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Abstract 

Point defects in nematics, also called hedgehogs, are topological entities that have no 

equivalent in ordered atomic solids, despite the homonymy.  They have been the subject of 

intense experimental and, above all, theoretical (analytic and computational) investigations in 

the last thirty years.  They are present in bulk specimens and at the specimen boundaries.  

This review article stresses the importance of the core structure of the defect, of its possible 

splitting into a disclination loop, of the boundary conditions, and takes stock of the recent 

advances on point defects in nematic colloidal suspensions.  An important topic is the 

formation of strings between opposite hedgehogs (radial and hyperbolic), and their role in the 

dynamic properties of nematics. 

Keywords: liquid crystals, point defects, hedgehogs, boojums, topological defects 

1. Introduction 

A nematic liquid crystal is an anisotropic fluid formed by rod-like or disk-like molecules that 

tend to be parallel to a common direction, the director, noted n (n2=1) .  The directions n  and 

–n  are physically equivalent: n≡–n .  There is no long-range translational order in the system 

and thus nematics are fluid and very sensitive to the external field, which explains why they 

became a key technological material in applications such as informational displays.  Nematic 

liquid crystals are in the focus of intensive interdisciplinary studies also because they 

represent a well-defined soft matter system with a rich variety of supramolecular structures, 

most notably those corresponding to the so-called topological defects.  A topological defect is 

a configuration of the order parameter that cannot be transformed continuously into a uniform 
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state.  They can occur during the symmetry breaking phase transitions, under an external 

field, or simply be a necessary element of an equilibrium state.  For example, in a sufficiently 

large spherical nematic droplet with perpendicular alignment of molecules at the surface, the 

director field forms a radial-like configuration with a point defect at the centre, in order to 

reach an equilibrium state.  This point defect in the director configuration is of a completely 

different nature as compared to point defects such as vacancies and interstitials in solid 

crystals [1]; its topological nature means that the distortions of the order parameter around the 

“point” extend throughout the entire system.  

 The singular points of a vector field (cols, nœuds, foyers, etc) were classified by 

Poincaré [2], by using the tools of the theory of ordinary differential equations; Nabarro[3] 

was the first to notice that Poincaré’s method can be applied, with the purpose of  classifying 

point defects, to spins in a ferromagnet and directors in a nematic insofar as the sample does 

not show circuits along which n  is reversed.  

The topological classification of defects, on the other hand, relies on the topological 

properties of the order parameter space.  It does not give a classification as detailed as the 

vector field one, but its principles can be extended to any ordered medium and to defects of 

any dimensionality [4,5].  The scalar order parameter S(T)  of a uniaxial nematic is the 

thermal mean 1
2 < (3cos2 θ – 1) > of the orientation of the molecules about the director.  More 

precisely, the order parameter (o.p.) is a traceless tensor Qij = S(T)(ni n j – 1
3δij ) .  The o.p. 

space is the space of all the realizations of the o.p..  In the case of a uniaxial nematic, a sphere 

of unit radius represents adequately all the directions of n ; the o.p. space is therefore a half 

sphere, namely the projective plane, noted P2 , see [6].  Topological defects of various 

dimensionalities d in ordered media are classified by the homotopy groups Πn(V), n = D –d – 

1, where D is the space dimension; in a 3D nematic, V = P2 , n = 1 stands for line defects 

(disclinations), n = 2 for point defects.  The topological charge (an invariant) carried by a 

point defect can be calculated by the relation [7] 

4πN= εijk∫∫ εpqrnq, jnr,knpdSi        (1) 

where the integration is performed on a sphere-like surface surrounding the singular point.  N 

is an integer; Π2(V ) = Z.  Point defects N=±1 , the only ones ever observed experimentally, 

are called hedgehogs. Because Eq. 1 is odd in the director components and n≡–n , the same 

point defect can be assigned opposite charges: also, the charge can be drawn opposite by a 

circumnavigation of the point defect around a disclination line of strength k = ± 1
2  (about 
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which the director changes sign) [8].  It is usual to assign the value N=+1 to a radial 

hedgehog, N=–1 to a hyperbolic hedgehog, see Fig. 1.  Nabarro has probably been the first to 

show a keen interest in the topology of defects in a nematic [9] by noticing that the Euler-

Poincaré characteristic of a sphere [5] measures the total strength of the disclinations piercing 

the boundary of a nematic droplet, if the boundary conditions are such that the director is 

everywhere parallel to the droplet surface ( 2=∑i ik ). 

Fig. 1. Capillary tube with homeotropic (i.e. normal) boundary conditions, meridian section.  The 
director is in the meridian plane. Point defects N = +1 (radial hedgehog) and N = – 1 (hyperbolic 
hedgehog). 

The free energy density associated with the changes of the tensor order parameter in 

the vicinity of the nematic-isotropic phase transition is of the Landau-De Gennes form: 

fLdG = 1
2 a(T, p)tr Q

2 – 1
3b trQ

3 + 1
4 c(trQ

2)2      (2) 

When the scalar order parameter does not change much, which is true for director 

deformations over the scales much larger than the molecular size, then the free energy density 

of the elastic director distortion is written as the Frank-Oseen expression 

fFr = 1
2K1 (divn)2 + 1

2K2 (n.curln)2 + 1
2 K3(n × curln)2 – K24 div(ndivn + n × curln)    (3) 

with Frank elastic constants of splay ( 1K ), twist ( 2K ), bend ( 3K ), and saddle-splay ( 24K ). 

Nabarro made also very early observations of hedgehogs in capillaries [10].  In fact, 

there have been very few detailed experimental investigations of hedgehogs in the course of 

time since their appearance in the realm of nematics, compared to the flourishing of 

theoretical studies, these latter encouraged by the development of computer methods.  On the 

other hand, theory and experiment seem to go hand in hand for point defects in colloidal 

suspensions in nematics, where an air bubble (which acts as a positive N=+1point defect) or a 

droplet or a particle that compensate a negative N = –1 point defect in their vicinity [11], can 

form a stable dipole. 

This paper presents a brief review of bulk point defects (hedgehogs) and surface 

singular points, often called boojums (the name is due to Lewis Carroll and has been adopted 

frenetically by the superfluid and liquid crystal communities thanks to Mermin).  

2. Bulk and surface singular points. 

2. 1. Static observations 
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Defects usually appear in the bulk of a sample by symmetry breaking, at the 

isotropic→nematic transition INT , either by a thermal quench or a slow transition; pressure 

quench has also been employed.  One expects to get this way a random array of defects of 

various dimensionalities: point defects, disclination lines, and configurations or solitons (non-

singular topological defects) [4].  The final defect distribution depends on the time of 

annealing and on the boundary conditions, i.e. on the anchoring conditions at the boundaries 

of the sample, like those induced by a physical or chemical surface treatment; this forces the 

orientation of the molecule.  

We are interested in point defects.  A remarkable experimental result is that their 

occurrence in the bulk just after quench (independently of the boundary conditions) is a rather 

rare, if ever observed, event [12].  It has been given of this phenomenon an interesting (and 

subtle) explanation [13].  The topological charge N (Eq. 1) measures twice the number of 

times that P2  is covered by the order parameter (the director); this is a rather difficult 

geometric requirement to be obeyed by the correlated nematic domains which appear 

randomly about some point of the sample at the transition.  The probability of this event can 

be calculated [13].  The idea follows the lines of the celebrated Kibble mechanism for the 

generation of cosmic strings (considered as singularity lines) in the early universe [14], which 

has inspired laboratory experiments on liquid crystals, see e.g. [15].   

Hedgehogs are thus observed in special geometries with specific anchoring conditions, 

namely in capillaries [10,16,17,18,19], in nematic droplets [20], and in confined parallel 

samples with hybrid boundary conditions [21,22].  Our references are not exhaustive.  On the 

other hand, hedgehogs are the rule rather than the exception, in nematic colloidal suspensions 

(see next section), but this also proceeds from the special anchoring conditions met in such 

systems.   

In capillaries with homeotropic anchoring, the molecules normal to the boundaries 

force a radial geometry, as pictured in Fig. 1; one observes that the director ‘escapes along the 

3
rd

 dimension’ –namely the axis of the capillary– as nicely worded by Meyer [23].  The 

k = +1 disclination forced by the boundary conditions is therefore continuous along its core 

(or, differently stated, coreless).  Observe that the escape is either up or down, with equal 

probabilities if the normal anchoring is perfect.  Thus two types of point defects do appear, of 

opposite charges N=±1.  The director configuration can be investigated experimentally by 

polarized light microscopy; the resulting observations satisfy the expected geometry, at least 

qualitatively –this experimental method does not bring a large resolution. Therefore the role 
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played by the anisotropy of the elastic moduli K1, K2, K3 in the director configuration around 

the hedgehogs [23,24] has not yet been satisfactorily tested.   

Fig. 2. Schlieren texture in a sample with degenerate planar anchoring conditions.  The sample is 

observed between crossed polars.  There are two black brushes associated with the k = ±1/2 lines, and four 

brushes (the Maltese cross) associated with the k = ±1 lines.  

This same anisotropy is also responsible for the configuration of the director about 

k=+1 disclination lines, but also about k=–1 lines; see [25].  Disclination lines can be 

observed end-on in well-annealed nematic samples formed between two flat glass plates 

(Schlieren textures, see Fig. 2).  Topology requires that the sum total of the disclination 

charges vanishes, ki
i

∑ = 0.  One observes k = ± 1
2  and k=±1 lines.  In most experimental 

cases, in particular SMLCs (small molecule liquid crystals) the escaped geometry is stable 

with respect to planar singular k=±1, and point defects are present; the situation is more 

involved in main chain PLCs (polymer liquid crystals) where usually the splay modulus is so 

large that the escape can be absent in a radial geometry [26].  Thus, apart a few exceptions, 

there is ample evidence that the integer lines are coreless and carry point defects, often 

located outside the sample.  Monte Carlo calculations have confirmed these results [27]. 

The topology of a droplet with homeotropic anchoring is compatible with a radial 

hedgehog, but its actual presence depends on the anchoring energy 2~ δW (which measures 

the excess surface energy necessary to turn the director apart the normal direction by an angle 

δ , W  is called the surface anchoring coefficient), and the droplet size R.  Compare the 

surface energy, which scales as WR
2
 for a uniform director, and the bulk energy, which scales 

as (K/R
2
)R

3
 = KR for a radial hedgehog; it is easy to convince oneself that in a droplet of 

radius R smaller than approximately Rc = K/W the director is uniform, whereas a larger 

droplet contains a radial hedgehog [4].   

In a droplet with planar (degenerate) anchoring, the director field should obey the 

Euler-Poincaré theorem [6,9] and, accordingly, must suffer either two singularities with k=1 

or one singularity with k=2.  The first case (two k=1 singularities) is often met when a 

nematic droplet is suspended in an isotropic fluid such as glycerol, say [28, 20]; the second 

one being more specific of biaxial nematics (for the existence of which there appears to be 

new experimental evidences [29,30]).  Note that in both cases the point defects are essentially 

surface defects that cannot move inside the nematic bulk because of the boundary conditions.  

They are thus different from the hedgehogs that can exist both in the bulk and at the surface.  

Because of this distinction, these surface defects are called boojums [31]; a necessary 
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condition for their formation is that the director field is either tangential or tilted with respect 

to the surface so that the defect is characterized by an invariant k in addition to N  [20]. 

Finally, hybrid samples: a typical example is when a thin nematic film is spread onto 

the surface of an isotropic fluid at which the director is oriented tangentially (planar 

degenerate alignment) whereas the upper boundary is free.  Quite often the spontaneous 

anchoring at the nematic-air interface is homeotropic or tilted. The competition between the 

two anchoring modes is relaxed by the presence of surface point defects [21,22].   

2.2. Theory of the static point defect. 

In the one-constant approximation (i.e. K = K1 = K2 = K3) the geometry of a point defect can 

be represented near its core by the equations 

φ = Nθr + φ0,         tan
θ
2

= (tan
λ
2

)N      (4) 

where θ , φ are spherical angles for the director in r; θr  the polar angle of r in the horizontal 

plane, λ the angle between the Oz axis and the direction r [17].  It is apparent that θ = + λ for 

the star-like radial hedgehog, θ = – λ for the hyperbolic hedgehog. The energy does not 

diverge on the core; one gets, for the radial hedgehog, by integrating the free energy density 

all over a ball of radius R with a point defect at the centre 

E1 = 8πKR         (5a) 

and 

E–1 = 1
38πKR         (5b) 

for the hyperbolic hedgehog [32]. 

 Of course, there is a physical core, where the nature of the order parameter is modified 

with respect to the region of ‘good’ crystal.  Let us write for the radial hedgehog the total 

energy as 

E1

tot = 8πK(R – rc ) + γrc

3      (6) 

Minimizing this expression, one gets 

rc = 8πK 3γ ;         E1

tot = 8πK(R – 2
3 8πK 3γ )    (7) 

rc does not depend on the size R of the sample, and the energy is not significantly different 

from E1 , if the core is microscopic compared to R, as expected.  Therefore one can adopt 

E1 as a first approximation for the total energy.   
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 To find the minimizer of the integral 1
2 ∇n( )∫

2

 (one-constant approximation) in a 

given volume U ⊂ R
3
 is a problem relevant to the theory of harmonic maps with defects [33].  

An interesting result is that the minimal energy E∪ i{ } of a set ∪ i{}of given point defects i{} 

with N i = ±1, such that ∑Ni = 0, is given by the expression 

E∪ i{ } = 4πKL         (8) 

where L is the minimal total length of the dipoles formed by linking point defects of opposite 

signs two by two.  One cannot overestimate the physical importance of this result that stresses 

the interactions between opposite hedgehogs.  These dipoles are indeed visible in Schlieren 

textures.  A somewhat analog result was obtained in [34,35] through a dimensional analysis, 

but for a unique pair. 

Experimental observations show that the real situation is somewhat more complex, even if 

some results of the simple model above do subsist: a)- K2 is always small compared to the 

other moduli; it is then expected that the radial symmetry could be broken by a twist 

deformation.  This phenomenon has been observed for surface defects-boojums in Schlieren 

textures of lens-shaped droplets [36] and for radial hedgehogs in droplets [28], and studied 

later for spherical bipolar droplets with pairs of boojums at the poles, both experimentally 

[20,37] and theoretically [38,39]; in relation with these investigations, a radial hedgehog is 

not a minimizer in a ball with homeotropic conditions, if the Frank constants are anisotropic 

[40]; b) as pointed by Press and Arrott [36], the structure of defects is influenced by the splay-

cancelling mechanism, according to which the energy of splay deformations along one 

direction can be reduced by splay in another direction, somewhat similar to the phenomenon 

of soap films adopting a catenoid shape; c)- it has been suggested by Melzer et al., on the 

basis of their observations [10], that point defects might be split into disclination loops, of 

strength k = + 1
2  for a radial hedgehog, of strength k = – 1

2  for a hyperbolic hedgehog, Fig. 3.   

Fig. 3. Splitting of point defects into disclination loops: a)- N = 1 ≡≡≡≡ k = 1/2; b)- N = – 1 ≡≡≡≡ k = – 1/2 

Two theoretical elements have been put forward which complete the present picture of 

point defects in nematics a)- the divergence moduli K13, K24  can play a role in the stability of 

the model, in particular might decide whether the point defect is split, or not, into a 

disclination loop; b)- the order parameter might change smoothly in the core region, not only 

in modulus, but also in character.  It has indeed been suggested that it might be biaxial [41].  

Computer calculations validate this suggestion.  We comment on these two points. 
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The Frank-Oseen elastic theory in the director representation has been used in [42] and 

[43] to compare the energies of the hedgehogs and their disclination loop modifications.  The 

divergence elastic term K24 is introduced in [43].  Eq. 5a, 5b become 

E+1
tot=8π(K–K24)(R–rc )+γrc

3       (9a) 

for a radial hedgehog, and  

E–1

tot = 1
3 8π(K + K24 )(R – rc ) + γrc

3     (9b) 

for a hyperbolic hedgehog.  The transformation to a disclination loop of radius ρ  adds in both 

cases a term of the order of ρK24 .  It is clear that in the frame of this simplified model the 

k = 1
2  loop is forced to expand if K24  < 0, to shrink if K24  > 0, the reverse being true for the 

k = – 1
2  loop.  The radius of the loop stabilizes for a value ρ ~ ξ exp–

4K24

K
, which is 

microscopic (ξ  is the nematic coherence length).  By applying the electric field perpendicular 

to the loop in a nematic material with a positive dielectric anisotropy, one can expand the loop 

to a larger radius [44].  See [45] for a recent calculation of the hyperbolic hedgehog in the 

same vein, but using the full Frank moduli anisotropy. 

For the study of the core itself, the Landau-de Gennes theory has been largely 

employed, allowing a variation of the scalar order parameter.  It is shown in [46] that 

spherically symmetric configurations are exact solutions which minimize the Landau-de 

Gennes free energy, and that the core, whose size is found large compared to ξ , is isotropic.  

But disclination loops are also solutions.  A number of papers [47,48] have exploited with 

success the suggestion that the core of a k = 1
2  line is biaxial [41,49,50].  

Complete models with anisotropic coefficients, divergence elastic terms, Landau 

expansion in the full free energy, to what has to be added the role of boundary conditions at a 

finite distance, produce more complicated results, see e.g. [51,52].  Of course, these new 

developments often require heavy computational methods, see [53].   

2.3. Interaction and dynamics of defects. 

As stated above, radial and hyperbolic hedgehogs couple in 3D uniaxial nematic, by a soliton 

string in which most of the energy is concentrated, Fig.4.  For the pair of hedgehogs of 

opposite topological charge, the director field within the soliton can be written as [54] 








= θθθ cos,sin,sin
r

y

r

x
n , where 

r

r⊥= arctan2θ , 22
yxr += , and ⊥r is the soliton 

radius and z -axis is the axis of rotation symmetry.  In an infinite sample, from the point of 
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view of the Frank-Oseen model, there is no mechanism and no typical length to keep ⊥r  from 

becoming a zero; when 0→⊥r , the energy per unit length of the string attains its minimum 

value Kπ4 [54].   As the director gradients diverge at the core for 0→⊥r , a more refined 

approach is needed.  Penzenstadler and Trebin [47] considered the Landau-de Gennes theory 

in which the high density of director distortions is relaxed by changing the uniaxial 

orientational order into the biaxial one, in the spirit of Lyuksyutov’s approach to the problem 

of the singular core of disclinations and point defects [41,46]. They demonstrated that the 

soliton can decay into a uniform director structure n=const by a mechanism of escape to 

biaxiality [47].  However, the decay might be prevented by the energy barrier separating the 

uniform state from the soliton state.  A stabilization mechanism has been found by Semenov 

[54], who added a 4
th

-order gradient term to the standard 2
nd

 order Frank-Oseen functional, 

( ) ( )222

2
nn ∇+∇= ξK

K
fFr .  This term prescribes the soliton string to be of a (generally 

macroscopic) fixed radius determined by the separation distance L  between the point defects 

located at 2/Lz ±=  and the nematic coherence length ξ  (of the order of a molecular size), 

namely, ( ) ( )22 /41~ LzLzr −⊥ ξ . The attraction force between the defects acquires a small 

correction term [54], 









+π=

ξ
ξ L

L
Kf ln

2

3
14– .   

Fig.4. Schematic director configuration of the hedgehog pair connected by a soliton string. 

 Any realistic liquid crystal sample is bounded; the consideration above then might be 

applicable only when the characteristic size R  of the system is much larger than L .  When 

the two are comparable, the theory should take into account the boundary conditions, namely, 

the “anchoring” direction and energy associated with the director alignment at the bounding 

surfaces.  In addition to R , the new macroscopic length scale is WK / , usually ranging 

mµ01.0  to mµ10 .  The problem becomes much more complicated and the existing models 

of the offer conflicting views even for the simplest geometry of a bounded sample, such as the 

circular capillary depicted in Fig.1.  Semenov’s theory [54] and the numerical analysis by 

Gartland et al. [55] predict that the attraction of a pair of points in the capillary can still be 

described by the expression above but only when L  very short, much shorter than 

3/13/2~* ξcdL  that depends on the capillary diameter 
cd ; for cdL > , the attractive force 

decreases exponentially as ( )cdL /6.6exp − , setting the hedgehogs “asymptotically free” and 

non-interactive at large separations.  Qualitatively, the bounding surface sets the director field 
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practically the same on the both sides of each defect core which implies that there is no net 

force acting on the defect.  Peroli and Virga [56] also predicted an attractive potential, but of a 

different type:  the attractive force varies logarithmically with L  at short distances and 

vanishes at cdL 1.1≥ .  Finally, a model by Vilfan et al. [57] predicted that the defects would 

attract only when cdL 1.0<  and repel if set at a larger separations.  This last model has been 

inspired by an experimental NMR evidence that in very narrow (submicron) cylindrical 

cavities, there might exist a (metastable) state with alternating radial and hyperbolic 

hedgehogs separated by cdL ≈  [58]; see also the numeric simulations in Ref. [59].  Although 

all models dealt with the same basic director geometry, the boundary conditions have been 

chosen a bit differently, which might explain the discrepancies, according to Holyst and 

Oswald [60]: the surface anchoring was assumed to be infinitely strong, ∞→W , thus rigidly 

fixing the director orientation at the boundary in Ref. [54], but was taken finite in Ref. [57], 

thus allowing for the (small) director deviations from the anchoring direction at the surface.  

 Experimentally, the interaction of the topological point defects can be studied in 

dynamical settings, by studying whether and how the defects of opposite topological charge 

would attract each other and annihilate.  As the first example, consider two point defects in an 

infinitely large sample, connected by a string of a constant width r  whose elastic energy per 

unit length is K~ .  When the two defects approach each other, the director reorientation and 

thus energy dissipation take place mostly in the region of size ~ r ; the drag force acting on the 

defects moving with the closing velocity dtdLv /~ −  is then ~ rv1γ , where 1γ  is the viscosity 

coefficient for director reorientations.  By equating this force to the elastic force K~ , one 

concludes that the two defects should approach each other with a constant velocity; or, 

equivalently, that the distance between the defects decreases linearly with time:   

( ) tttL −∝ 0 ,       (10) 

where 0t  denotes the moment of annihilation.  Interestingly, when the soliton width tends to 

zero, 0→⊥r , as in the case of infinitely large system with two point defects, then the energy 

dissipation rate should diverge to infinity; as the elastic force remain constant, it means 

0→v  [61].  Pismen and Rubinstein [61] interpret this result as an indication that the local 

reduction of the uniaxial nematic order in the core region is essential for the defect interaction 

and dynamics and deduced that the distance changes as  

( ) tttL −∝ 0 .      (11) 
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The dynamics obviously change when the potential of interaction changes. For 

example, if the interaction potential is of a logarithmic type ~ ξ/ln L  (which is the case, for 

example, of point defects in 2D or straight parallel disclinations in 3D [62]), then the elastic 

force is ~ L/1−  and the drag force is ξγ /ln~ 1 Lv ; therefore, the defects move with 

acceleration and ( ) tttL −∝ 0 , or, including the logarithmic correction, 

ttconst
L

L −∝







+ 0

2 ln
ξ

, still similar to Eq. (11).   

 The dependence ( ) tttL −∝ 0  for the situation when the defects are indeed connected 

by an experimentally observable linear soliton of a constant width, over which the director 

experiences a rotation by 2π  (similarly to Fig.4, but not axially symmetric) has been 

confirmed for the pairs of boojums at the surface of the hybrid aligned nematic films [21,63] 

and for the defects in freely suspended SmC films [64].  The stability of the soliton requires 

some “ordering field” [64] (e.g., an in-plane electric field [63] or a film thickness gradient 

[65]) to confine the director distortions within a region of a constant width.  When the solitons 

do not exist, and the director distortions spread in the entire region between the defects, the 

dynamics trend changes from Eq.(10) to Eq.(11), as observed in the experimental situations 

[21,63,64] above and in the hybrid aligned films of thermotropic nematic polyesters with 

boojums [22].  Even when the solitons connecting the point exist, one can observe a crossover 

from ( ) tttL −∝ 0  to ( ) tttL −∝ 0  when the separation distance shrinks and becomes smaller 

than the width of the soliton, at the late stages of annihilation [63]. 

 The experimental situation with the point defects in circular capillaries is even more 

complex. Both dependencies above have been observed for annihilating pairs of hyperbolic 

and radial hedgehogs produced by the isotropic-to-nematic quench in circular capillaries with 

=cd  350 mµ  [19]: ( ) tttL −∝ 0  for cdL ≥  and ( ) tttL −∝ 0  for cdL ≤ .  A similar 

experiment [66] with mdm c µµ 15060 ≤≤  performed for a similar thermotropic 

cyanobiphenyl nematic material produced a different result: The sufficiently separated pairs 

cdL ≥  of hyperbolic and radial hedgehogs at the axis of the capillary did not show any signs 

of interaction; their separation remained fixed for many hours.  Once set in motion by an 

external perturbation such as temperature gradient along the cylinder, the defects approach 

each other, first with ( ) tttL −∝ 0  when cdL ≥  and with ( )tL  exponentially vanishing at the 

final stages of annihilation [66].  This is in contrast to the experiment [19] where the 
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hedgehogs were observed to approach each other even when separated by cdL 6≈ , with a 

constant velocity, Eq.(10), which was interpreted as the result of an elastic interaction with a 

constant force ~ K .  On the other hand, the experimental technique used by Pargellis et al [19] 

to produce the defects, namely a fast temperature or pressure quench, might have led to  

temperature gradients capable of setting the hedgehogs into motion even in the absence of 

such an interaction.  For example, the temperature difference on the two sides of a hedgehog 

would cause a difference in the Frank elastic constants and thus in the elastic energies of these 

two regions.  Hilling and Saupe, see Ref. [67], also find ( ) tttL −∝ 0  for cdL ≥  .  However, 

Ref. [67] interprets it as the result of the imperfection in the normal alignment at the 

cylindrical wall rather as the result of any proper elastic interaction between the defects which 

was taken as non-existent for cdL ≥ .  To illustrate the point, consider Fig.1 and assume that 

the director at the boundary slightly deviates from the perpendicular orientation, by an angle 

ϕ , say, downwards, so that the director ticks at the right boundary in Fig.1 turn from 3 

o’clock towards 4 o’clock and the ticks at the left boundary turn from 9 o’clock towards 8 

o’clock.  Such a deviation might quite naturally be induced by the flow of the nematic fluid 

during the capillary filling.  Then the elastic energy (per unit length) of the configuration that 

escapes “downwards” (between the two defect cores in Fig.1) will be larger than the energy 

and “upward” escape (outside the defect pair), as the director rotate by ϕπ 2+  across the 

capillary in the first case and by ϕπ 2−  in the second case.  The energy of the escaped 

configuration scales as K~  (it is independent of cd  [4]) and so does the difference in the 

elastic energies (per unit length) of the two regions.  Therefore, the defects would approach 

each other to reduce the length of the “overdistroted” region and the dynamics should follow 

Eq.(10) [67].  By reversing the sign of ϕ , the same argument should see the two defects in 

Fig.1 moving in opposite direction:  the two would repel each other rather than attract [67].  It 

might be of interest to verify this feature in experiments by establishing the polarity of the 

director tilt with respect to the polarity of the hedgehog pair(s).   

 To conclude, the only relatively well established experimental result for a pair of 

hedgehogs in circular capillaries is that at short distances, cdL ≤ , their dynamics can be 

described by Eq.(11) (as also confirmed in numerical simulations with the Lebwohl-Lasher 

lattice model [68]).  What happens at cdL ≥  is not entirely clear.  Recently, Holyst and 

Oswald [60] proposed to use a somewhat different geometry, a set of hedgehogs at the 

singular disclination line that forms near a cylindrical meniscus of a nematic sample in 
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contact with air. Subsequent experiments left the group “certain that “+1” and “-1” defects 

attract each other over at short distances and repel at large distances” [69].  Note that all the 

experiments performed so far reduced to the passive observations of defects locations and 

their change in time; in the future, it might be useful to add a new experimental technique of a 

controlled trapping and manipulating the defects with optical tweezers, see, e.g., [70,71].  

 An important feature of the hedgehog dynamics at short separation distances 

established by Cladis and Brandt [66] is that the radial and hyperbolic hedgehogs move 

towards each other in the capillary with different velocities, the former moving noticeably 

faster than the second one, especially near the nematic-to-smectic transition, where the bend 

deformations characteristic for the hyperbolic defect become accompanied by a very large 

elastic constant.  The result is most probably related to the backflow effect, i.e. the flow of the 

nematic fluid caused by director reorientation.  Although the backflow effect is of certain 

importance in any defect dynamics problem, it is extremely difficult to incorporate into the 

models and is usually neglected.  Nevertheless, Blanc et al. [
72

] recently demonstrated that in 

the similar problem of dynamics of two linear disclinations, the difference in the velocities of 

the defects of different strength is related to the backflow effect rather than to the elastic 

anisotropy. 

 The dynamics of defects has been attracted interest also from the point of view of the 

phase transitions scenarios, not only in liquid crystals and condensed matter, but also in 

cosmological models (the Kibble model and Zureck model, for example [
73

]).  During the 

quench from the highly symmetric phase (such as the isotropic fluid) to the lower symmetry 

phase (a uniaxial nematic, for example), the different pieces of the new phase might acquire 

different values of the order parameter phase (the director orientation) [4]; when they expand 

and meet each other, these differences produce topological defects.  The quench is then 

followed by a relaxation process in which the density N  of defects decreases as the result of 

their annihilation; for the hedgehogs, the rule should be ( ) DLtN −∝ , in D-dimensional space, 

see, e.g., [74,75].  The isotropic-to-nematic transition has attracted especial interest in this 

regard [15,76], mostly because of the (apparent) ease with which the experimental data can be 

created and collected.  The latest theoretical result predicts that in 3D, the hedgehog densities 

should decay as ( ) 2/33 −− ∝∝ tLtN  if there are no other defects such as disclinations.  In the 

experiments by Chuang et al. [15], however, the number of hedgehogs has been observed first 

to increase immediately after the quench, then reach a maximum and quickly decrease, 

approximately as ( ) 3−∝ ttN .  These unusual features might be related to the presence of 
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dislinations and to the mutual transformations of hedgehogs and disclination rings.  A direct 

hedgehog-hedgehog annihilation in the 3D nematic bulk without disclination lines involved 

has been reported to obey Eq.(11) [77].  The same behaviour (11) with ( ) 2−∝ LtN  has been 

observed by Dierking et al. [78] for the annihilation dynamics of umbilic defects in 2D.  A 

single umbilical defect represents a pair of two surface defects-boojums on the opposite sides 

of the flat cell filled with the nematic of a negative dielectric anisotropy; they appear when a 

strong electric field is applied to the cell and the director realigns from its original 

homeotropic orientation.   As in the case with the pair annihilation in a cylindrical capillary, 

much more needed to be done before the dynamics of defect tangles in quenched systems 

with hedgehogs and disclinations can be completely understood.  Note that for the 

clarification of the role of backflow effect the studies of dynamics of boojums and umbilics 

might be very productive:  the singular (molecular) core that creates problem in many 

computer simulations does not exist here, as the “cores” of the surface defects and umbilics 

are macroscopic.   

3. Singular points in nematic colloidal suspensions 

Colloids in which the liquid crystal is either a dispersed component [79] or nematic colloids 

in which the liquid crystal serves as a medium containing droplets of water or solid particles 

[80,81], are populated by point defects whenever the surface anchoring at the interfaces is 

strong enough ( W/KR >> ).  Different boundary conditions (director normal to the interface, 

tangential, or tilted) lead to two different types of point defects.  For example, the equilibrium 

state of a spherical nematic droplet with normal orientation corresponds to a radial hedgehog 

(or its topological equivalent such as a ring), while tilted or tangential orientation lead to 

boojums (surface defects), Fig.5.  

Fig. 5: Experimental textures of radial (a) and twisted bipolar nematic droplets (b) viewed between two 
crossed polarizers.  

 The topological characteristics of all point defects in a single connected nematic 

volume must satisfy the restrictions imposed by the Euler-Poincaré and Gauss theorems.  For 

p  hedgehogs and q  boojums enclosed by a surface of an Euler characteristic E , the 

restrictions write [20] 

Ek;/EN
p

j

j

pq

i

i ∑∑
=

+

=

==
11

2  .     (12) 
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The conservation laws given by Eqs. (12) can influence the late stages of the first-

order isotropic-to-nematic phase transition that occurs through nucleation of nematic droplets.  

The droplets grow by adding molecules from the surrounding isotropic matrix and by 

coalescence. At early stages, the droplets are small and the director within them is practically 

uniform; they might form defects upon coalescence according to the Kibble mechanism, when 

three or more nematic droplets with different director orientation coalesce.  However, as soon 

as the droplets grow above W/KRc = , each of them acquires topological defects obeying 

Eq.(12).  For the popular nematic pentylcyanobiphenyl (5CB), the surface anchoring 

coefficient at the nematic-isotropic interface is W ≈10⁶ J/m² [82] while K≈2×10¹² J/m² [83]; 

therefore the anchoring-induced production of defects becomes effective for mRR c µ2≈≥ . 

Figure 6 shows nematic droplets growing from the isotropic melt (E7 mixture containing 

cyanobiphenyls, similar to 5CB): supramicron droplets clearly carry stable topological 

defects.  Because of the surface anchoring that sets tilted conical director orientation (similar 

to 5CB, see [82]) there are both boojums and disclination loops [20]. As Fig.6 demonstrates, 

the anchoring mechanism is extremely effective, producing one disclination loop per each 

nematic "bubble" of the appropriate size.  Bowick et al. [84] expanding on the earlier studies 

by Chuang et al. [15], have discovered that the number of "strings" (disclinations) produced in 

the isotropic-nematic transition is about 0.6 per nematic "bubble" (droplet).  Although this 

number has been found to be in reasonable agreement with the Kibble mechanism [84], it 

might also signal a significant contribution from the anchoring mechanism, as many droplets 

in the experiment [84] have been larger than 10 mµ .   The balance of Kibble and anchoring 

mechanisms in defect production during the isotropic-nematic phase transition is still an open 

problem. Clearly, it should strongly depend on the speed and depth of quenching; fast quench 

that produces numerous sub-micron nuclei separated by submicron distances might avoid the 

anchoring mechanism.  The critical radius of nucleation is (see, for example, [4]) 

f/c σρ 2= , where 25 /10~ mJ
−σ  [82] is the surface tension coefficient for the isotropic-

nematic interface, and f  is the bulk energy density difference between the isotropic and 

nematic phases.  Estimating INTHTf /~ ∆∆ , where TTT IN −=∆  is the depth of temperature 

quench and H∆ ~10⁵J/m³ is the latent heat of transition [85], one finds the critical radius 

ranging from ( ) m..~c µρ 10010 −  when the quench is a 1-10 degrees below INT  and to 

∞→cρ when INTT → .  Therefore, even a fast temperature quench might lead to large 
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droplets if it is not deep enough.  On the other hand, slow quench might tell a story of 

anchoring-induced defect dynamics in growing droplets that is of interest on its own, 

irrespective of the Kibble mechanism.  

In the nematic droplets, the equilibrium director configuration and the corresponding 

defects change when the boundary conditions change; for example, one can cause 

transformations between bipolar structure with a pair of boojums and a hedgehog by changing 

the temperature of the sample which in its turn changes the surface orientation from tangential 

to normal [20,86].  Director deformations associated with the defect structures in the droplets 

can cause flexoelectric polarization that contributes to electrostatic interactions between the 

nematic droplets [87,88,89]. 

 Point defects help to stabilize the nematic emulsions [90].  For example, imagine an 

isotropic (say, water) droplet with a normal boundary conditions (that can be set by adding a 

small amount of a surfactant such as lecithin to the system) in the nematic sample with a 

uniform director.  If the droplet is large, then it would distort the director around itself acting 

as a radial hedgehog with an enlarged “core”.  If the far-field of the director is uniform, then 

such a droplet would create a satellite hyperbolic hedgehog that balances the topological 

charge 1=N  of the droplet.  The director field around the droplet adopts a dipole 

configuration.   When there are many droplets in the system, they attract each other at large 

distances and repel at distances comparable to the droplet diameter R2  and thus form chains 

of alternating droplets and hyperbolic hedgehogs.  For distances d >> R2 , the elastic force of 

attraction scales as 44
dKRF /∝  [90], which has been experimentally verified for the case of 

ferrofluid droplets [91] and most recently for solid particles manipulated by optical tweezers 

in the nematic bulk [71,92].   

 A spectacular illustration of the role of point defects and the critical size WKRc /≈  

in stabilization of emulsions has been found by Loudet et al [93] who demonstrated that small 

isotropic oil droplets phase separating from the nematic host E7, can grow till their radius 

approaches mRc µ2≈ ; after that, each oil drop forms a satellite hyperbolic hedgehog; the 

droplets attract each other into long chains parallel to the alignment direction of the nematic 

phase. Ultimately, a highly ordered array of parallel macroscopic chains is formed, made of 

monodisperse droplets which do not coalesce, in sharp contrast to the scenarios of phase 

separation in isotropic fluids.  Note that the distortions around the droplets can drive them to 

accumulate in specific regions of the nematic matrix such as other defects (disclinations) [94] 

and interfaces [95,96].   
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 If the role of the surface anchoring is reduced (or if the electric field is applied to the 

droplet [97,98]), the hyperbolic hedgehog can be transformed into an equatorial disclination 

loop embracing the droplet, which is known as the Saturn-ring configuration, first envisioned 

theoretically in [99] on the basis of Frank-Oseen theory; and then observed experimentally in 

thermotropic [100,101] as well as lyotropic nematics [102], Fig. 7.  Computer simulations 

also suggest that the hyperbolic hedgehog can transform into the Saturn ring when the size of 

the spherical particle decreases [103,104].  The interparticle interactions acquire a quadrupole 

symmetry when the dipole hedgehog configuration changes to that of the Saturn ring 

symmetry in the external electric field, as demonstrated by Loudet and Poulin [98].   

 The interparticle interactions become much weaker, 61 d/F ∝ , when the normal 

boundary conditions are changed to the tangential ones [105,106].  The director field acquires 

two defects-boojums at the poles of the particle and the symmetry of a quadrupole.  As 

established experimentally with the help of optical tweezers [107], the interaction might be of 

repulsive or attractive nature, depending on the mutual position of the two droplets, but it 

deviates from the quadrupolar model when the distances between the particles become 

comparable to a few D ’s.   

 The studies of dynamics of defect formations in colloidal systems are at the stage of 

infancy [108,109]. For example, Stark and Ventzki [108] calculated the Stokes drag of 

spherical particles moving in a nematic host for three different configurations shown in Fig.7.  

The hedgehog configuration is very different from the other two because of its dipolar 

symmetry.   

 

Fig. 6:  The sequence of textures of nematic nuclei at the isotropic-to-nematic transition caused by 
temperature quench in the mixture E7 as viewed between two crossed polarizers. The nuclei carry boojums 
(black arrows) and disclination loops (white arrows) (a,b); merging (c) results in disclinations with ends 
trapped at the cell’s plates. Cell thickness 200 mµ .  

Fig. 7:  A spherical inclusion in a uniformly aligned nematic matrix with homeotropic boundary conditions 
resembles a radial hedgehog and produces a hyperbolic satellite when  its size is much larger than the 

anchoring extrapolation length WK /  (a); causes a Saturn ring configuration when the two are 

comparable (b); and is being ineffective to distort the director when much smaller than WK /  (c).  

4. Conclusion 

The large birefringence of liquid crystals allow easy optical microscopy observations of 

defects, whose number is scarce in the field of view, due to the viscous relaxation of the 

sample inhomogeneities; observed defects are usually in equilibrium with the boundary 

conditions, and of small energy.  This explains why topological point defects in condensed 

Page 17 of 50

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 18 

matter physics were discovered there, in parallel with the investigations on Bloch points in 

magnetic bubbles [110].  This is at the origin of a noticeable (but limited) series of 

observations and, above all, of theoretical developments, including the topological theory of 

defects and their elastic and dynamic properties.  The present day observation resolution is far 

below the advances made thanks to computational methods, in particular in the structure of 

the core and the anisotropy of the Frank coefficients; new experimental methods are thus all 

wanting.  One can however expect that more recent optical methods, such as ultra rapid 

confocal polarizing microscopy, attended by laser manipulations of small particles (e.g. in 

nematic colloidal suspensions) or even of defects themselves, might help in the investigation 

of macroscopic dynamic properties, at least.   

 ODL acknowledges useful discussions with E. C. Gartland, Jr. and partial support 

through NSF grants DMR-0504516 and DMS -0456221. 
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Topological point defects in nematic liquid crystals 

MAURICE KLEMAN
 
and OLEG D. LAVRENTOVICH 

Fig. 1. Capillary tube with homeotropic (i.e. normal) boundary conditions, meridian section.  

The director is in the meridian plane. Point defects N = +1 (radial hedgehog) and N = – 1 

(hyperbolic hedgehog). 

Fig. 2. Schlieren texture in a sample with degenerate planar anchoring conditions.  The 

sample is observed between crossed polars.  There are two black brushes associated with the k 

= ±1/2 lines, and four brushes (the Maltese cross) associated with the k = ±1 lines.  

Fig. 3. Splitting of point defects into disclination loops: a)- N = 1 ≡ k = 1/2; b)- N = – 1 ≡ k = 

– 1/2 

Fig.4. Schematic director configuration of the hedgehog pair connected by a soliton string. 

Fig. 5: Experimental textures of radial (a) and twisted bipolar nematic droplets (b) viewed 

between two crossed polarizers.  

Fig. 6:  The sequence of textures of nematic nuclei at the isotropic-to-nematic transition 

caused by temperature quench in the mixture E7 as viewed between two crossed polarizers. 

The nuclei carry boojums (black arrows) and disclination loops (white arrows) (a,b); merging 

(c) results in disclinations with ends trapped at the cell’s plates. Cell thickness 200 mµ .  

Fig. 7:  A spherical inclusion in a uniformly aligned nematic matrix with homeotropic 

boundary conditions resembles a radial hedgehog and produces a hyperbolic satellite when  

its size is much larger than the anchoring extrapolation length WK /  (a); causes a Saturn ring 

configuration when the two are comparable (b); and is being ineffective to distort the director 

when much smaller than WK /  (c).  
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Abstract 

Point defects in nematics, also called hedgehogs, are topological entities that have no 

equivalent in ordered atomic solids, despite the homonymy.  They have been the subject of 

intense experimental and, above all, theoretical (analytic and computational) investigations in 

the last thirty years.  They are present in bulk specimens and at the specimen boundaries.  

This review article stresses the importance of the core structure of the defect, of its possible 

splitting into a disclination loop, of the boundary conditions, and takes stock of the recent 

advances on point defects in nematic colloidal suspensions.  An important topic is the 

formation of strings between opposite hedgehogs (radial and hyperbolic), and their role in the 

dynamic properties of nematics. 

Keywords: liquid crystals, point defects, hedgehogs, boojums, topological defects 

1. Introduction 

A nematic liquid crystal is an anisotropic fluid formed by rod-like or disk-like molecules that 

tend to be parallel to a common direction, the director, noted 

! 

n (n2=1) .  The directions 

! 

n  and 

! 

–n  are physically equivalent: 

! 

n"–n .  There is no long-range translational order in the system 

and thus nematics are fluid and very sensitive to the external field, which explains why they 

became a key technological material in applications such as informational displays.  Nematic 

liquid crystals are in the focus of intensive interdisciplinary studies also because they 

represent a well-defined soft matter system with a rich variety of supramolecular structures, 

most notably those corresponding to the so-called topological defects.  A topological defect is 

a configuration of the order parameter that cannot be transformed continuously into a uniform 
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state.  They can occur during the symmetry breaking phase transitions, under an external 

field, or simply be a necessary element of an equilibrium state.  For example, in a sufficiently 

large spherical nematic droplet with perpendicular alignment of molecules at the surface, the 

director field forms a radial-like configuration with a point defect at the centre, in order to 

reach an equilibrium state.  This point defect in the director configuration is of a completely 

different nature as compared to point defects such as vacancies and interstitials in solid 

crystals [1]; its topological nature means that the distortions of the order parameter around the 

“point” extend throughout the entire system.  

 The singular points of a vector field (cols, nœuds, foyers, etc) were classified by 

Poincaré [2], by using the tools of the theory of ordinary differential equations; Nabarro[3] 

was the first to notice that Poincaré’s method can be applied, with the purpose of  classifying 

point defects, to spins in a ferromagnet and directors in a nematic insofar as the sample does 

not show circuits along which 

! 

n  is reversed.  

The topological classification of defects, on the other hand, relies on the topological 

properties of the order parameter space.  It does not give a classification as detailed as the 

vector field one, but its principles can be extended to any ordered medium and to defects of 

any dimensionality [4,5].  The scalar order parameter 

! 

S(T)  of a uniaxial nematic is the 

thermal mean 

! 

1
2 < (3cos

2" –1) > of the orientation of the molecules about the director.  More 

precisely, the order parameter (o.p.) is a traceless tensor 

! 

Qij = S(T)(ni n j –
1
3"ij ) .  The o.p. 

space is the space of all the realizations of the o.p..  In the case of a uniaxial nematic, a sphere 

of unit radius represents adequately all the directions of 

! 

n ; the o.p. space is therefore a half 

sphere, namely the projective plane, noted 

! 

P2 , see [6].  Topological defects of various 

dimensionalities d in ordered media are classified by the homotopy groups 

! 

"
n
(V ) , n = D –d – 

1, where D is the space dimension; in a 3D nematic, V = 

! 

P2 , n = 1 stands for line defects 

(disclinations), n = 2 for point defects.  The topological charge (an invariant) carried by a 

point defect can be calculated by the relation [7] 

! 

4"N= #ijk$$ #pqrnq, jnr,knpdSi        (1) 

where the integration is performed on a sphere-like surface surrounding the singular point.  N 

is an integer; 

! 

"
2
(V ) = Z.  Point defects 

! 

N=±1 , the only ones ever observed experimentally, 

are called hedgehogs. Because Eq. 1 is odd in the director components and 

! 

n"–n , the same 

point defect can be assigned opposite charges: also, the charge can be drawn opposite by a 

circumnavigation of the point defect around a disclination line of strength 

! 

k = ± 1
2  (about 
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which the director changes sign) [8].  It is usual to assign the value 

! 

N=+1  to a radial 

hedgehog, 

! 

N=–1 to a hyperbolic hedgehog, see Fig. 1.  Nabarro has probably been the first to 

show a keen interest in the topology of defects in a nematic [9] by noticing that the Euler-

Poincaré characteristic of a sphere [5] measures the total strength of the disclinations piercing 

the boundary of a nematic droplet, if the boundary conditions are such that the director is 

everywhere parallel to the droplet surface ( 2=!i i
k ). 

Fig. 1. Capillary tube with homeotropic (i . e .  normal) boundary conditions, meridian section.  The 
director is in the meridian plane. Point defects N = +1 (radial hedgehog) and N = – 1 (hyperbolic 
hedgehog). 

The free energy density associated with the changes of the tensor order parameter in 

the vicinity of the nematic-isotropic phase transition is of the Landau-De Gennes form: 

! 

fLdG = 1
2a(T, p)trQ

2
– 1

3btrQ
3

+ 1
4c(trQ

2
)
2      (2) 

When the scalar order parameter does not change much, which is true for director 

deformations over the scales much larger than the molecular size, then the free energy density 

of the elastic director distortion is written as the Frank-Oseen expression 

! 

fFr = 1
2K1 (divn)

2
+ 1

2K2 (n.curln)
2

+ 1
2K3 (n" curln)

2
– K24 div(ndivn+ n" curln)    (3) 

with Frank elastic constants of splay (
1
K ), twist (

2
K ), bend (

3
K ), and saddle-splay (

24
K ). 

Nabarro made also very early observations of hedgehogs in capillaries [10].  In fact, 

there have been very few detailed experimental investigations of hedgehogs in the course of 

time since their appearance in the realm of nematics, compared to the flourishing of 

theoretical studies, these latter encouraged by the development of computer methods.  On the 

other hand, theory and experiment seem to go hand in hand for point defects in colloidal 

suspensions in nematics, where an air bubble (which acts as a positive 

! 

N=+1point defect) or a 

droplet or a particle that compensate a negative 

! 

N = –1 point defect in their vicinity [11], can 

form a stable dipole. 

This paper presents a brief review of bulk point defects (hedgehogs) and surface 

singular points, often called boojums (the name is due to Lewis Carroll and has been adopted 

frenetically by the superfluid and liquid crystal communities thanks to Mermin).  

2. Bulk and surface singular points. 

2. 1. Static observations 
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 4 

Defects usually appear in the bulk of a sample by symmetry breaking, at the 

isotropic→nematic transition 
IN
T , either by a thermal quench or a slow transition; pressure 

quench has also been employed.  One expects to get this way a random array of defects of 

various dimensionalities: point defects, disclination lines, and configurations or solitons (non-

singular topological defects) [4].  The final defect distribution depends on the time of 

annealing and on the boundary conditions, i.e. on the anchoring conditions at the boundaries 

of the sample, like those induced by a physical or chemical surface treatment; this forces the 

orientation of the molecule.  

We are interested in point defects.  A remarkable experimental result is that their 

occurrence in the bulk just after quench (independently of the boundary conditions) is a rather 

rare, if ever observed, event [12].  It has been given of this phenomenon an interesting (and 

subtle) explanation [13].  The topological charge N (Eq. 1) measures twice the number of 

times that 

! 

P2  is covered by the order parameter (the director); this is a rather difficult 

geometric requirement to be obeyed by the correlated nematic domains which appear 

randomly about some point of the sample at the transition.  The probability of this event can 

be calculated [13].  The idea follows the lines of the celebrated Kibble mechanism for the 

generation of cosmic strings (considered as singularity lines) in the early universe [14], which 

has inspired laboratory experiments on liquid crystals, see e.g. [15].   

Hedgehogs are thus observed in special geometries with specific anchoring conditions, 

namely in capillaries [10,16,17,18,19], in nematic droplets [20], and in confined parallel 

samples with hybrid boundary conditions [21,22].  Our references are not exhaustive.  On the 

other hand, hedgehogs are the rule rather than the exception, in nematic colloidal suspensions 

(see next section), but this also proceeds from the special anchoring conditions met in such 

systems.   

In capillaries with homeotropic anchoring, the molecules normal to the boundaries 

force a radial geometry, as pictured in Fig. 1; one observes that the director ‘escapes along the 

3rd dimension’ –namely the axis of the capillary– as nicely worded by Meyer [23].  The 

! 

k = +1 disclination forced by the boundary conditions is therefore continuous along its core 

(or, differently stated, coreless).  Observe that the escape is either up or down, with equal 

probabilities if the normal anchoring is perfect.  Thus two types of point defects do appear, of 

opposite charges 

! 

N=±1 .  The director configuration can be investigated experimentally by 

polarized light microscopy; the resulting observations satisfy the expected geometry, at least 

qualitatively –this experimental method does not bring a large resolution. Therefore the role 
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played by the anisotropy of the elastic moduli K1, K2, K3 in the director configuration around 

the hedgehogs [23,24] has not yet been satisfactorily tested.   

Fig. 2. Schlieren texture in a sample with degenerate planar anchoring conditions.  The sample is 
observed between crossed polars.  There are two black brushes associated with the k = ±1/2 lines, and four 
brushes (the Maltese cross) associated with the k = ±1 lines.  

This same anisotropy is also responsible for the configuration of the director about 

! 

k=+1 disclination lines, but also about 

! 

k=–1 lines; see [25].  Disclination lines can be 

observed end-on in well-annealed nematic samples formed between two flat glass plates 

(Schlieren textures, see Fig. 2).  Topology requires that the sum total of the disclination 

charges vanishes, 

! 

k
i

i
" = 0.  One observes 

! 

k = ± 1
2  and 

! 

k=±1 lines.  In most experimental 

cases, in particular SMLCs (small molecule liquid crystals) the escaped geometry is stable 

with respect to planar singular 

! 

k=±1, and point defects are present; the situation is more 

involved in main chain PLCs (polymer liquid crystals) where usually the splay modulus is so 

large that the escape can be absent in a radial geometry [26].  Thus, apart a few exceptions, 

there is ample evidence that the integer lines are coreless and carry point defects, often 

located outside the sample.  Monte Carlo calculations have confirmed these results [27]. 

The topology of a droplet with homeotropic anchoring is compatible with a radial 

hedgehog, but its actual presence depends on the anchoring energy 

! 

~W" 2(which measures 

the excess surface energy necessary to turn the director apart the normal direction by an angle 

! , W  is called the surface anchoring coefficient), and the droplet size R.  Compare the 

surface energy, which scales as WR2 for a uniform director, and the bulk energy, which scales 

as (K/R2)R3 = KR for a radial hedgehog; it is easy to convince oneself that in a droplet of 

radius R smaller than approximately Rc = K/W the director is uniform, whereas a larger 

droplet contains a radial hedgehog [4].   

In a droplet with planar (degenerate) anchoring, the director field should obey the 

Euler-Poincaré theorem [6,9] and, accordingly, must suffer either two singularities with 

! 

k=1 

or one singularity with 

! 

k=2 .  The first case (two 

! 

k=1 singularities) is often met when a 

nematic droplet is suspended in an isotropic fluid such as glycerol, say [28, 20]; the second 

one being more specific of biaxial nematics (for the existence of which there appears to be 

new experimental evidences [29,30]).  Note that in both cases the point defects are essentially 

surface defects that cannot move inside the nematic bulk because of the boundary conditions.  

They are thus different from the hedgehogs that can exist both in the bulk and at the surface.  

Because of this distinction, these surface defects are called boojums [31]; a necessary 
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condition for their formation is that the director field is either tangential or tilted with respect 

to the surface so that the defect is characterized by an invariant k in addition to N  [20]. 

Finally, hybrid samples: a typical example is when a thin nematic film is spread onto 

the surface of an isotropic fluid at which the director is oriented tangentially (planar 

degenerate alignment) whereas the upper boundary is free.  Quite often the spontaneous 

anchoring at the nematic-air interface is homeotropic or tilted. The competition between the 

two anchoring modes is relaxed by the presence of surface point defects [21,22].   

2.2. Theory of the static point defect. 

In the one-constant approximation (i.e. K = K1 = K2 = K3) the geometry of a point defect can 

be represented near its core by the equations 

! 

" = N#
r

+ "
0
,         tan

#

2
= (tan

$

2
)
N      (4) 

where θ , φ are spherical angles for the director in r; 

! 

"
r
 the polar angle of r in the horizontal 

plane, λ the angle between the Oz axis and the direction r [17].  It is apparent that θ = + λ for 

the star-like radial hedgehog, θ = – λ for the hyperbolic hedgehog. The energy does not 

diverge on the core; one gets, for the radial hedgehog, by integrating the free energy density 

all over a ball of radius R with a point defect at the centre 

! 

E
1

= 8"KR         (5a) 

and 

! 

E
–1

= 1
38"KR         (5b) 

for the hyperbolic hedgehog [32]. 

 Of course, there is a physical core, where the nature of the order parameter is modified 

with respect to the region of ‘good’ crystal.  Let us write for the radial hedgehog the total 

energy as 

! 

E
1

tot
= 8"K(R – r

c
) + #r

c

3      (6) 

Minimizing this expression, one gets 

! 

r
c

= 8"K 3# ;         E
1

tot
= 8"K(R – 2

3 8"K 3# )    (7) 

! 

r
c

does not depend on the size R of the sample, and the energy is not significantly different 

from 

! 

E1 , if the core is microscopic compared to R, as expected.  Therefore one can adopt 

! 

E
1

as a first approximation for the total energy.   
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 To find the minimizer of the integral 

! 

1
2 "n( )#

2

 (one-constant approximation) in a 

given volume U ⊂ R3 is a problem relevant to the theory of harmonic maps with defects [33].  

An interesting result is that the minimal energy 

! 

E
" i{ }  of a set 

! 

" i{ } of given point defects 

! 

i{ } 

with 

! 

N
i

= ±1, such that ∑Ni = 0, is given by the expression 

! 

E
" i{ } = 4#KL         (8) 

where L is the minimal total length of the dipoles formed by linking point defects of opposite 

signs two by two.  One cannot overestimate the physical importance of this result that stresses 

the interactions between opposite hedgehogs.  These dipoles are indeed visible in Schlieren 

textures.  A somewhat analog result was obtained in [34,35] through a dimensional analysis, 

but for a unique pair. 

Experimental observations show that the real situation is somewhat more complex, even if 

some results of the simple model above do subsist: a)- K2 is always small compared to the 

other moduli; it is then expected that the radial symmetry could be broken by a twist 

deformation.  This phenomenon has been observed for surface defects-boojums in Schlieren 

textures of lens-shaped droplets [36] and for radial hedgehogs in droplets [28], and studied 

later for spherical bipolar droplets with pairs of boojums at the poles, both experimentally 

[20,37] and theoretically [38,39]; in relation with these investigations, a radial hedgehog is 

not a minimizer in a ball with homeotropic conditions, if the Frank constants are anisotropic 

[40]; b) as pointed by Press and Arrott [36], the structure of defects is influenced by the splay-

cancelling mechanism, according to which the energy of splay deformations along one 

direction can be reduced by splay in another direction, somewhat similar to the phenomenon 

of soap films adopting a catenoid shape; c)- it has been suggested by Melzer et al., on the 

basis of their observations [10], that point defects might be split into disclination loops, of 

strength 

! 

k = + 1
2  for a radial hedgehog, of strength 

! 

k = – 1
2  for a hyperbolic hedgehog, Fig. 3.   

Fig. 3. Splitting of point defects into disclination loops: a)- N = 1 ≡  k = 1/2; b)- N = – 1 ≡  k = – 1/2 

Two theoretical elements have been put forward which complete the present picture of 

point defects in nematics a)- the divergence moduli 

! 

K
13

, 

! 

K
24

 can play a role in the stability of 

the model, in particular might decide whether the point defect is split, or not, into a 

disclination loop; b)- the order parameter might change smoothly in the core region, not only 

in modulus, but also in character.  It has indeed been suggested that it might be biaxial [41].  

Computer calculations validate this suggestion.  We comment on these two points. 
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The Frank-Oseen elastic theory in the director representation has been used in [42] and 

[43] to compare the energies of the hedgehogs and their disclination loop modifications.  The 

divergence elastic term K24 is introduced in [43].  Eq. 5a, 5b become 

! 

E+1
tot=8"(K–K24)(R–rc )+#rc

3       (9a) 

for a radial hedgehog, and  

! 

E
–1

tot = 1
3 8"(K + K

24
)(R – r

c
) + #r

c

3     (9b) 

for a hyperbolic hedgehog.  The transformation to a disclination loop of radius 

! 

"  adds in both 

cases a term of the order of 

! 

"K
24

.  It is clear that in the frame of this simplified model the 

! 

k = 1
2  loop is forced to expand if 

! 

K
24

 < 0, to shrink if 

! 

K
24

 > 0, the reverse being true for the 

! 

k = – 1
2  loop.  The radius of the loop stabilizes for a value 

! 

" ~ # exp–
4K24

K
, which is 

microscopic (

! 

"  is the nematic coherence length).  By applying the electric field perpendicular 

to the loop in a nematic material with a positive dielectric anisotropy, one can expand the loop 

to a larger radius [44].  See [45] for a recent calculation of the hyperbolic hedgehog in the 

same vein, but using the full Frank moduli anisotropy. 

For the study of the core itself, the Landau-de Gennes theory has been largely 

employed, allowing a variation of the scalar order parameter.  It is shown in [46] that 

spherically symmetric configurations are exact solutions which minimize the Landau-de 

Gennes free energy, and that the core, whose size is found large compared to 

! 

" , is isotropic.  

But disclination loops are also solutions.  A number of papers [47,48] have exploited with 

success the suggestion that the core of a 

! 

k = 1
2  line is biaxial [41,49,50].  

Complete models with anisotropic coefficients, divergence elastic terms, Landau 

expansion in the full free energy, to what has to be added the role of boundary conditions at a 

finite distance, produce more complicated results, see e.g. [51,52].  Of course, these new 

developments often require heavy computational methods, see [53].   

2.3. Interaction and dynamics of defects. 

As stated above, radial and hyperbolic hedgehogs couple in 3D uniaxial nematic, by a soliton 

string in which most of the energy is concentrated, Fig.4.  For the pair of hedgehogs of 

opposite topological charge, the director field within the soliton can be written as [54] 

!
"

#
$
%

&
= ''' cos,sin,sin

r

y

r

x
n , where 

r

r!= arctan2" , 22
yxr += , and !r is the soliton 

radius and z -axis is the axis of rotation symmetry.  In an infinite sample, from the point of 
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view of the Frank-Oseen model, there is no mechanism and no typical length to keep !r  from 

becoming a zero; when 0!"r , the energy per unit length of the string attains its minimum 

value K!4 [54].   As the director gradients diverge at the core for 0!"r , a more refined 

approach is needed.  Penzenstadler and Trebin [47] considered the Landau-de Gennes theory 

in which the high density of director distortions is relaxed by changing the uniaxial 

orientational order into the biaxial one, in the spirit of Lyuksyutov’s approach to the problem 

of the singular core of disclinations and point defects [41,46]. They demonstrated that the 

soliton can decay into a uniform director structure n=const by a mechanism of escape to 

biaxiality [47].  However, the decay might be prevented by the energy barrier separating the 

uniform state from the soliton state.  A stabilization mechanism has been found by Semenov 

[54], who added a 4th-order gradient term to the standard 2nd order Frank-Oseen functional, 

( ) ( )222

2
nn !+!= "K

K
fFr .  This term prescribes the soliton string to be of a (generally 

macroscopic) fixed radius determined by the separation distance L  between the point defects 

located at 2/Lz ±=  and the nematic coherence length !  (of the order of a molecular size), 

namely, ( ) ( )22
/41~ LzLzr !" # . The attraction force between the defects acquires a small 

correction term [54], !
!
"

#
$
$
%

&
+'=

(

( L

L
Kf ln

2

3
14– .   

Fig.4. Schematic director configuration of the hedgehog pair connected by a soliton string. 

 Any realistic liquid crystal sample is bounded; the consideration above then might be 

applicable only when the characteristic size R  of the system is much larger than L .  When 

the two are comparable, the theory should take into account the boundary conditions, namely, 

the “anchoring” direction and energy associated with the director alignment at the bounding 

surfaces.  In addition to R , the new macroscopic length scale is WK / , usually ranging 

mµ01.0  to mµ10 .  The problem becomes much more complicated and the existing models 

of the offer conflicting views even for the simplest geometry of a bounded sample, such as the 

circular capillary depicted in Fig.1.  Semenov’s theory [54] and the numerical analysis by 

Gartland et al. [55] predict that the attraction of a pair of points in the capillary can still be 

described by the expression above but only when L  very short, much shorter than 
3/13/2

~* !
c
dL  that depends on the capillary diameter 

c
d ; for 

c
dL > , the attractive force 

decreases exponentially as ( )
c
dL /6.6exp ! , setting the hedgehogs “asymptotically free” and 

non-interactive at large separations.  Qualitatively, the bounding surface sets the director field 
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practically the same on the both sides of each defect core which implies that there is no net 

force acting on the defect.  Peroli and Virga [56] also predicted an attractive potential, but of a 

different type:  the attractive force varies logarithmically with L  at short distances and 

vanishes at 
c
dL 1.1! .  Finally, a model by Vilfan et al. [57] predicted that the defects would 

attract only when 
c
dL 1.0<  and repel if set at a larger separations.  This last model has been 

inspired by an experimental NMR evidence that in very narrow (submicron) cylindrical 

cavities, there might exist a (metastable) state with alternating radial and hyperbolic 

hedgehogs separated by 
c
dL !  [58]; see also the numeric simulations in Ref. [59].  Although 

all models dealt with the same basic director geometry, the boundary conditions have been 

chosen a bit differently, which might explain the discrepancies, according to Holyst and 

Oswald [60]: the surface anchoring was assumed to be infinitely strong, !"W , thus rigidly 

fixing the director orientation at the boundary in Ref. [54], but was taken finite in Ref. [57], 

thus allowing for the (small) director deviations from the anchoring direction at the surface.  

 Experimentally, the interaction of the topological point defects can be studied in 

dynamical settings, by studying whether and how the defects of opposite topological charge 

would attract each other and annihilate.  As the first example, consider two point defects in an 

infinitely large sample, connected by a string of a constant width r  whose elastic energy per 

unit length is K~ .  When the two defects approach each other, the director reorientation and 

thus energy dissipation take place mostly in the region of size ~ r ; the drag force acting on the 

defects moving with the closing velocity dtdLv /~ !  is then ~ rv
1
! , where 

1
!  is the viscosity 

coefficient for director reorientations.  By equating this force to the elastic force K~ , one 

concludes that the two defects should approach each other with a constant velocity; or, 

equivalently, that the distance between the defects decreases linearly with time:   

( ) tttL !"
0

,       (10) 

where 
0
t  denotes the moment of annihilation.  Interestingly, when the soliton width tends to 

zero, 0!"r , as in the case of infinitely large system with two point defects, then the energy 

dissipation rate should diverge to infinity; as the elastic force remain constant, it means 

0!v  [61].  Pismen and Rubinstein [61] interpret this result as an indication that the local 

reduction of the uniaxial nematic order in the core region is essential for the defect interaction 

and dynamics and deduced that the distance changes as  

( ) tttL !"
0

.      (11) 
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The dynamics obviously change when the potential of interaction changes. For 

example, if the interaction potential is of a logarithmic type ~ !/ln L  (which is the case, for 

example, of point defects in 2D or straight parallel disclinations in 3D [62]), then the elastic 

force is ~ L/1!  and the drag force is !" /ln~
1

Lv ; therefore, the defects move with 

acceleration and ( ) tttL !"
0

, or, including the logarithmic correction, 

ttconst
L

L !"##
$

%
&&
'

(
+

0

2
ln
)

, still similar to Eq. (11).   

 The dependence ( ) tttL !"
0

 for the situation when the defects are indeed connected 

by an experimentally observable linear soliton of a constant width, over which the director 

experiences a rotation by 2!  (similarly to Fig.4, but not axially symmetric) has been 

confirmed for the pairs of boojums at the surface of the hybrid aligned nematic films [21,63] 

and for the defects in freely suspended SmC films [64].  The stability of the soliton requires 

some “ordering field” [64] (e.g., an in-plane electric field [63] or a film thickness gradient 

[65]) to confine the director distortions within a region of a constant width.  When the solitons 

do not exist, and the director distortions spread in the entire region between the defects, the 

dynamics trend changes from Eq.(10) to Eq.(11), as observed in the experimental situations 

[21,63,64] above and in the hybrid aligned films of thermotropic nematic polyesters with 

boojums [22].  Even when the solitons connecting the point exist, one can observe a crossover 

from ( ) tttL !"
0

 to ( ) tttL !"
0

 when the separation distance shrinks and becomes smaller 

than the width of the soliton, at the late stages of annihilation [63]. 

 The experimental situation with the point defects in circular capillaries is even more 

complex. Both dependencies above have been observed for annihilating pairs of hyperbolic 

and radial hedgehogs produced by the isotropic-to-nematic quench in circular capillaries with 

=
c
d  350 mµ  [19]: ( ) tttL !"

0
 for 

c
dL !  and ( ) tttL !"

0
 for 

c
dL ! .  A similar 

experiment [66] with mdm
c

µµ 15060 !!  performed for a similar thermotropic 

cyanobiphenyl nematic material produced a different result: The sufficiently separated pairs 

c
dL !  of hyperbolic and radial hedgehogs at the axis of the capillary did not show any signs 

of interaction; their separation remained fixed for many hours.  Once set in motion by an 

external perturbation such as temperature gradient along the cylinder, the defects approach 

each other, first with ( ) tttL !"
0

 when 
c
dL !  and with ( )tL  exponentially vanishing at the 

final stages of annihilation [66].  This is in contrast to the experiment [19] where the 
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hedgehogs were observed to approach each other even when separated by 
c
dL 6! , with a 

constant velocity, Eq.(10), which was interpreted as the result of an elastic interaction with a 

constant force ~K .  On the other hand, the experimental technique used by Pargellis et al [19] 

to produce the defects, namely a fast temperature or pressure quench, might have led to  

temperature gradients capable of setting the hedgehogs into motion even in the absence of 

such an interaction.  For example, the temperature difference on the two sides of a hedgehog 

would cause a difference in the Frank elastic constants and thus in the elastic energies of these 

two regions.  Hilling and Saupe, see Ref. [67], also find ( ) tttL !"
0

 for 
c
dL !  .  However, 

Ref. [67] interprets it as the result of the imperfection in the normal alignment at the 

cylindrical wall rather as the result of any proper elastic interaction between the defects which 

was taken as non-existent for 
c
dL ! .  To illustrate the point, consider Fig.1 and assume that 

the director at the boundary slightly deviates from the perpendicular orientation, by an angle 

! , say, downwards, so that the director ticks at the right boundary in Fig.1 turn from 3 

o’clock towards 4 o’clock and the ticks at the left boundary turn from 9 o’clock towards 8 

o’clock.  Such a deviation might quite naturally be induced by the flow of the nematic fluid 

during the capillary filling.  Then the elastic energy (per unit length) of the configuration that 

escapes “downwards” (between the two defect cores in Fig.1) will be larger than the energy 

and “upward” escape (outside the defect pair), as the director rotate by !" 2+  across the 

capillary in the first case and by !" 2#  in the second case.  The energy of the escaped 

configuration scales as K~  (it is independent of 
c
d  [4]) and so does the difference in the 

elastic energies (per unit length) of the two regions.  Therefore, the defects would approach 

each other to reduce the length of the “overdistroted” region and the dynamics should follow 

Eq.(10) [67].  By reversing the sign of ! , the same argument should see the two defects in 

Fig.1 moving in opposite direction:  the two would repel each other rather than attract [67].  It 

might be of interest to verify this feature in experiments by establishing the polarity of the 

director tilt with respect to the polarity of the hedgehog pair(s).   

 To conclude, the only relatively well established experimental result for a pair of 

hedgehogs in circular capillaries is that at short distances, 
c
dL ! , their dynamics can be 

described by Eq.(11) (as also confirmed in numerical simulations with the Lebwohl-Lasher 

lattice model [68]).  What happens at 
c
dL !  is not entirely clear.  Recently, Holyst and 

Oswald [60] proposed to use a somewhat different geometry, a set of hedgehogs at the 

singular disclination line that forms near a cylindrical meniscus of a nematic sample in 
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contact with air. Subsequent experiments left the group “certain that “+1” and “-1” defects 

attract each other over at short distances and repel at large distances” [69].  Note that all the 

experiments performed so far reduced to the passive observations of defects locations and 

their change in time; in the future, it might be useful to add a new experimental technique of a 

controlled trapping and manipulating the defects with optical tweezers, see, e.g., [70,71].  

 An important feature of the hedgehog dynamics at short separation distances 

established by Cladis and Brandt [66] is that the radial and hyperbolic hedgehogs move 

towards each other in the capillary with different velocities, the former moving noticeably 

faster than the second one, especially near the nematic-to-smectic transition, where the bend 

deformations characteristic for the hyperbolic defect become accompanied by a very large 

elastic constant.  The result is most probably related to the backflow effect, i.e. the flow of the 

nematic fluid caused by director reorientation.  Although the backflow effect is of certain 

importance in any defect dynamics problem, it is extremely difficult to incorporate into the 

models and is usually neglected.  Nevertheless, Blanc et al. [72] recently demonstrated that in 

the similar problem of dynamics of two linear disclinations, the difference in the velocities of 

the defects of different strength is related to the backflow effect rather than to the elastic 

anisotropy. 

 The dynamics of defects has been attracted interest also from the point of view of the 

phase transitions scenarios, not only in liquid crystals and condensed matter, but also in 

cosmological models (the Kibble model and Zureck model, for example [73]).  During the 

quench from the highly symmetric phase (such as the isotropic fluid) to the lower symmetry 

phase (a uniaxial nematic, for example), the different pieces of the new phase might acquire 

different values of the order parameter phase (the director orientation) [4]; when they expand 

and meet each other, these differences produce topological defects.  The quench is then 

followed by a relaxation process in which the density N  of defects decreases as the result of 

their annihilation; for the hedgehogs, the rule should be ( ) D
LtN
!

" , in D-dimensional space, 

see, e.g., [74,75].  The isotropic-to-nematic transition has attracted especial interest in this 

regard [15,76], mostly because of the (apparent) ease with which the experimental data can be 

created and collected.  The latest theoretical result predicts that in 3D, the hedgehog densities 

should decay as ( ) 2/33 !!
"" tLtN  if there are no other defects such as disclinations.  In the 

experiments by Chuang et al. [15], however, the number of hedgehogs has been observed first 

to increase immediately after the quench, then reach a maximum and quickly decrease, 

approximately as ( ) 3!
" ttN .  These unusual features might be related to the presence of 
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dislinations and to the mutual transformations of hedgehogs and disclination rings.  A direct 

hedgehog-hedgehog annihilation in the 3D nematic bulk without disclination lines involved 

has been reported to obey Eq.(11) [77].  The same behaviour (11) with ( ) 2!
" LtN  has been 

observed by Dierking et al. [78] for the annihilation dynamics of umbilic defects in 2D.  A 

single umbilical defect represents a pair of two surface defects-boojums on the opposite sides 

of the flat cell filled with the nematic of a negative dielectric anisotropy; they appear when a 

strong electric field is applied to the cell and the director realigns from its original 

homeotropic orientation.   As in the case with the pair annihilation in a cylindrical capillary, 

much more needed to be done before the dynamics of defect tangles in quenched systems 

with hedgehogs and disclinations can be completely understood.  Note that for the 

clarification of the role of backflow effect the studies of dynamics of boojums and umbilics 

might be very productive:  the singular (molecular) core that creates problem in many 

computer simulations does not exist here, as the “cores” of the surface defects and umbilics 

are macroscopic.   

3. Singular points in nematic colloidal suspensions 

Colloids in which the liquid crystal is either a dispersed component [79] or nematic colloids 

in which the liquid crystal serves as a medium containing droplets of water or solid particles 

[80,81], are populated by point defects whenever the surface anchoring at the interfaces is 

strong enough ( W/KR >> ).  Different boundary conditions (director normal to the interface, 

tangential, or tilted) lead to two different types of point defects.  For example, the equilibrium 

state of a spherical nematic droplet with normal orientation corresponds to a radial hedgehog 

(or its topological equivalent such as a ring), while tilted or tangential orientation lead to 

boojums (surface defects), Fig.5.  

Fig. 5: Experimental textures of radial (a) and twisted bipolar nematic droplets (b) viewed between two 
crossed polarizers.  

 The topological characteristics of all point defects in a single connected nematic 

volume must satisfy the restrictions imposed by the Euler-Poincaré and Gauss theorems.  For 

p  hedgehogs and q  boojums enclosed by a surface of an Euler characteristic E , the 

restrictions write [20] 

Ek;/EN
p

j

j

pq

i

i !!
=

+

=

==
11

2  .     (12) 
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The conservation laws given by Eqs. (12) can influence the late stages of the first-

order isotropic-to-nematic phase transition that occurs through nucleation of nematic droplets.  

The droplets grow by adding molecules from the surrounding isotropic matrix and by 

coalescence. At early stages, the droplets are small and the director within them is practically 

uniform; they might form defects upon coalescence according to the Kibble mechanism, when 

three or more nematic droplets with different director orientation coalesce.  However, as soon 

as the droplets grow above W/KR
c
= , each of them acquires topological defects obeying 

Eq.(12).  For the popular nematic pentylcyanobiphenyl (5CB), the surface anchoring 

coefficient at the nematic-isotropic interface is W ≈10⁶ J/m² [82] while K≈2×10¹² J/m² [83]; 

therefore the anchoring-induced production of defects becomes effective for mRR
c

µ2!" . 

Figure 6 shows nematic droplets growing from the isotropic melt (E7 mixture containing 

cyanobiphenyls, similar to 5CB): supramicron droplets clearly carry stable topological 

defects.  Because of the surface anchoring that sets tilted conical director orientation (similar 

to 5CB, see [82]) there are both boojums and disclination loops [20]. As Fig.6 demonstrates, 

the anchoring mechanism is extremely effective, producing one disclination loop per each 

nematic "bubble" of the appropriate size.  Bowick et al. [84] expanding on the earlier studies 

by Chuang et al. [15], have discovered that the number of "strings" (disclinations) produced in 

the isotropic-nematic transition is about 0.6 per nematic "bubble" (droplet).  Although this 

number has been found to be in reasonable agreement with the Kibble mechanism [84], it 

might also signal a significant contribution from the anchoring mechanism, as many droplets 

in the experiment [84] have been larger than 10 mµ .   The balance of Kibble and anchoring 

mechanisms in defect production during the isotropic-nematic phase transition is still an open 

problem. Clearly, it should strongly depend on the speed and depth of quenching; fast quench 

that produces numerous sub-micron nuclei separated by submicron distances might avoid the 

anchoring mechanism.  The critical radius of nucleation is (see, for example, [4]) 

f/c !" 2= , where 25
/10~ mJ

!"  [82] is the surface tension coefficient for the isotropic-

nematic interface, and f  is the bulk energy density difference between the isotropic and 

nematic phases.  Estimating INTHTf /~ !! , where TTT
IN
!="  is the depth of temperature 

quench and H! ~10⁵J/m³ is the latent heat of transition [85], one finds the critical radius 

ranging from ( ) m..~
c

µ! 10010 "  when the quench is a 1-10 degrees below 
IN
T  and to 

!"
c

# when 
IN
TT ! .  Therefore, even a fast temperature quench might lead to large 

droplets if it is not deep enough.  On the other hand, slow quench might tell a story of 
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anchoring-induced defect dynamics in growing droplets that is of interest on its own, 

irrespective of the Kibble mechanism.  

In the nematic droplets, the equilibrium director configuration and the corresponding 

defects change when the boundary conditions change; for example, one can cause 

transformations between bipolar structure with a pair of boojums and a hedgehog by changing 

the temperature of the sample which in its turn changes the surface orientation from tangential 

to normal [20,86].  Director deformations associated with the defect structures in the droplets 

can cause flexoelectric polarization that contributes to electrostatic interactions between the 

nematic droplets [87,88,89]. 

 Point defects help to stabilize the nematic emulsions [90].  For example, imagine an 

isotropic (say, water) droplet with a normal boundary conditions (that can be set by adding a 

small amount of a surfactant such as lecithin to the system) in the nematic sample with a 

uniform director.  If the droplet is large, then it would distort the director around itself acting 

as a radial hedgehog with an enlarged “core”.  If the far-field of the director is uniform, then 

such a droplet would create a satellite hyperbolic hedgehog that balances the topological 

charge 1=N  of the droplet.  The director field around the droplet adopts a dipole 

configuration.   When there are many droplets in the system, they attract each other at large 

distances and repel at distances comparable to the droplet diameter R2  and thus form chains 

of alternating droplets and hyperbolic hedgehogs.  For distances d >> R2 , the elastic force of 

attraction scales as 44
dKRF /!  [90], which has been experimentally verified for the case of 

ferrofluid droplets [91] and most recently for solid particles manipulated by optical tweezers 

in the nematic bulk [71,92].   

 A spectacular illustration of the role of point defects and the critical size WKR
c

/!  

in stabilization of emulsions has been found by Loudet et al [93] who demonstrated that small 

isotropic oil droplets phase separating from the nematic host E7, can grow till their radius 

approaches mR
c

µ2! ; after that, each oil drop forms a satellite hyperbolic hedgehog; the 

droplets attract each other into long chains parallel to the alignment direction of the nematic 

phase. Ultimately, a highly ordered array of parallel macroscopic chains is formed, made of 

monodisperse droplets which do not coalesce, in sharp contrast to the scenarios of phase 

separation in isotropic fluids.  Note that the distortions around the droplets can drive them to 

accumulate in specific regions of the nematic matrix such as other defects (disclinations) [94] 

and interfaces [95,96].   
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 If the role of the surface anchoring is reduced (or if the electric field is applied to the 

droplet [97,98]), the hyperbolic hedgehog can be transformed into an equatorial disclination 

loop embracing the droplet, which is known as the Saturn-ring configuration, first envisioned 

theoretically in [99] on the basis of Frank-Oseen theory; and then observed experimentally in 

thermotropic [100,101] as well as lyotropic nematics [102], Fig. 7.  Computer simulations 

also suggest that the hyperbolic hedgehog can transform into the Saturn ring when the size of 

the spherical particle decreases [103,104].  The interparticle interactions acquire a quadrupole 

symmetry when the dipole hedgehog configuration changes to that of the Saturn ring 

symmetry in the external electric field, as demonstrated by Loudet and Poulin [98].   

 The interparticle interactions become much weaker, 6
1 d/F ! , when the normal 

boundary conditions are changed to the tangential ones [105,106].  The director field acquires 

two defects-boojums at the poles of the particle and the symmetry of a quadrupole.  As 

established experimentally with the help of optical tweezers [107], the interaction might be of 

repulsive or attractive nature, depending on the mutual position of the two droplets, but it 

deviates from the quadrupolar model when the distances between the particles become 

comparable to a few D ’s.   

 The studies of dynamics of defect formations in colloidal systems are at the stage of 

infancy [108,109]. For example, Stark and Ventzki [108] calculated the Stokes drag of 

spherical particles moving in a nematic host for three different configurations shown in Fig.7.  

The hedgehog configuration is very different from the other two because of its dipolar 

symmetry.   

Fig. 6:  The sequence of textures of nematic nuclei at the isotropic-to-nematic transition caused by 
temperature quench in the mixture E7 as viewed between two crossed polarizers. The nuclei carry boojums 
(black arrows) and disclination loops (white arrows) (a,b); merging (c) results in disclinations with ends 
trapped at the cell’s plates. Cell thickness 200 mµ .  

Fig. 7:  A spherical inclusion in a uniformly aligned nematic matrix with homeotropic boundary conditions 
resembles a radial hedgehog and produces a hyperbolic satellite when  its size is much larger than the 
anchoring extrapolation length WK /  (a); causes a Saturn ring configuration when the two are 
comparable (b); and is being ineffective to distort the director when much smaller than WK /  (c).  

4. Conclusion 

The large birefringence of liquid crystals allow easy optical microscopy observations of 

defects, whose number is scarce in the field of view, due to the viscous relaxation of the 

sample inhomogeneities; observed defects are usually in equilibrium with the boundary 

conditions, and of small energy.  This explains why topological point defects in condensed 

matter physics were discovered there, in parallel with the investigations on Bloch points in 
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magnetic bubbles [110].  This is at the origin of a noticeable (but limited) series of 

observations and, above all, of theoretical developments, including the topological theory of 

defects and their elastic and dynamic properties.  The present day observation resolution is far 

below the advances made thanks to computational methods, in particular in the structure of 

the core and the anisotropy of the Frank coefficients; new experimental methods are thus all 

wanting.  One can however expect that more recent optical methods, such as ultra rapid 

confocal polarizing microscopy, attended by laser manipulations of small particles (e.g. in 

nematic colloidal suspensions) or even of defects themselves, might help in the investigation 

of macroscopic dynamic properties, at least.   

 ODL acknowledges useful discussions with E. C. Gartland, Jr. and partial support 

through NSF grants DMR-0504516 and DMS -0456221. 
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