points through the fatigue life, from approximately the same region of one sample fatigued at a strain amplitude of $2x10^{-3}$. A similar set of measurements were made from a second sample fatigued at a strain amplitude of 10^{-3} .

The variation of PSB volume fraction with cumulative strain (equal to the strain amplitude multiplied by 4N) is shown in figure 9. The formation of PSBs from the matrix structure is most rapid in the period when the stress starts to saturate, however the continuous increase in f shows that new PSB material is formed throughout the fatigue life. These results are comparable to those obtained by Basinski *et al.* [32] which are also shown in figure 9. The slightly higher PSB volume fractions reported by Basinski *et al.* [32] may be due to either their higher strain amplitude or the fact that f was determined in their study from the roughening of the 'side face' rather than, as here, directly from the dislocation structure underlying the surface.

Figure 10 shows how the distributions of PSB widths and matrix widths evolve during the stress saturation régime. Misoriented regions such as shown in figure 6 were not included in this analysis. Soon after saturation (N= 5 000) the majority of PSBs formed have a width below 2 μ m; only ~10 % possess widths in the range 2-3 μ m, and no PSBs with a width greater than 5 μ m were observed.

The spacing between the PSBs (i.e. matrix width) ranges from 1 μ m to 30 μ m with ~55% in the 5-15 μ m range near the average spacing of ~10 μ m.

With further cycling (N= 23400), PSBs with a greater width (>5 μ m) are observed and after 40000 cycles the maximum observed PSB width increases to 20 μ m. The frequency of narrow PSBs (width <1 μ m) range initially drops during the period N= 5000 to 23400 cycles but then subsequently increases again with further cycling to 40000 cycles. This suggests that while PSBs with a small width have merged together to create new larger PSBs (macro-PSBs), new thin PSBs with widths less than 1 μ m are also formed.

Although both the mean and most common PSB spacing (matrix width) decreases as N increases from 5000 to 40000 cycles, it is noticeable that the wider (20-30µm) matrix regions actually become more frequent. This seems to suggest that new PSBs do not form in the centre of large matrix regions but instead are preferentially nucleated close to pre-existing PSBs.

4. **DISCUSSION**

4.1 Matrix activity

The present ECCI observations of the matrix vein structure evolution in bulk samples give information that has previously only been attainable through TEM studies involving destructive thin foil preparation. The quantitative characterisation of the matrix structure evolution given in figure 8 is similar to TEM results of Pedersen and Winter [33] whose study was at a slightly higher strain amplitude of $3x10^{-3}$ and treated only the first 5500 cycles. Both studies show that during the period of rapid hardening over the first few thousand cycles there is a significant increase in the volume fraction occupied by the dislocation veins. This is accomplished by a thickening of existing loop patches and a complementary narrowing of the channels between them.

The reduction in the channel width leads to an increase in the Orowan-like stress τ_0 required for screw dislocations to glide along the channel. Using the expression from Brown [34] for τ_0

$$r_{o} = \frac{\mu b \ln(W/b)}{2\pi (1-\nu)D}$$
(1)

where μ =42 GPa and v=0.44 are the shear modulus and the Poisson's ratio respectively, we find that τ_0 is always less than the experimentally measured peak stress (τ_{max}) both in the initial hardening regime and into the saturation regime. It thus appears that at all stages of the fatigue life screw dislocations are able to glide along the channels between matrix veins until they encounter a second screw dislocation of opposite sign, close enough to form a strong dipole. We can estimate the dipole height h that would just prevent motion of the screw dislocations from:

$$h = \frac{\mu b}{4\pi(\tau_{max} - \tau_{o})}$$
(2)

This assumes that the Orowan - bowing stress and the dipole passing stress are additive, which Lisiecki and Pedersen [35] indicate may not be correct. Figure 11 shows how the stable screw dipole height, calculated from our data and that from Pedersen and Winter [33] varies with N_f. The dipole height decreases during the initial period of hardening and then reaches a near constant value within the saturation regime. Brown [34] has given similar analysis for the PSB structure for which the channel width $D_{PSB} = 1.4 \,\mu\text{m}$ is somewhat smaller than the vein spacing in the matrix, while the PSB wall width $W_{PSB} = 0.1 \,\mu\text{m}$ is considerably narrower than the veins. Interestingly, within the saturation regime, the height of dipoles resisting flow of screw dislocations in the channels between matrix veins is essentially the same as that for the channels between walls in the PSB ladder structure (fig. 11). Brown [34] identifies this as the minimum dipole height for which screw dislocation dipoles in Cu are stable against cross-slip and subsequent mutual annihilation, quoting as support Mughrabi's [36] observation that ~50 nm is the minimum height of screw dipoles in neutron-pinned TEM foils of fatigued copper. It seems that the formation of stable screw dipoles

Page 13 of 27

within channels between matrix veins occurs over the initial few thousand cycles and contributes to hardening, but as stress saturation is reached these dipoles are unstable against either the applied shear stress (wide dipoles) or against cross-slip (narrow dipoles). It is important to note then that although the vein volume fraction remains reasonably constant after the initial period of hardening it is likely that there is still dislocation activity in the matrix channels throughout the stress saturation regime.

Other researchers including Feltner [37], and Kuhlmann-Wilsdorf [38] have instead proposed that the matrix straining occurs by the 'flip-flopping' of edge dislocation dipoles within the matrix veins. However, the weak beam TEM analysis of Antonopoulos, Brown and Winter [39] found no evidence for a preponderance of dipoles in configurations corresponding to the last applied sense of shearing and so do not support this mechanism.

4.2 Initial Nucleation of Persistent Slip Bands

At stress saturation a large fraction of the imposed plastic strain becomes localised in the PSBs. As the matrix hardens PSBs nucleate within the vein structure by the collapse of matrix veins. The vein structure has been studied by Winter [40], Kuhlmann-Wilsdorf and Laird [41], and Jin [42] who each concluded that dislocation arrangements at the centre of the veins, accumulated at the lower stresses required early in fatigue, tend to be more widely spaced and thus softer than the outer shell of dislocations accumulated later on. Nucleation of embryonic PSBs is thus thought to occur through the collapse of the vein interiors as the applied stress increases to levels that cannot be supported by the softer dislocation structure. Our ECCI observations seem to support this in that the walls of PSBs seen in the early stages of formation are generally connected to the outer shell of adjacent matrix veins (see figure 3).

In the early stages of stress saturation the PSB walls tend to be inclined to the primary Burgers vector, as in figure 3, while more established PSB seen after more extensive cycling have walls that are approximately perpendicular to the primary Burgers vector (see figure 4). This may simply be

due to initial alignment of the PSB walls with the existing hard outer shells of the veins from which they formed, which then adjust to a more stable orientation gradually as cycling continues.

4.3 Continuing Persistent Slip Band Formation

PSB volume fraction as measured using ECCI on the cross-glide face was found to increase continuously with cycling beyond the stress saturation point. This is in agreement with similar results based on observation of the 'side faces' by Basinski *et al* [32]. The continued conversion of matrix material into new PSB material whilst the peak stress remains essentially unchanged implies that either existing PSBs or the matrix itself is hardening and can no longer accommodate the applied strain. Since the new PSBs must be formed by conversion of the matrix structure it seems unlikely that the matrix is hardening significantly, as this would imply increased resistance to dislocation processes and tends to inhibit conversion to new PSBs. The hardening of 'old' PSBs has been linked to the activation of secondary slip and the formation of misoriented dislocation cell structures such as those seen in figure 6 by Wang and Mugrhabi [43]. However, in single crystals such structures are only evident quite late in the fatigue life, or at higher plastic strain amplitudes , while the observed steady increase in the PSB volume fraction occurs much earlier.

The increase in PSB volume fraction could either be through growth of existing PSBs or the nucleation of entirely new PSBs. Our ECCI observations of PSBs of finite length tapering to a point suggest that growth of such a PSB by extension along the slip plane can occur. The larger strain that occurs in the PSB will lead to a stress concentration at the PSB tip which will encourage collapse of matrix veins in the vicinity. The tapered PSB thus grows by destabilising the matrix veins directly ahead of it and propagating forward along the slip plane. The observation that the wider regions of matrix remain present in the samples even though the PSB volume fraction is increasing as deformation continues also suggests that there is some mechanism in operation that causes new PSBs to nucleate close to existing ones. The stress concentration near the tapered tip of PSB may cause collapse of a vein that is slightly displaced from the slip plane on which the existing

PSB is growing. A new PSB on a near by slip plane can thus be nucleated, which is in accord with the observed increase in the frequency of narrow (2-3 μ m) matrix regions as cyclic deformation continues.

5. CONCLUSIONS

ECCI extends the usefulness of the SEM by allowing crystallographic defects to be revealed in bulk samples. This is particularly useful in the study of cyclic deformation where the evolution of dislocation structures can be followed in the same sample throughout its fatigue life. From this study of copper single crystals fatigued up to and beyond saturation of the shear stress amplitude, the following conclusions can be drawn:

- ECCI can easily image and distinguish matrix vein, PSB ladder, and misoriented cell structures.
 Furthermore quantitative measurement of the dislocation structures can be made.
- 2) Matrix veins increase in width and decrease in separation rapidly during the initial period of cyclic hardening. Throughout stress saturation the matrix remains plastically active since there is sufficient stress to cause motion of screw dislocations in the matrix channels.
- 3) The earliest PSBs observed indicate formation through the collapse of vein interiors. Newly formed PSBs possess walls that are inclined to the primary slip direction.
- The PSB volume fraction increases continuously throughout the fatigue life indicating that older PSBs harden and so contribute less to the overall strain.
- 5) ECCI revealed PSBs of finite length tapering to a point. The stress concentration ahead of a tapering PSB could help achieve the increase in PSB volume fraction by either growth of the existing PSB along its slip plane, or by nucleation of a new PSB on a nearby parallel slip plane.

6. ACKNOWLEDGEMENTS

The authors thank Professor Sir Peter Hirsch and Dr John Martin for useful discussions through the course of this work, and acknowledge the late Professor Z S Basinski for his generous supply of single crystals. The work was supported by the EPSRC. AJW thanks the Royal Society for their support through the University Research Fellowship scheme.

REFERENCES

- [1] Booker G. R., Shaw A. M. B., Whelan M. J. and Hirsch P. B. 1967, Phil. Mag. 16, 1185-1191
- [2] Booker G. R., 1970. in Modern diffraction and imaging techniques in materials science, ed.
- Amelinkx S., Gevers R., Remant R. and van Landuyt J. (North Holland, Amsterdam)
- [3] Clarke D. R. and Howie A., 1971, Phil. Mag. 24, 959-971
- [4] Spencer J. P., Humphreys C. J. and Hirsch P. B., 1972. Phil. Mag., 26, 193-213
- [5]Morin P., Pitaval M., Besnard D. and Fontaine G., 1979, Phil. Mag. A, 40, 511-524
- [6] Czernuszka J. T., Long N. J., Boyes E. D. and Hirsch P. B., 1990, *Phil. Mag. Lett.*, **62**, 227-
- [7] Wilkinson A. J. and Hirsch P. B., 1995, Phil. Mag. A, 72, 81-103
- [8] Simkin B A and Crimp M A, 1999. Ultramicroscopy, 77, 65-76
- [9] Wilkinson, A. J. and Hirsch P. B., 1997, *Micron*, 28, 279.
- [10] Dudarev, S. L., Ahmed, J., Hirsch, P. B. and Wilkinson, A. J., 1999, Acta Cryst. A55, 234.
- [11] Ahmed, J., Wilkinson, A. J. and Roberts, S. G., 1997, Phil. Mag. Lett., 76, 237.
- [12] Melisova D., Weiss B. and Stickler R., 1997, Scripta Metallurgica, 36, 1061-1066.

[13] Li, X. W., Hu, Y. M., and Wang, Z. G., 1998, Material Science & Engineering, A248, 299-303 [14] Ahmed, J., Wilkinson, A. J. and Roberts, S. G., 1999, J. Microscopy, 195, 197-203. [15] Gong, B., Wang, Z., Chen, D., and Wang, Z. G., 1997, Scripta Metallurgica, 37, 1605-1610. [16] Schwab A., Bretschneider J., Buque C., Blochwitz C. and Holste C., 1996, Philosophical Magazine Letters, 74, 449. [17] Zhang Z.F. and Wang Z.G., 1998, Phil. Mag. Lett., 78, 2, 105-113. [18] Chen, D. L., Melisova, D. Weiss, B. and Stickler, R., 1997, Fatigue Fract. Eng. Mater. Struct., , 1551. [19] Ahmed, J., Wilkinson, A. J. and Roberts, S. G., 2001, Phil. Mag. A., 81, 1473-1488 [20] Wilkinson A. J., Henderson M. B., and Martin J. W., 1996, Phil. Mag. Letters, 74, 145-151 [21] Davidson, D. L., and Lankford, J., 1981, Int. J. Fracture, 17, 257-275. [22] Zauter R., Petry F., Bayerlein M., Sommer C., Christ H.-J. and Mughrabi H., 1992, Phil. Mag. A, 66, 425. [23] Basinski, Z. S. and Basinski, S. J., 1992, Progress in Materials Science, 36, 89. [24] Mughrabi H., 1978, *Materials Science and Engineering*, **33**, 207-223. [25] Li, X. W., Wang, Z. G., Li, S.X., 1999, Phil. Mag. Letters, 79, 715-719. [26] Hunsche, A. and Neumann, P, 1986, Acta Metallurgica, 34, 207. [27] Ma, B.-T. and Laird, C., 1989, Acta Metall., 37, 325. [28] Mughrabi H., Ackermann F. and Herz K., 1979, Fatigue Mechanisms, Special Technical Report 675, ASTM, Philadelphia, pp. 69-105.

[29] Basinski, Z. S. and Basinski, S. J., 1985, Acta Metallurgica, 33, 1319.

[30] Basinski, Z. S. and Basinski, S. J. ,1984, Scripta Metallurgica, 18, 851-856.

[31] Hirsch P. B., Howie A., Nicholson R. B., Pashley D. W. and Whelan M. J., 1965, *Electron Microscopy of Thin Crystals*, (Butterworths, London).

- [32] Basinski, Z. S., Pasucal, R., and Basinski, S. J., 1983, Acta Metallurgica, 31, 4, 591-602.
- [33] Pedersen, O. B., and Winter, A. T., 1995, *Physica Status Solidi A*, 149, 281-296.
- [34] Brown, L. M., 2000, Mater. Sci. Eng. A, A285, 35-42.
- [35] Lisiecki L. L and Pedersen O. B. 1991, Acta Mater., 39, 1449-1456
- [36] Mughrabi H., 1979, in Proc. 5th Int. Conf. Strength of Metals & Alloys, Eds. Haasen, P.,
- Gerold, V. & Kostorz G, (Pergamon Press, Oxford), pp 1615.
- [37] Feltner, C. E., 1965, *Philosophical Magazine A*, **12**, 1229-1248.
- [38] Kuhlmann-Wilsdorf, D., 1979, Materials Science and Engineering, 39, 231-245
- [39] Antonopoulos, J. G., Brown, L. M. and Winter, A. T., 1976, Phil. Mag., 34, 549.
- [40] Winter A. T., 1978, *Philosophical Magazine*, **37**, 457-463.
- [41] Kuhlmann-Wilsdorf, D., and Laird, C., 1977, Materials Science and Engineering, 27, 137
- [42] Jin N. Y., 1989, Acta Metallurgica, 37, No7, pp. 2055-2066.
- [43] Wang R, and Mugrhabi H, 1984 Mater. Sci. Engng, 63, 147-163

8. FIGURE CAPTIONS

- Figure 1 ECCI micrographs obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for (a) 50 cycles and (b) 2000 cycles. Considerable thickening of the initial matrix walls into matrix veins is clearly evident.
- Figure 2: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 2500 cycles. A few thin dislocation walls (white arrows) can be seen within the matrix vein structure.
- Figure 3: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 5000 cycles. PSBs have now nucleated within the matrix. Note the inclination of the walls forming the PSBs.
- Figure 4: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 40000 cycles. Well-established PSBs span the image and have walls perpendicular to the slip direction. Other thinner PSBs (arrowed) do not span the micrograph.
- Figure 5: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 180000 cycles. The two arrowed PSBs taper to a point and end within the micrograph.
- Figure 6: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of 10⁻³ for 180000 cycles. Regions at the top and bottom of the micrograph show local misorientations.
- Figure 7: Schematic diagram showing the parameters used to describe the matrix and PSB microstructures.

Figure 8: Evolution of vein volume fraction within matrix (V), vein width (W) and channel width D with number of applied fatigue cycles at a plastic shear strain amplitude of 2×10^{-3} .

Figure 9: Increase in PSB volume fraction with cumulative strain.

- Figure 10:Histograms showing distributions of PSB widths and matrix region widths measured from ECCI micrographs taken of the cross glide face of a sample after fatigue for differing numbers of cycles at a strain amplitude of $2x10^{-3}$.
- Figure 11:Decrease in calculated height of screw dipoles within matrix channels that are just stable against separation by applied peak stress.

FIGURES

Figure 1: ECCI micrographs obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for (a) 50 cycles and (b) 2000 cycles. Considerable thickening of the initial matrix walls into matrix veins is clearly evident.

Figure 2: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 2500 cycles. A few thin dislocation walls (white arrows) can be seen within the matrix vein structure.

Figure 3: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 5000 cycles. PSBs have now nucleated within the matrix. Note the inclination of the walls forming the PSBs.

Figure 4: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 40000 cycles. Well-established PSBs span the image and have walls perpendicular to the slip direction. Other thinner PSBs (arrowed) do not span the micrograph.

Figure 5: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of $2x10^{-3}$ for 180000 cycles. The two arrowed PSBs taper to a point and end within the micrograph.

Figure 6: ECCI micrograph obtained from the cross glide face after cycling at a plastic strain amplitude of 10^{-3} for 180000 cycles. Regions at the top and bottom of the micrograph show local misorientations .

Figure 7: Schematic diagram showing the parameters used to describe the matrix and PSB microstructures.

Figure 8: Evolution of vein volume fraction within matrix (V), vein width (W) and channel width

D with number of applied fatigue cycles at a plastic shear strain amplitude of 2×10^{-3} .

Figure 9: Increase in PSB volume fraction with cumulative strain.

Figure 10:Histograms showing distributions of PSB widths and matrix region widths measured from ECCI micrographs taken of the cross glide face of a sample after fatigue for differing numbers of cycles at a strain amplitude of $2x10^{-3}$.

Figure 11:Decrease in calculated height of screw dipoles within matrix channels that are just stable si eak stress

against separation by applied peak stress.