
HAL Id: hal-00513667
https://hal.science/hal-00513667

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About the importance of introducing a correction factor
in the Sneddon relationship for nanoindentation

measurements
Michel Troyon, Sébastien Lafaye

To cite this version:
Michel Troyon, Sébastien Lafaye. About the importance of introducing a correction factor in the
Sneddon relationship for nanoindentation measurements. Philosophical Magazine, 2006, 86 (33-35),
pp.5299-5307. �10.1080/14786430600606834�. �hal-00513667�

https://hal.science/hal-00513667
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

About the importance of introducing a correction factor in 
the Sneddon relationship for nanoindentation 

measurements 
 
 

Journal: Philosophical Magazine & Philosophical Magazine Letters 

Manuscript ID: TPHM-05-Nov-0486.R1 

Journal Selection: Philosophical Magazine 

Date Submitted by the 
Author: 

06-Dec-2005 

Complete List of Authors: Troyon, Michel; University of Reims 
Lafaye, Sébastien; University of Reims 

Keywords: nanoindentation, hardness 

Keywords (user supplied): correction factor, Sneddon relationship, contact area 

  
 
 

 

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters



For Peer Review
 O

nly

 1 

About the importance of introducing a correction factor in the Sneddon relationship for 

nanoindentation measurements 

 

M. TROYON* and S. LAFAYE 
 

Laboratoire de Microscopies et d’Etude de Nanostructures, EA 3799, Université de Reims, 

21, rue clément Ader, 51685 Reims Cedex 2, France. 

 

 

Abstract 

 

In the Sneddon relationship between unloading contact stiffness, elastic modulus and contact 

area, it is absolutely necessary to introduce a correction factor α to perform good elastic 

modulus and hardness measurements by nanoindentation. This is verified in the present paper 

by comparing the contact area determined from the Sneddon equation in the usual way, to the 

projected area of the residual indent measured by AFM. For the fused quartz indented by a 

sharp Berkovich indenter, the tip radius of which is 180 nm, a α value as high as 1.17-1.19 is 

evaluated for a load of 10 mN corresponding to a penetration depth of about 300 nm. This 

correction factor is not a constant having a single value valid for any Berkovich indenter, but 

strongly depends on the blunting state of the indenter when measurements are performed in 

the nanoindentation regime, i.e. penetration depths of the order of a few hundreds nanometers. 
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Introduction 

 

In instrumented indentation, the elastic modulus and hardness are determined from the 

Sneddon [1] basic fundamental equation 

 

cru AES
π

2
=                                                      (1) 

between unloading contact stiffness Su, reduced elastic modulus Er and contact area Ac. 

Experimentally, the contact area function of the indenter is determined from this above 

equation by measuring the unloading stiffness of a reference material of known modulus. 

Then, the indentation hardness is determined by cAPH /max=  and the elastic modulus from 

Eq. (1) by using the area function determined on the reference material. The basic assumption 

of the method is that the contact area at maximum load is equal to the projected area of the 

residual impression, even for an elastic/plastic material [2].  

 

Eq. (1) holds for any punch that can be described by a solid of revolution of a smooth 

function. In the case of a not axially symmetric indenter, King [3] showed by finite element 

calculation that a geometrical correction factor β should be introduced in Eq. (1) such as: 

cru AES
π

β
2

=  .                                                   (2) 

For an indenter of triangular cross-section, as for example the Berkovich indenter, the value 

given by King is β=1.034. Very recently, Woirgard [4] has analytically demonstrated that the 

exact value of this geometrical correction factor for the perfectly sharp Berkovich indenter 

should be β=1.062.  

 

Several studies suggested that the correction factor could also depend on the material. In the 

context of a perfect elastic contact Hay et al. [5] show that the correction factor depends on 

the Poisson’s ratio. Studies by Cheng and Cheng [6] and Dao et al. [7], using dimensional 

analysis and finite element calculations in the case of elastic/plastic materials with work 

hardening, demonstrate also the existence of this correction factor, suggesting that it also 

depends on the elastoplastic properties of the material. In a recent review paper, Oliver and 

Pharr (O&P) [8] remark that the different studies published on this correction factor give 

values between 1.023 and 1.085 and they suggest that 1.05 should be probably a good choice 

with a potential for error of approximately ±0.05. Very recently, Troyon and Huang [9] have 

experimentally shown that the correction factor strongly depends on the indenter tip radius in 

the nanoindentation regime, i.e. for penetration depth of about 300 nm or less. Additionally, 

these authors have also shown on two other materials, titanium and (100) oriented MgO 

monocrystal, that the correction factor is material dependent. From these above results, it 

seems thus, for resuming, that the correction factor depends on the indenter geometry, but also 

on the deformation behaviour of the material which is indented. 

 

For a sharp Berkovich indenter of radius R=105 nm, Troyon and Huang [9] determined a 

correction factor of 1.07, and for the same indenter, which was slightly blunted after several 

months of utilisation (R=350 nm), the correction factor was as high as 1.26 for the fused 

quartz. These correction factor values were obtained by comparing the contact area deduced 

from Eq. (1) to the real contact area of a Berkovich indenter modelled by a rigid cone of half-

included angle of 70.32° (the angle that gives the same depth-to-area ratio as the berkovich 

indenter) truncated by a spherical cap. The accuracy of these experimental results depends on 

how well the fundamental relations used in the analysis of nanoindentation load-displacement 

Page 2 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 3 

data  allow the determination of elastic modulus and hardness and also on the tip modelling 

quality. To raise the doubt on the veracity of these measurements, the best way of proceeding, 

as suggested by one of the referee of their paper, is to precisely measure the projected area of 

the residual impression on a material, the fused quartz, that is generally considered as a good 

one since it is used as a reference material. In the present paper, the projected area of the 

residual impression made in fused quartz is measured by atomic force microscopy and 

compared on the one hand to the contact area determined from Eq. (1) and on the second hand 

to two different methods relying both on the equations developed in the O&P analysis [2]. 

The first method is based on the tip modelling [9] and the second one on the two-slope 

method [10-11],  which relies on the determination of the slopes of the loading and unloading 

curves rather than the indenter displacement as an input. 

 

1. Experimental 

 

The nanoindentation measurements were carried out with a nanoindenter (Triboscope, 

Hysitron Inc.) coupled to an atomic force microscope (Nanoscope II, Digital Instruments). 

Measurements were performed on fused quartz with a Berkovich indenter. The residual 

impression area was measured with another atomic force microscope (Nanoscope IIIa, Veeco) 

working in the contact mode, the calibration of which was carefully controlled on a calibrated 

grating. All the experimental details (compliance determination, load-time sequence, drift 

correction, etc.) are described in Ref. [9]. Our measurements are based on the O&P method 

except that the factor ε=0.75 in the expression of the contact depth uc SPhh /maxmax ε−= was 

replaced by the function ε(m) [12], where m is the exponent of the power-law relation 

( )m
fhhBP −=  which fits the unloading curve, and the area function was obtained by fitting 

the data according to the function D(hc+ξ)
2
, where D and ξ are free adjustment parameters, 

instead of using the polynomial expression proposed by O&P. The indentation measurements 

were limited to the range 2-10 mN for which the hardness is depth-independent. The radius of 

the indenter tip was evaluated by using the Hertzian equation between load and penetration 

depth 23
r hRE

3

4
P = . A mean radius value R=180 ±19 nm was calculated from about 

twenty loading-unloading experiments performed at a very low load P=20 µN so as  to stay in 

the elastic regime. 

 

2. Description of the methods for measuring the correction factor 

 

Let us first illustrate, from previous published results [9] that the usual way of measuring the 

hardness in instrumented nanoindentation leads to a serious issue. When the Sneddon 

equation (1) is used without correction factor to determine the contact area, the hardness is 

given by: 

( )2max 2 ru ESPH π= .                                             (3) 

 

Fig. (1) shows two area functions determined for the fused quartz from Eq. (1) plotted versus 

the contact depth. One curve was obtained with a sharp indenter radius R=105 nm and the 

other with a blunted indenter of radius R=350 nm. The maximum of each curve corresponds 

to a maximum load P=10 mN. Therefore, it can be clearly seen that the two indenters do not 

give the same hardness value, which is very strange since it is the same material. These 

experimental results suggest that a correction factor for contact area must be introduced in Eq. 

(1), which should be tip radius dependent. In Eq. (2) the correction factor β is strictly related 
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to the lack of revolution symmetry of a perfectly sharp indenter. To make the difference 

between a sharp indenter and a blunted one we will use in the following the notation α for the 

correction factor, this one taking also into account the material dependence according to the 

results of Troyon and Huang  [9], such as :  

cru AES
π

α
2

=                                                (4) 

 

[Insert Fig. 1 about here] 

 

3-1. Determination of αααα by tip modelling 
 

We have modelled the Berkovich indenter by a rigid cone of half-included angle ϕ and a 

spherical extremity of radius R. Then, its area function can be described by  

( ) ( )222tan bcbcc hhChhA +=+= ϕπ                                           (5) 

 

where C=24.56 for the Berkovich indenter and hb is the blunting distance (see Fig. 2) given by 









−= 1

sin

1

ϕ
Rhb .                                                        (6) 

Substituting the value of Ac given by Eq. (4) into Eq. (3) allows the determination of α : 

( )
2

22

4
56.24 








=+

r

u

bc
E

S
hh

π
α .                                               (7) 

 

[Insert Fig. 2 about here] 

 

3-2. Determination of αααα by the two-slope method 

 
The principle of the two-slope method, which is an analysis technique rarely used in the 

literature although very attractive since there is no need to determine the area function, has 

been first formulated by Oliver [10]. This method relies on the determination of the slopes of 

the loading and unloading curves, which represent the loading and unloading contact stiffness, 

respectively, when they are calculated at the maximum penetration depth. Very recently, 

Troyon and Huang [11] have reformulated the equations in such way that the correction factor 

α is taken into account and the hardness obtained with the two-slope method is in agreement 

with that given by the usual O&P method determined by Eq. (3). The main equations are 

recalled below. 

The load-depth relationship is : 

( )2

2

2 2

1
b

r

r

r hh
E

H

H

E

C
EP +










+=

−

π
ε

α
                                 (8) 

 

The reduced modulus and the hardness are given by 










−
=

lu

lu

r
SS

SS

PC
E

εα
π

22

1
2

,                                         (9) 

2

2 2

11









−
=

lu

lu

SS

SS

PC
H

εα
,                                          (10) 

where Sl is the loading slope, and the contact area is : 
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2

2 2







 −
=

lu

lu

c
SS

SS
CPA

ε
 .                                              (11) 

From Eq. (9), knowing the reduced modulus of the material and measuring Su and Sl at Pmax, 

the correction factor α can be easily determined. The way we have measured the loading and 

unloading slope is explained in Ref. [11]. 

 

3-3. Measurement of the projected area by AFM 

 

Fig. 3 shows the AFM images of the residual impression. In Fig. 3a the area is measured by 

considering that the area corresponds to the area of the triangle joining the edges of the 

imprint and in Fig. 3b we have used a flooding method (WSxM v4.0 software from Nanotec 

company) which delimits all the points of the image having the same height (or depth) with 

respect to a reference height (or depth). In the present case, the algorithm fills up the inside of 

the indentation till the surface, i.e., determines all the pixels having a height equal to the 

residual penetration depth, the bottom of the indent serving as the height reference.  

 

[Insert Fig. 3 about here] 

 

4. Results and discussion 

  

In table 1 are reported the values of the contact areas measured by the different methods for 

indentations made at P=10 mN with a Berkovich indenter with a radius R=180±19 nm. The 

corresponding α and hardness values are also given. For the usual method, α=1, the contact 

area is ( )( )24 ruc ESA π=  , and the hardness is given by Eq. (3). For the tip modelling 

method ( )256.24 bcc hhA += and α is determined from Eq. (7). The accuracy with which α is 

determined is evidently related to the measurement accuracy of each parameter intervening in 

Eq. (7), that are Su, hc and hb. The blunting distance hb plays a particular role. Its determination 

depends on the quality of the tip modelling, and its contribution to the error on α depends on 

the magnitude of hc. In the present experiment hc∼160 nm and hb∼11 nm. Therefore, 10% 

error on hb leads to an error on α of about 0.6%. The determination of Su and hc results from 

the analysis of the unloading curve, that is mainly from the elastic properties of the material. 

One may thus think here that α not only depends on the indenter geometry but is also 

sensitive to the elastic properties of the material. It has been shown by finite element 

calculations [13] that the O&P method fails to determine the contact depth well in case of 

pile-up and thus, in that case, the correction of the Sneddon relationship is partly inefficient. 

Only a measure of the amount of pile-up, for example by AFM profiling, could allow a 

correct determination of the hardness. 

 

For the two-slope method Ac is given by Eq. (11) and α is determined from Eq. (9). The 

accuracy on α is directly related to the measurement accuracy with which the loading and 

unloading slopes are determined. One will remark that the two-slope method is based on the 

same set of equations and assumptions used in the O&P analysis and thus the two-slope 

method suffers from the same drawbacks as the O&P method. Contrary to the tip modelling 

method, α does not depend on the contact depth, but is sensitive to the loading curve, 

therefore to the plastic deformation. One may thus think here that α will not only correct for 

the indenter geometry defects but will take better into account the material deformation 

behaviour.   

 

Page 5 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 6 

For the AFM measurements the area is directly obtained from the images and the 

corresponding values of α are obtained by writing ( )( ) ( )
AFMcru AES

22
4 απ = . Fig. 3b 

clearly shows that the sides of the imprint present a curvature towards its centre. This can be 

caused either by differential elastic recovery after unloading or by some degree of surface 

sink-in due to material movement during loading. Therefore, taking the area of the indentation 

as a perfect triangle leads to measurement errors. Nevertheless, to measure the area in this 

way presents some interest for the comparison with the tip modelling and the two-slope 

methods, because the triangle corresponds better to the shape of the indenter when it is 

pressed against the material at maximum load.  

 

All the measurements that are given in Table 1 are the mean values of six different 

indentations. The errors of measurements on the contact areas and hardness values are 

evaluated to be of the order of  ±5%. 

 

[Insert Table 1 about here] 

 

It can be noticed that the indent area measured by the flooding method is the smaller one. 

That is the closest to the reality which correspond to the Meyer hardness definition. The 

contact area obtained by the usual method is largely overestimated and leads to a hardness 

underestimated by 30% with respect to that obtained from AFM measurement by the flooding 

method. The area measured by AFM from the indent considered as a triangle is in good 

agreement with the area measured by the two-slope method. Indeed, as explained above the 

shape of the contact area at maximum load is inevitably a triangle. It seems that the area 

measured from the tip modelling is in less good agreement than that obtained by the two-slope 

method. This may seem normal since the model does not fit exactly with the real shape of the 

indenter. The extremity of the Berkovich indenter cannot be considered exactly as a spherical 

tip and the radius that we have measured by the herztian  theory is just an equivalent radius.  

  

Troyon and Huang [9] have measured α=1.07 and 1.26 for a tip radius R=105 and 350 nm, 

respectively, by using the tip modelling method, and α=1.31 for R= 350 nm by the two-slope 

method [11]. Herein, for an intermediate radius R=180 nm, the values of α are 1.12 by tip 

modelling and 1.15 by the two-slope method. These results confirm thus the extreme 

sensitivity of the correction factor to the blunting state of the indenter and show that it is 

especially important not to forget the existence of the correction factor in the Sneddon 

equation (1) when indentation are performed in the nanoindentation regime, i.e. when the 

penetration depth is in the range of a few hundreds of nanometers. The comparison with AFM 

measurements raises the doubt, if any, concerning so important α values.  

 

Evidently, more the penetration depth is important (microindentation regime) and less the 

magnitude of α is. Indeed, a slightly blunt indenter has less influence at penetration depth of 

several micrometers and can be considered as a sharp one. Nevertheless, according to the 

analytical calculations of Woirgard [4], the minimum value that the correction factor could 

take should be 1.062 for a Berkovich indenter, which is already a non negligible correction 

that merits to be taken into account and not forgotten as it is often the case in a large majority 

of papers published in the literature. 

 

3. Conclusion 
 

Page 6 of 14

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 7 

The usual way of determining the contact area in instrumented indentation from the Sneddon 

equation is compared to the projected area of the residual indent measured by AFM, to the 

contact area determined from the two-slope method and also to the contact area of a 

Berkovich indenter modelled by a cone truncated by a spherical cap. The measurements are 

performed on the fused quartz, at a load of 10 mN, with a pretty sharp indenter the radius of 

which is 180 nm. The contact area determined from the Sneddon equation is strongly 

overestimated with respect to that measured by AFM, of the order of 35 to 40%, indicating 

that a correction factor must be absolutely introduced in the Sneddon equation. This 

correction factor, in the present experiment, is 1.19 or 1.17 for the AFM measurements, 1.15 

with the two-slope method, and 1.12 with the tip modelling. Therefore, it is extremely 

important to determine this correction factor for each specific indenter used during an 

indentation test, chiefly in the nanoindentation regime, i.e. for depths of the order of a few 

hundreds of nanometers. The two-slope method seems to be a good and easy method to 

correctly evaluate the correction factor. Finally, we would like to conclude by drawing the 

attention of the nanoindentation community on the fact that the correction factor is not a 

universal constant having a single value which would be defined by the type of indenter, since 

its value depends on the blunting state of the indenter and also on the material tested as shown 

by one of the present authors in a previous paper. 
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Figure captions 
 

Fig. 1 : Calculated contact area versus contact depth for the fused quartz and a sharp (R=105 

nm) and blunt (R=350 nm) Berkovich indenter tips, fitted with the function C(hc + ξ)
2
. The 

maximum of each curve corresponds to a load of 10 mN. 

 

Fig. 2 : Indenter modelled by a rigid cone of half-included angle ϕ and a spherical extremity 

of radius R. 

 

Fig. 3 : AFM images 1.9×2 µm
2
 of the residual impression made in fused quartz at P=10 mN 

with a Berkovich indenter the radius of which is R=180 nm. In image 3(a), the projected area 

equals the triangle area and in image 3(b) a flooding method is used to delimit the area 

corresponding to the points of the image having the same depth as that of the residual depth. 

 

Table 1 : Values of the contact areas measured by the different methods and the 

corresponding correction factor and hardness values. 
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Table 1 

 

 

 Usual  

method 

Tip  

modelling 

2-slope 

method 

AFM 

triangle 

AFM  

flooding 

Ac (µm
2
) 1.2 0.95 0.92 0.89 0.85 

α 1 1.12 1.15 1.17 1.19 

H (GPa) 8.3 10.5 10.8 11.2 11.7 
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