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ABSTRACT 

We study using the finite element method the pyramidal indentation performed on 

elastic-perfecly plastic (EPP) solids: their effective elastic modulus E* to the flow stress σ0 

ratio ranges from 2.79 (quasi-elastic solid) to 2790 (quasi rigid-perfecly plastic (RPP) solid). 

The friction shear stress was taken equal to zero or its maximal value. First we analyse the 

two-dimensional indentation with a rigid axisymmetric cone (semiapical angle θ=703 deg). 

We provide the evolution with the indentation index X=(E*/σ0)cot θ of the indent profile, the 

shape ratio c=hc/h, where h (hc) is the indentation (contact) depth, and the hardness H. The 

influence of friction becomes significant for X>10. We validate our results by comparison 

with the results related to RPP solid and the results of three-dimensional numerical simulation 

of the Vickers and Berkovich pyramidal indentation for X=1, 30 and 100. A method for 

interpreting the results of instrumented indentations is proposed and compared with the Oliver 

and Pharr method.  

 

 

§ 1. INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conical indentation and the related main quantities: penetration depth h, contact 

depth hc, contact radius a, indenter angle θ and indentation force P. 

 

The indentation experiments [1] and especially instrumented indentations performed 

with the Berkovich pyramid [2] are very commonly used. But their interpretation remains a 

difficult problem. The mechanical analysis of indentation provides two very important 

quantities for the instrumented indentation [2]: 
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the shape ratio
h

h
c c=   the reduced hardness 

0

*
σ
H

H =   (1) 

 

The shape ratio c
 
provides the contact depth hc (figure 1) starting from the indentation depth h, 

and so the projected contact area A=24.5c
2
h

2
 (for a perfect pyramid) and the hardness H=P/A, 

the reduced hardness provides the link between the hardness and the flow stress σ0 of the 

material. 

A complete description of the axisymmetric indentation of elastic solids (Young’s 

modulus E, Poisson ratio υ) is available [3]: for conical indenter c=2/π and H*=X/2 (see 

below). The conical indentation of rigid-perfectly plastic (RPP) solid has been analysed 

mainly by the slip line field (SLF) method [4]. For elastic-perfectly plastic (EPP) solids 

Johnson [5] provides the matter balance in the model of the expansion of a spherical cavity 

proposed by Hill and so estimates H* versus the indentation index X: 

 

θ
σ

cot
*

0

E
X =        (2) 

 

E* is the effective elastic modulus [2,3] (for rigid indenter E*=E/[1-υ2
]); 2θ  is the cone 

apical angle. But according to this model whose velocity field is purely radial, the sample 

surface remains plane (the shape ratio c=1). By extending the elastic analysis Oliver and Pharr 

[2] proposed a relation to estimate the shape ratio starting from the initial unloading slope or 

contact stiffness S=dP/dh. By defining a reduced contact stiffness md, their relation is: 

 

dh

dP

P

h
mwith

m
c d

d

=−=
75.0

1     (3) 

 

Another relation has been proposed later by Bec et al. [6]: 

 









−=

dm
c

1
12.1      (4) 

 

where the factor 1.2 has been deduced from the observation of the residual pile-up induced by 

indentation of a gold film. More recently Dao et al [7] and Bucaille et al. [8] proposed 

alternative method for the interpretation of instrumented indentation based on the value of the 

Kickc’s constant C=P/h
2
 and numerical simulations of the conical indentation of materials 

with the rheological behaviour of metals. Despite these works, the relation (3) (named below 

O&P relation) remains the most often used relation despite the fact that it predicts always 

sink-in (shape ratio c<1) and so is certainly not suitable for workhardened metals where pile-

up occurs (the shape ratio c>1) [1,8,9]. 

The aim of this paper is to present the results of numerical simulations with the finite 

element method of the conical indentation of EPP solids [10]. A detailed description of the 

characteristics and applications of the industrial computer code used in this study (Forge2
®
, 

Forge3
®
) is available online [11].The main work concerns the influence of E*/σ0 and friction 

on the indentation with the cone equivalent to the Vickers and Berkovich pyramids (θ=70.3 

deg). We compare the results with elastic and SLF analysis and the results of some numerical 

simulations of Vickers and Berkovich indentations. 
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§ 2. CONDITIONS OF THE NUMERICAL MODELLING 

The axisymmetric indentation is modelled with Forge2
®
, a two dimensional 

axisymmetric implicit finite element code which is able to simulate large material 

displacements and deformations. A two-dimensional rectangular mesh incorporating six-

nodes elements is constructed. Elements have a length of 0.04hmax near the indenter and of 

3hmax far from the indenter. The size of the domain was chosen so that the boundary 

conditions have no influence on the results. The indenter is rigid and is modelled as an 

axisymmetric cone with a semiapical angle θ=70.3 deg. 

Pyramidal indentation is modelled with Forge3
®

 implicit code whose performances are 

very similar to those of Forge2
®
. For symmetry reasons the domain is 1/8

th
 (Vickers pyramid) 

or 1/6
th

 (Berkovich pyramid) of a right-angled parallelepiped. The indenter is rigid. Elements 

of the domain are three-dimensional meshes with four-node tetrahedra. Far from the indenter, 

elements have a typical length of about hmax. With the Forge3
®
 software, parallepiped boxes 

are used, and where the mesh is refined, 20 nodes are at least in contact with the indenter. 

More details concerning simulation of the scratch test and indentation test are given in [6].  

The materials are homogeneous and isotropic. The inertial forces are assumed 

negligible. At each time the strain rate tensor is the sum of an elastic strain rate tensor and a 

plastic strain rate tensor (elastoplastic material): 

 
plel εεε &&& +=        (5) 

 

The elastic behaviour is modelled by the classical linear law with two parameters: Poisson’s 

ratio, υ=0.3, and Young’s modulus, E. The yield condition is given by the von Mises yield 

criterion with the flow stress σ0 and the associated flow law. In 2D simulations the effective 

elastic modulus E* to the flow stress σ0 ratio ranges from 2.79 to 2790; so the indentation 

index X ranges from 1 to 1000 for θ=70.3 deg. In 3D simulations we restrict the calculations 

to X=1, 30 and 100. Friction is characterised by the Tresca’s friction coefficient m  which 

defines the friction shear stress according to the relation: 

 

    10
3

0 ≤≤= mm
σ

τ     (6) 

 

This friction law is commonly used to model friction in metal forming analysis [12], it is 

equivalent to the Coulomb’s law if the contact pressure is uniform. In 2D simulations we 

compare the results for m = 0 (zero friction) and m = 1 (maximal friction because the friction 

shear stress is equal to the maximal shear stress of the material according to the yield 

criterion). Because our aim is to estimate the reliability of the 2D approach and because the 

3D simulations are very time consuming, in 3D simulations we consider only the zero friction 

case.  

 

§ 3. RESULTS OF THE AXISYMMETRIC APPROACH 

 

§ 3.1. Curves P-h and nature of the results 

 Because the material is homogeneous and the cone is almost perfect, the reduced 

force-displacement curve P*-h* where the force and the displacement are divided by their 

maximal values does not depend on the maximal value of h. In addition, the friction for this 

high indenter angle has very small influence on it as reported in other previously published 

works [8,13]. Figure 2 provides this curve for X=5 and X=1000. Clearly the case X=5 
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corresponds to a highly elastic material with a large recovery; on the contrary, the curve for 

X=1000 corresponds to an almost rigid-perfectly plastic (RPP) material with very small 

recovery. 
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a) X= 5 b) X=1000 

 

Figure 2. Influence of the indentation index X on the reduced force-displacement P*-h* curve 

(the curves P-h do not vary significantly with friction). 

 

The loading curve is simply P=Ch
2
 (Kick’s law). We observe that the unloading curve 

can be described with a very good approximation by a power function: 

 

Unloading ( )m

fhhBP −≈      (7) 

 

So by applying the procedure of a power curve fit by the least square method proposed by 

Oliver and Pharr [2] it was possible to estimate accurately the exponent m of the unloading 

curve, the reduced recovery depth ∆h*=1-hf/hmax, where hf is the residual indentation depth, 

and the contact stiffness S. Due to the geometrical similarity, the various quantities c, H*, md, 

m and ∆h* do not depend on the maximal value of the force P or the indentation depth h. The 

evolution versus X of c, H*, md has been fitted by polynomial curve for zero friction and 

maximal friction (cf. Appendix). 

 

§ 3.2. Contact geometry 

The indent profiles increase in direct relation with hmax. So figure 3 provides for zero 

friction and for the various values of the indentation index the reduced profiles (the 

dimensions are divided by the maximal penetration depth hmax) under load and after 

unloading: 

• Under load the material sinks in for X<30 (c<1) and piles up for X>30 (c>1).  

• A very important result of these calculations is that elasticity has some influence in the 

whole range of values of the indentation index because the indentation profile is not 

yet constant between X=200 and 1000. Even for X=1000, where the shape ratio c~1.25 

we observe some slight elastic recovery during unloading.  

• After unloading we observe in all cases an indent with a pile-up. If the indent is not 

very marked for the quasi-elastic case X=1 and even X=5, the pile-up is apparent for 

X ≥ 10; the radial distance between the indentation axis and the residual bulge top a’ is 

related to the contact radius a under load by a’/a=1+δ(X) where δ(X) is a decreasing 

function of X which tends toward 0; in addition  δ(X) < 10 % for X ≥ 10: so the 
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measurement of the residual indent radius a’ provides an under-estimation of the true 

indentation pressure H=P/(πa
2
) with an error lower than 20 %. This validates the 

Meyer procedure where the hardness is deduced from the residual indent [1].  

As we see later that these profiles depend on friction for X>10. 

 

 
 

Figure 3. Evolution versus the indentation index X of the indent profile under load and after 

unloading (70.3 deg cone, zero friction). The coordinates are divided by the indentation depth. 

 

 We see in figure 4 that the shape ratio c increases steadily with the indentation index X: 

• For X ≤ 10, the shape ratio does not depend on friction and increases as the logarithm of X, from 

the elastic value 0.63 (~2/π) for X=1 to 0.84 for X=10. 

• For X>10, its increase is slower, but always significant and c is lower if the friction increases: 

For X=1000 which corresponds to an almost RPP solid (see § 4.1), when the friction coefficient 

increases from 0 to 1, the shape ratio decreases from 1.25 to 1.16. 
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Figure 4. Evolution of the shape ratio c for zero friction and maximal friction (70.3 deg cone) 

versus the indentation index X. 
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§ 3.3. Hardness and unloading characteristics 
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Figure 5. Evolution of the reduced hardness H*=H/σ0 for zero friction and maximal friction 

(70.3 deg cone) versus the indentation index X. 

 

 As reported previously, friction has only a very small influence on the force-displacement  

P-h curve, but because it can have a significant influence on contact geometry (figure 4), friction 

influences the value of the hardness. The reduced hardness H* increases with X, but this increase 

comprises two main steps (figure 5): 

• The initial increase for 1 ≤ X ≤ 10, where H is smaller than 2.24 σ0, is logarithmical and does not 

depend on friction; it is in agreement with the model of the expansion of the spherical cavity [5]. 

• For X>10, the increase is slower and the hardness increases with friction: for zero friction 

hardness tends toward 2.6 σ0, and is almost constant for X>30; on the contrary at the maximal 

friction the hardness remains always an increasing function of X and attains the value  3.12 σ0 

for X=1000. 
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Figure 6. Evolution of the reduced recovery depth ∆h* and the exponent m of the unloading 

curve for zero friction (70.3 deg cone) versus the reduced contact stiffness md. 

 

The reduced contact stiffness md is an increasing function of X varying from about 2 for X=1 

to about 300 for X=1000 (cf. Appendix).The reduced recovery depth ∆h* decreases steadily as md 

increases and falls to very low values for X=1000 (Figure 6). On the contrary, the exponent m of the 
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unloading curve decreases first, has a minimal value ~ 1.2 for md = 5 (X~10), then increases and 

attains 1.4 about for md~300 (X=1000). Such a complex evolution is due to the evolution with X of 

the shape of the distribution of the contact pressure p [10]: this distribution becomes more and 

homogeneous as X increases from 1 to 30, but for higher values of X whereas the mean value of p is 

almost constant (figure 5), its value increases at the contact centre and decreases at the edge of the 

contact. 

 

§ 4. COMPARISON WITH OTHER APPROACHES 

 

§ 4.1. Axisymmetric approaches 

 The conical indentation of RPP solids has been analysed with the asymptotic approach 

[14]: it considers a power law hardening rigid plastic material and neglects the material 

displacement; so the problem can be reduced to a flat punch equivalent problem which can be 

solved numerically very accurately. As the material displacement decreases for θ → 90 deg or 

if friction increases, we can expect that this approach provides very good results for high value 

of θ and/or high friction. Direct comparison with the results of the SLF approach [4] is not easy 

because this approach is based on Tresca yield criterion and the hardness H is related to the 

maximal shear stress k. We assume kk 85.1~)2/31(0 +=σ in order to recover for θ =90 deg 

the value of the hardness provided by the asymptotic approach for zero friction: H=3.05σ0. 

 

Table 1. Comparison of the results of present calculations for X=1000  

and the results related to the conical indentation of RPP solids. 

 

Contact  Present results X=1000 SLF θ~70 deg [4] Asymptotic model [14] 

conditions c H* c H* c H* 

m = 0 

        0.5 

        1 

Sticking contact 

1.25 

1.21 

1.16 

2.6 

2.9 

3.12 

1.22 

1.2 

2.6 

2.97 

1.26 

 

 

1.21 

3.05 

 

 

3.21 

 

 We see on table 1 that the results of the present calculations for the highest value of the 

indentation index X=1000 are in very good agreement with the available results of the SLF 

approach. On the contrary for zero friction the asymptotic approach overestimates the 

hardness, but provides a good estimation of the shape ratio: such a discrepancy on hardness is 

not surprising because the SLF approach demonstrates that for zero friction, hardness is an 

increasing function of the cone angle whereas it is not the case for the asymptotic approach. 

For sticking friction which restricts the material displacement the value of H* provided by the 

asymptotic approach is very near the value obtained with maximal friction; our value of c is 

lower, but as the results in figure 4 suggest for X=1000 we have not yet attained the limiting 

value related to RPP solid. 

 Figure 7 provides the evolution of the shape ratio c versus the reduced contact stiffness 

according to our calculations and the O&P relation (3). Clearly the O&P relation is correct for 

md<5 (X<10) for all contact conditions and for maximal friction it gives correct values for 

md<10 (X<30). However for higher value of the reduced contact stiffness O&P relation 

underestimates the shape ratio and this induces an overestimation of the hardness. As expected 

this overestimation is all the more high as the indentation index is high or as the elasticity 

effects are small. It means that the O&P relation works well for high elasticity material such as 

silica, glasses, polymers or hardened tool materials, but does not work for current metallic 

alloys with no significant strain hardening and strain rate hardening. 
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Figure 7. Evolution of the shape ratio c (70.3 deg cone) versus the reduced contact stiffness 

md. For comparison the value deduced from the Oliver and Pharr relation (3) is reported. 

 

§4.3. Three-dimensional approach 

  

a) X=30: Isometric view and section by a symmetry plane 

  

 
X=100: Isometric view and section by a symmetry plane 

 

Figure 8. Berkovich indent under load on EPP solids with X=30 and 100 (zero friction) 

(the unit for the axes is arbitrary). 
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 As an example the figure 8 provides the contact geometry for Berkovich indentation 

performed on the materials with X=30 and 100: The material surface is almost plane for X=30 

as in axisymmetric case whereas very significant pile-up’s are produced for X=100: their height 

is maximal in the middle of the faces whereas the material displacement is very small in the 

diagonal directions. So the projected contact surface is concave for X<30 and convex for X>30 

in qualitative agreement with experiments [2,6]. Starting from these results it is possible to 

estimate the area of the projected contact surface A, the hardness and the shape ratio 

)5.24/( 2
hAc = . The hardness values are very near the values related to the 70.3 deg cone 

[10]. The shape ratio increases with X or md and we notice that this variation is maximal for the 

equivalent cone and minimal for the Vickers pyramid (figure 9); very surprisingly for X=30 the 

shape ratio is very near 1 for all indenter shapes. So if we take into account the experimental 

scatter and the difficulty of these three-dimensional simulations we can estimate that the 

approach with the equivalent axisymmetric cone is pertinent. 
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Figure 9. Evolution of the shape ratio c for Berkovich and Vickers indentation and the 

equivalent axisymmetric cone versus the reduced contact stiffness md (zero friction). 

 

 

§ 5. CONCLUSION 

We have analysed by the finite element method the indentation performed with the 70.3 

deg cone on the elastic-perfecly plastic (EPP) solids with indentation indices X ranging from 1 

(quasi-elastic solid) to 1000 (quasi RPP solid). The friction shear stress is equal to zero or its 

maximal value. We provide so the evolution with the indentation index X of the indent profile, 

the shape ratio c, the reduced hardness H*, the reduced contact stiffness md and the unloading 

characteristics. The influence of friction becomes significant for X>10 and becomes marked for 

high value of the indentation index: for X=1000 an increase in friction produces a 20 % 

increase in hardness and a 8 % decrease in the shape ratio. For X=1000 our results are in good 

agreement with the available results related to RPP solid provided by the SLF approach and the 

results of the asymptotic approach related to sticking friction. The results of the three-

dimensional numerical simulations of the Vickers and Berkovich pyramidal indentation for 

X=1, 30 and 100 are in rather good agreement with the ones of the 70.3 deg cone. The 

calculated evolution of c with md has been compared with the evolution proposed by Oliver 

and Pharr; this demonstrates that the O&P relation works well for high elasticity material 

(X<10-20) such as silica, glasses, polymers or hardened tool materials, but for current metallic 

alloys with no significant strain hardening and strain rate hardening it underestimates the shape 

ratio and so produces an overestimation of the hardness. 
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APPENDIX 

Results of the numerical simulations of indentation with the 70.3 deg cone of EPP solids  

(X=1-5-10-20-30-60-80-100-200-1000) 

 
Table 2. Evolution of the shape ratio c with the indentation index X. 

 

c = c
0
 + c

1
 ln X 

m = 0 m = 1 

X c
0
 c

1
 X c

0
 c

1
 

1-3 0.65 0.0273 1-3 0.6479 0.0236 

3-100 0.5183 0.1404 3-10 0.5346 0.1307 

100-1000 1.0039 0.0359 10-200 0.5964 0.1022 

   200-1000 1.0046 0.0223 

 

Table 3. Evolution of the reduced hardness H* with the indentation index X. 

 

H* = H
0
 + H

1
 ln X 

m = 0 m = 1 

X H
0
 H

1
 X H

0
 H

1
 

1-10 0.5617 0.7298 1-5 0.5587 0.7865 

10-30 1.5973 0.2794 5-20 0.8552 0.5893 

30-1000 2.4824 0.0182 20-100 1.9191 0.2415 

   100-1000 2.7667 0.0519 

 

Table 4. Evolution of the reduced contact stiffness md with the indentation index X.  

 
 m

d
 = m

0
 + m

1
 X + m

2
 X2 

 m  = 0 m  = 1 

X m
0
 m

1
 m

2
 m

0
 m

1
 m

2
 

1-5 2.023 -0.117 0.0582 2.023 -0.117 0.0582 

5-200 1.6 0.2755 -2 10-4 1.87 0.2484 -2 10-4 

200-1000 -14.671 0.3116 0 -14.858 0.2933 0 
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