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Geometry of dislocations in icosahedral

quasicrystals

Denis Gratias, Jean-Tristan Beauchesne,
LEM-CNRS/ONERA, B.P. 72
92322 Châtillon cedex, France

Frédéric Mompiou,
Metallurgy Division, NIST,
100 Bureau Dr. stop 8555

Gaithersburg 20899 MD, USA
and Daniel Caillard

CEMES-CNRS,
29, rue Jeanne Marvig B.P. 4347
31055 Toulouse cedex 4, France

Abstract
Quasicrystals are complex metallic alloys that are ductile at high

temperatures close to their melting point. It has been early recog-
nized that their plasticity is due to a flux of moving linear defects in
all respects similar to dislocations in ordinary crystals. The present
paper is an attempt to propose in a short didactic review a simple
synthetic analysis of the basic underlying geometry of quasicrystalline
dislocations exemplified with experimental and calculated images of
electron microscopy in icosahedral phases.

1 Introduction

This paper is a short contribution to the analysis of the geometrical
properties of dislocations in icosahedral quasicrystals [1, 2]. Its main
goal is to present, as a short review, a detailed description of these
defects in the framework of N -dimensional crystallography.

It has been early recognized that, like many other intermetallic
compounds, icosahedral quasicrystals are very brittle at low tempera-
ture but exhibit a unusually large plastic regime at high temperatures

1
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which is essentially due to the motion of linear defects in all respects
similar to ordinary dislocations (see for instance [3, 4]).

From a geometrical point of view, these original deformation modes
are qualified as dislocations [5, 6, 7, 8] because by its very definition,
a (icosahedral) quasicrystal can be described as the 3D cut along an
irrational orientation of an abstract 6D-periodic object [9, 10, 11, 12].
As periodicity is recovered in this abstract 6D space, the notion of
dislocation is a natural extension of the one classically defined for
crystals. This abstract 6D space decomposes into two complementary
subspaces :

• the 3D physical space that we shall call the parallel space and
note E‖;

• the perpendicular space, also of dimension 3, that we note E⊥.

Quasiperiodic structures present in real space atomic planes and
rows, exactly like ordinary crystals with the only difference that the
constitutive atoms are not periodically but quasiperiodically spaced
(see for instance [9]). An important theorem [13] states that for the
case where the 6D lattice nodes project onto E⊥ as an uniformly
dense set of points — as it is the case of the icosahedral phase — any
two parallel cuts along E‖ generate locally isomorphic quasicrystalline
structures that are physically equivalent to any finite distance, i. e.
any two such quasicrystals are physically indistinguishable in all re-
spects. This basic gauge invariance corresponds to the fact that the
physical properties of quasicrystalline dislocations must be indepen-
dent of the choice of origin in E⊥ during the cut process generating
the real atomic structure. As we shall see next, this invaraince induces
important geometric constraints in the description of quasicrystalline
dislocations.

2 Geometry of quasicrystalline dislo-

cations

2.1 Burgers vector

The definition of a dislocation in a (Euclidean) N -dimensional (ND)
medium follows the Volterra process used for usual 3D media : a cut
is performed along a (N − 1)D oriented (hyper)surface Σ bounded by
a closed (N − 2)D (hyper) line; the upper part of the medium at the
cut level is displaced by a finite vector ~B, with respect to the lower
part. The medium is finally re-glued and mechanically relaxed.

2
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If ~B is a translation belonging to the translation invariance group

of the medium, the Σ cut surface vanishes and an elastic singularity
is created at the level of the (hyper)line that we call a perfect dislo-
cation with Burgers vector ~B. For the case of a ND-periodic object
with hyperlattice Λ, the Burgers vector ~B of a perfect dislocation is a
hyperlattice translation : ~B ∈ Λ and therefore it has necessarily one
non zero components in each E‖ and E⊥ subspaces:

~B = ~b‖ +~b⊥ ∈ Λ (1)

An example of a (computed) dislocation, seen end on, of Burgers vec-
tor B = (0, 0, 1, 0, 0,−1) (6D notation from the indexing scheme pro-
posed by Cahn et al. [14]) in an icosahedral phase is presented on
Fig. 1. The observation plane is perpendicular to a 5-fold direction.
As for ordinary dislocations, observation at glancing angle along cer-
tain directions shows kinds of additional half-planes the number and
stacking of which depends on the chosen direction.

2.2 Dislocation line

The dislocation line, noted V , is a (N − 2)D-manifold. For the icosa-
hedral case, the line V is a 6− 2 = 4D manifold. Closed circuits can
be constructed around V in the remaining 2D-subspace, that will be
used to define the Burgers vector. This means that Burgers circuits
are entirely defined in E‖and are indeed pertinent physical quantities
that can be experimentally determined1.

The invariance stating that the dislocation description is indepen-
dent of the choice of the origin in E⊥ fixes the ”orientation” of the
dislocation line V : the only generic way for V to be invariant by any
translation of the cut along E⊥, is that V contains E⊥. The disloca-
tion 4D-line decomposes therefore into a 3D-subspace parallel to E⊥
plus a remaining 1D-subspace that is necessarily in E‖: this is the
usual real dislocation line ~u in physical space.

Thus a (perfect) dislocation in an icosahedral quasicrystal is made
of a Burgers vector ~B belonging to the 6D-lattice of the quasicrystal
and a dislocation line of dimension 4 that decomposes into a 1D line
in E‖ and a 3D-subspace parallel to E⊥. It formally decomposes as
V = ~v‖ ⊕ E⊥.

Since ~B has a non zero component in E⊥ it is stricto sensu, im-
possible to construct pure edge (perfect) dislocations in an icosahedral

1This does not imply ~B to lie in this 2D-subspace: in fact ~B is in a rational 2D-plane
with respect to Λ that is oblique with respect to E‖. It is the irrationality of this oblique
orientation that makes the relation between the lattice nodes of this rational plane and
their projections in E‖ a one-to-one correspondence.

3
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phase because of E⊥ being embedded in V . Hence, edge and screw
dislocations are better defined in quasicrystals in considering only the
relative orientation of the Burgers vector with respect to the real phys-
ical space irrespective of the components of the Burgers vector onto
E⊥. We thus define the edge and screw components, respectively ~be

and ~bs of a dislocation by the usual scalar products ~bs = (~b‖ · ~u‖)~u‖,
and ~be = ~b‖ −~bs.

If the dislocation line ~u‖ has a specific orientation along well defined
quasicrystallographic directions (as it is often the case in crystals),
the corresponding 4D dislocation (straight) line V contains a 2D-
sublattice of Λ the trace of which in E‖ is the physical dislocation line
~u‖.

2.3 Displacement field induced by a quasicrys-
talline dislocation

As imposed by the decomposition (1) any dislocation in a quasicrystal
generates two displacement fields of different physical nature.

The first one is related to the parallel component ~b‖ of the 6D

Burgers vector ~B and is governed, in a good approximation, by stan-
dard elastic theory. Its stored elastic energy varies like |b‖|2 and the
interaction forces between dislocations and stress fields can be com-
puted using the usual tools of elasticity theory. This displacement field
is referred to as the phonon field although — irrespective of a global
dislocation motion — it describes static displacements of atoms.

The second displacement field is non trivial and is specific to qua-
sicrystals and incommensurate structures. It is generated by the per-
pendicular component ~b⊥ of the 6D Burger vector and extends in E⊥.
It is not attached to any local elastic displacement of atoms but to a
rearrangement of the local atomic configurations with respect to each
others with no change in their shapes. It is closely related to the con-
figurational energy of the alloy on both chemical and topological order
and is depend on the thermodynamic aspects of the material. It is (im-
properly) called the phason field as a reference to the phason modes
encountered in dynamical studies of incommensurate structures. The
expression of the energy attached to this phason field is either pro-
portional to |b⊥| or |b⊥|2 depending on which model (perfect tiling or
random tiling) is chosen to explain the stability of the quasicrystal.
So far, the most advanced study on the subject has been made on
decagonal phases by Koschella [20] who concluded that the phason
energy is best described by a quadratic term in phason fluctuations.
In that scheme, the dislocation energy associated to the local tiling
faults around the dislocation would vary as |b⊥|2.

4
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The global 6D-displacement field ~U induced by a dislocation de-

composes on respectively E‖ and E⊥ as ~U = ~u‖+~u⊥. The displacement
field ~U( ~X) depends only on the parallel component, x‖, of the running
vector ~X, so that:

~U( ~X) = ~U(x‖) = ~u‖(x‖) + ~u⊥(x‖)

as the dislocation ”line” contains E⊥ so that the total 6D-displacement
field depends only on the physical space variable. Integrated along a
closed circuit C‖ in E‖, these two fields lead to:∮

C‖

~du‖ = ~b‖

∮
C‖

~du⊥ = ~b⊥

if the circuit encloses the dislocation line V , and zero otherwise.

2.4 Partial dislocations and dissociations

The notion of partial dislocations in quasicrystals follows the one de-
fined for crystals: a partial dislocation has a Burger vector that is an
integer fraction of a lattice translation. Such dislocations are bounded
by 2D extended faults with fault vectors equal to the Burgers vector
(up to a lattice translation of Λ). The i-AlPdMn F-type icosahe-
dral phase has specific atomic structures where the atoms distribute
on three main quasiperiodic networks displaced from each other by
(1, 0, 0, 0, 0, 0) and (1̄, 1, 1, 1, 1, 1̄)/2. These translations and their com-
binations can be called super partial dislocations in the sense that they
belong to the P (A)-lattice for (1, 0, 0, 0, 0, 0) and D6

x(y)(A)-lattice for
(1̄, 1, 1, 1, 1, 1̄)/2 which both are superlattices of rank 2 of the F (2A)-
lattice. These translations are good candidates for possibly generating
antiphase boundaries (both with phase shifts 0 or π in the 6D space)
in the material. So far only superpartial dislocations of Burgers vec-
tors (1, 0, 0, 0, 0, 0) and (1, 0, 1̄, 0, 0, 1), both of the same family, have
been observed in these phases [24].

Quasicrystals exhibit a specific type of dissociation that results
from the very basic physical dissymmetry between the phonon and
the phason spaces in the canonical decomposition ~B = ~b‖ + ~b⊥. A
dislocation appears as a strip of fault bounded on the head, by the
singularity ~b‖, and on the tail, by ~b⊥. All the elastic distortion is
concentrated on the head line whereas the tail line corresponds to the
termination of the phason wall of the strip and carries no distortions
but only tile mismatches. The motion of the dislocation is therefore
governed by two mechanisms: the first one, on the head, is driven
by the usual elastic interactions with stress fields, whereas the second

5
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one, related to phasons, depends on the chemical ordering driving
forces of the structure. The former mechanism induces possible fast
motions but the latter one, relying on atomic diffusion, can have a
much longer relaxation time depending on temperature. This suggests
a scenario of dislocations being immobile at low temperature, having
a slow motion and trailing a more or less extended phason wall at
intermediate temperatures and eventually an easy viscous motion at
higher temperatures as will be discussed next.

2.5 Glide and climb in quasicrystals

Formally the glide manifold associated to a dislocation is defined by
the union of the dislocation line V and the Burgers vector ~B. As in
ordinary crystals, a motion of the dislocation line in the glide man-
ifold is conservative in the sense that it generates no long distance
mass transport. In the icosahedral case, it is a generic 5D-space that
decomposes into a 3D-space parallel to E⊥ plus a 2D-manifold in
E‖ that is the actual glide plane if the dislocation line is a straigh
line. If this straight line is along a quasicrystalline direction, then
the generic glide 5D-manifold contains a 3D-sublattice of Λ defined
by the 2D-sublattice of Λ contained in V and the Burgers vector ~B
itself. The remaining 2D-subspace is spanned by two directions that
are irrationally oriented with respect to Λ and embedded in E⊥.

Climb is defined as a motion direction of the dislocation line that
has a non zero component outside the glide manifold. For example,
this is the case for a dislocation moving along the direction ~b‖ ∧ ~v‖ in
E‖ which corresponds to pure climb motion like in ordinary crystals.
It is a non-conservative motion that requires atomic propagation to
long distance.

Because the motion of a perfect dislocation requires a re-tiling
around the dislocation line, we can analyze it as a two-step process:
a (pure phonon) motion characterized by ~b‖ followed by the chemical
reordering (pure phason) and re-tiling characterized by ~b⊥.

The question arises of what direction of motion, say ~d‖, would
be optimum for the sole phonon field propagation irrespective of the
phason field reconstruction.

We first notice atoms in quasicrystals distribute along (quasicrys-
talline) rows and planes as in crystals. Therefore, we may expect
quasilattice friction to play a role with the existence of quasiperiod-
ically spaced Peierls valleys along which dislocation lines would be
preferencially oriented. For the same reasons, we assume that the di-
rection of motion to be a quasicrystallographic direction, i.e. ~d‖ can
be considered, irrespective of a length factor, as the projection of a

6
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6D node of Λ which, in turn, has a single image ~d⊥ in E⊥. We as-
sume the dislocation line ~v‖ to also be a straight line aligned along
another quasicrystallographic direction not collinear to ~d‖ where, as
previously, ~v‖ is the projection of a 6D-lattice node with image ~v⊥ in
E⊥.

The surface swept by the dislocation during the motion is a 5D-
space generated by the dislocation line V (a 4D-manifold) plus the di-
rection of motion ~d‖. This 5D-space, say S, contains a 4D-sublattice of
Λ embedded in the 4D-subspace, say Σ, generated by (~v‖, ~v⊥, ~d‖, ~d⊥).
The remaining dimension corresponds to a direction ∆ that is nec-
essarily in E⊥— since Σ contains a 2D-plane only (~v⊥, ~d⊥) of the
3D-space E⊥— and therefore irrationally oriented with respect to Λ.
For the displacement by~b‖ of the matter during the dislocation motion
to respect the tiling matching with no overlaps and empty spaces, the
4D-sublattice embedded in S, that represents the part of the tiling
vertices that form the matches on the Σ surface, must be kept invari-
ant up to the global translation ~b‖ in E‖.

This is achieved if~b⊥ has a zero component in Σ and thus is aligned
along ∆. This induces ~b⊥ ⊥ ~d⊥ and ~b⊥ ⊥ ~v⊥. Because for any two
vectors ~A and ~B of Λ, a zero scalar product of their projections in
either the spaces E‖ or E⊥ implies the same zero value for the scalar
product of the projections in the other space:

~A, ~B ∈ Λ, ~a‖.~b‖ = 0 ↔ ~a⊥.~b⊥ = 0

so that ~b‖ ⊥ ~d‖ and ~b‖ ⊥ ~v‖. Hence, we can conclude that the disloca-
tion motion that keeps the internal tiling coherent — with no empty
spaces or overlapps in the trace of motion — is obtained for pure edge
dislocation (~b‖ ⊥ ~v‖) moving in a pure climb fashion (~b‖ ⊥ ~d‖).

This problem of glide versus climb in the dislocation motion in i-
AlPdMn has been the object of interesting debates in these last years.
Most of the early heuristic models of dislocation motion in i-AlPdMn
where primarily focused on glide mechanisms [18, 19]. Due to the
large dependence of mechanical properties on temperature, they aimed
at describing macroscopic parameters in the framework of thermally
activated dislocation motion. The thermally activated events were
assumed to correspond to the overcoming of atomic clusters or of a
quasi-periodic Peierls barrier. They accounted for activation param-
eters satisfactorily at low temperatures and high stresses. However,
since the year 2000, numerous experimental evidences for climb have
been found in as cast i-AlPdMn [21, 22, 23], deformed at low [24] and
at high temperatures [25]. Nowadays, although it seems that climb
has been accepted as the major mechanism of plastic deformation of
i-AlPdMn at high temperature.

7
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Figure 2 shows a dislocation d moving at 750 ◦C in i-AlPdMn.

Its velocity is around 40 nm/s and its motion is viscous (Fig. 2a-c).
During its motion, an elastic distortion has been left at the sample
surfaces giving rise to two straight and dark traces labeled tr.P2. This
indicates that the plane of motion of the dislocation is inclined with
respect to the foil plane. From the variation of its apparent width and
trace direction with specimen tilt, the plane of motion has been found
to be the (0, 1, 0, 1̄, 0, 0) two-fold plane P2, of direction [1/1, 0/1̄, 1/0]
(see stereographic projection on Fig. 2j). During its motion, the dislo-
cation remains straight along the 2-fold direction labeled u. According
to the invisibility criterion ~G. ~B = 0, the two strong extinctions in ~g2a

and ~g5a (Fig. 2d and e) lead to a Burgers vector ~b‖1 perpendicular
to ~g2a and ~g5a , i.e. parallel to the direction [1/1, 0/1̄, 1/0] (Fig. 2j).
This Burgers vector is perpendicular to the plane of motion. This
proves that the dislocation has moved by climb. Single contrast con-
ditions (~G. ~B = 1) in ~g2b and ~g5a (Fig. 2f and g) and double con-
trast conditions (~G. ~B = 2) in τ~g2c and τ~g2d (Fig. 2h and i) finally
lead to ~B1 = (0, 1, 0, 1̄, 1̄, 1̄). Its component in the physical space is
~b1‖ = [1/0, 1/1̄, 2/1̄] of length 0.297 nm. The same dislocation has al-
ready been found in samples deformed at lower temperature (see [24]).
From this and other experiments [25, 26], the following conclusions can
be drawn:

• Dislocations move by climb in 2-, 3- and 5-fold planes. Glide is
at least 1000 times slower than climb in similar conditions.

• Dislocations are straight along dense directions (mostly 2-fold
directions). This implies the existence of Peierls valleys along
which dislocations are more stable. The rectilinear aspect of
dislocations during their motion suggests, by analogy with dis-
location motion in covalent and BCC crystals, that dislocation
velocity is controlled by a difficult jog pair nucleation over the
Peierls valleys followed by their easy diffusion along the line like
in BCC structures.

3 Reconstructed electron density around

dislocations

As perfect quasicrystal, we use a polyhedral model recently proposed
by Quiquandon et al. [15] for i-AlPdMn . The model is a chemi-
cal decoration of a skeleton of interconnected atomic clusters of two
kinds, B (Bergman) and M (Mackay) (see [16, 17]) . The chosen
decoration leads to a remarkably reduced number of local chemical
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configurations: a single major chemical configuration for each of the
M(M ′)-type clusters and only four for the B-type cluster. It fits
the experimental optimal composition Al70.35 Pd21.36Mn8.29 and has
reasonable reliability factors for both X-rays and neutrons diffraction
spectra. Details on the model are to be found elsewhere [15].

To visualize the atomic displacements and rearrangements around
a quasicrystalline dislocation, an image reconstruction is performed
by Fourier transforming the scattering structure factors F ( ~Q) of the
model multiplied by the phase factors due to the 6D-displacement
associated with the dislocation:

%(~R) = |
∑

k

F ( ~Qk)e2iπ( ~Qk.(~R+~U(~r‖)))|2

where ~Qk are the 6D-wavevectors of the reciprocal 6D-lattice and
~U(~r‖) the total 6D displacement field. This procedure has been first
used by Devaud-Rzepski et al. [27] in the early 90’s on simple quasi-
lattice models and developed in much details by Yang et al. [28] on
more realistic spherical atomic models. The interest of that kind of
calculations is that images can be computed in which the two fields
in E‖ and E⊥ can be separated thus allowing to separate visually the
phonon field from the phason field in E‖. The present calculations do
not differ basically from the previous cited ones except that the struc-
tural atomic model is slightly more elaborated and the calculations
are made with a large number of Fourier terms of the electron density,
enough for localizing individual atoms.

The displacement phonon field in E‖ is approximated by that of
an ideal isotropic elastic medium. For straight dislocation lines, it is
independent of the location of the running point with respect to its
component along the line ~v‖ and can thus be expressed as a function
of the two cylindrical variables defined in the plane perpendicular to
the dislocation line and passing through the running point. With the
notations of Fig. 3 we use the standard formula:

2π~u‖(ρ, θ) = ~b‖θ +
~b‖,e sin 2θ + (~b‖ ∧ ~v‖)(2(1− 2ν) log ρ + cos 2θ)

4(1− ν)

where ~b‖,e is the edge part of ~b‖:

~b‖,e = ~b‖ − (~b‖.~v‖)~v‖,

and ρ =
√

x2 + y2 and θ = arctan y/x with:

x = ~r‖.~b‖,e/|~b‖,e|, y = ~r‖.(~b‖ ∧ ~v‖)/|~b‖ ∧ ~v‖|.
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For the phason displacement field (in E⊥), we use here the simplest
pure screw model2:

2π~u⊥(~r‖) = ~b⊥θ

The effect of each of the displacement fields in E‖ and E⊥ are ex-
emplified on Fig. 4. The Fourier reconstruction of Fig. 4a has been
computed in including only the phase shift of the parallel space con-
tribution ~b‖ (phonon field). A strong misfit of the atomic clusters is
observed at the level of the Volterra (arbitrary) cut surface shown as
a light gray line, that generates a phason wall along the line. This
phason wall is very similar to a classical stacking fault boundary with
the exception that the components of the fault vector have the form
(n + mτ)/d where n, m and d are integers. Close to the dislocation
core located at the center of the image, there exist a significant local
deformation of the cluster shapes due to the elastic field of the disloca-
tion. This, of course, is physically irrelevant since in that core region,
linear elasticity is no longer valid.

The Fourier reconstruction of Fig. 4b uses the same model but
has been computed with the perpendicular component ~b⊥ only, the
phason field. One observes again a strong misfit at the level of the
Volterra cut that shows, like in the previous case and as expected,
that the closure of the 6D hyper-crystal is not achieved by the sole
~b⊥ component. As this displacement field extends only in E⊥ and in
contrast to the previous case, there are no changes in the shape of the
atomic clusters that are everywhere identical to those of the perfect
quasicrystal. The difference here is in the way they are connected
together.

The image of a perfect dislocation is fully recovered on picture (c)
when both components ~b‖ and ~b⊥ are taken into account. In that
case , the trace of the Volterra cut surface disappears because of the
proper restacking issued from the perpendicular translation and the
deformation spread out all over the atomic clusters as expected by the
generated elastic field.

Figure 5 shows a high resolution reconstructed image of the elec-
tron density of the i-AlPdMn projected along the 3 basic high sym-
metry directions around a typical other dislocations of Burgers vector
~B = (0, 0, 1, 0, 0, 1̄) of parallel component ~b‖ = [0/0, 2/0, 0/0] with
|b‖| = 0.4795 nm and |b⊥| = 0.7759 nm.

The dislocation seen on Fig. 6 are partial dislocations of Burgers
vectors ~B1 = (1̄, 1, 1, 1, 1, 1̄)/2 and ~B2 = (1, 0, 0, 0, 0, 0); they are the

2There are a priori no basic physical reasons for choosing this particular law except
that it can be reasonably assumed that the phason field spreads out isotropically around
the dislocation line.

10

Page 16 of 21

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
termination of fault planes with the same fault vectors drawn in light
grey on the picture. These two faults correspond to the well-known
planar defects with π fringes as antiphase boundaries in ordinary crys-
tals.

4 Conclusion

Dislocations are defined in quasicrystals in much the same way as they
are in ordinary crystals. Because of the additional dimensions needed
to recover periodicity, the Burgers vector ~B of a perfect dislocation
is a translation of the high dimensional lattice, and decomposes into
two irreducible components, ~b‖ and ~b⊥, corresponding respectively to
the phonon field in E‖ (standard elastic deformation) and the pha-
son field developing in E⊥ (configurational thermodynamical energy).
These two components are the physical bases of the dislocation mo-
tion mechanism that can be described as difficult jog pair nucleation
over quasiperiodic Peierls valleys followed by a relatively easy diffusion
along the line at high temperatures.

The geometrical framework of quasicrystalline dislocation descrip-
tion in high dimension spaces is presently well established. The uner-
standing of the underlying physics gouverning their interactions and
their modes of motion is at its beginning. This research field should
open new original ways for studying the high temperature plastic be-
haviour of complex intermetallic phases with large unit cells which
share many geometrical properties with quasicrystals.
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Figure 1: Example of an hypothetical dislocation of Burgers vector B =
(0, 0, 1, 0, 0,−1) (indexing scheme of [14]) seen end on in a 5-fold plane of an
ideal atomic model of i-AlPdMn. This numerical reconstruction is computed
using formula 3 including 141 beams of the 5-fold plane based on the struc-
tural model of i-AlPdMn . As in ordinary crystals, this ”edge” dislocation is
clearly visible at glancing angle as a discontinuity of atomic ”planes”.

Figure 2: Dislocation motion in the 2-fold plane P2 (a-c). Note the growth
of the precipitate PR. The extinction condition (d-e), single (f-g) and double
contrast conditions (h-i) lead to the burgers vector noted b1‖ on the stereo-
graphic projection (j). The experimental determination of the Burgers vec-
tor together with the determination of the plane of motion of the dislocation
shows that the motion process has a pure climb character.

Figure 3: Geometrical variables in E‖ used to calculate the displacement field

of a dislocation of Burgers vector ~b with a (straight) dislocation line along
the unit vector ~v. The local reference frame is defined by: z is along the
dislocation line, x is the direction of the edge part of the dislocation, ~be —
and ~bs is its screw part — and y is the direction perpendicular to z and x.
The running point ~r is in the plane (x, y) and has cylindrical coordinates
(ρ, θ) where the origin of the angle θ is taken along the positive x axis.

Figure 4: The various components of the phase shift induced by a per-
fect dislocation ~B = ~b‖ +~b⊥ = (1̄, 1, 0, 1, 1, 0) with ~b‖ = [2̄/2, 0/2, 0/0] and
|b‖| = 0.296381 nm; |b⊥| = 1.25549 nm of dislocation line ~u‖ = [0/0, 0/0, 1/0]
in the i-AlPdMn model built with B-clusters (pentagons) and M-clusters
(decagons). The dislocation is seen end-on in the 5-fold plane perpendicular
to (0, 1, τ). Structural Fourier reconstruction: (a) phonon field: including

only the ~b‖ component, (b) phason field: including only the ~b⊥ and (c) using
both components. The light gray line is the trace of the Volterra cut surface:
it appears as a line discontinuity on (a) and (b) reconstructions but, of course
disappears in the full reconstruction (c).

Figure 5: High resolution calculated electron density of the i-AlPdMn model
around a dislocation of Burgers vector ~B = (1̄, 1, 0, 1, 1, 0) for from left to
right the phonon (a,d,g), phasons (b,e,h) and total (c,f,i) displacement fields
projected along the 5- fold (a,b,c), the 2-fold (d,e,f) and 3-fold (g,h,i) direc-
tions.
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Figure 6: Reconstructed electron density of the i-AlPdMn model for par-
tial dislocations of Burgers vectors (1̄, 1, 1, 1, 1, 1̄)/2 and (1, 0, 0, 0, 0, 0) seen
perpendicular to a 2-fold direction.
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