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Slip planes and kink properties of screw dislocations in high-purity niobium

Temperature and strain-rate dependence of the flow stress of cyclically pre-deformed high-purity niobium single crystals have been measured in the temperature range 120 K ≤ T ≤ 350 K with high accuracy and reproducibility at five or more resolved shear-strain rates between 6.5 × 10 -5 s -1 and 3.5 × 10 -3 s -1 . The data are quantitatively interpreted in terms of the kink-pair generation and kink diffusion in a 0 111 /2 screw dislocations (a 0 = cubic lattice parameter). The prediction of a discontinuity in the stress dependence of the activation volume (occasionally dubbed 'the hump') at a strain-rate-independent effective flow stress σ * has been verified. From the stress dependence of the activation volume and from the magnitude of the discontinuity the spatial period of the Peierls barriers of the screw dislocations could be derived without having to assume a special shape of the Peierls potential. In the temperature range investigated, the measured periodicity is in quantitative agreement with {112} as elementary slip planes (i.e., the slip planes of the screw dislocations between cross-slip events) but incompatible with predominant slip on {110} planes. Examples of further quantitative results are σ * = (93 ± 5) MPa for the effective stress at the 'upper bend' of the flow-stress-temperature relationship, the zero-stress enthalpy of formation of a pair of isolated kinks, 2H k = (0.68 ± 0.02) eV, and the activation energy of kink diffusion, It is generally accepted that beyond the so-called microstrain deformation regime (sometimes called work-hardening regime 0 [1]) the flow stress of plastically deformed body-centred cubic (bcc) transition metals is controlled by the mobility of screw dislocations with Burgers vectors b = a 0 111 /2, where a 0 denotes the cubic lattice constant. Since, because of the parallelism of Burgers vector and line direction, the slip plane of screw dislocations is not a priory defined, this raises the question of the slip planes of moderately or strongly deformed bcc metals. If slip lines are well developed and straight, by combining them with the slip direction (which may be deduced from the change of the crystal orientation during tensile tests), the slip planes may be determined. In this way it has been found that at low temperatures the {110} planes are the dominant slip planes in bulk bcc transition metals.

At higher temperatures the slip lines on the side surfaces of the bcc transition metals are wavy [2]. It is generally accepted that the waviness is a consequence of frequent cross slip of the screw dislocations. Since, however, the length scale on which the screw dislocations change their slip planes by cross slip is unknown, the elementary slip planes, defined as the crystallographic planes on which the screw dislocations slip between two successive cross-slip events, cannot be deduced from wavy slip lines in a straightforward way. This has led to considerable controversies in the literature. Only when the theory of flow-stress control by the generation of kink pairs [3] was applied to the cyclic-deformation technique [4] did it become possible to determine the elementary slip planes in the regime of wavy slip reliably.

The cyclic-deformation technique (also known as Ackermann-Mughrabi technique, to be described in Sect. 3.2) allows us to generate in bcc metals a stable microstructure on which the dependence of the flow stress on both the temperature, T , and the resolved plastic strain rate, εpl , may be measured on one specimen with excellent reproducibility and great accuracy. The (Note that kinks in screw dislocations necessarily possess a non-vanishing edge component and, therefore, a well-defined slip plane.) In the bcc structure we have

a {110} = (2/3) 1/2 a 0 , a {112} = 2 1/2 a 0 = 3 1/2 a {110} , a {123} = (8/3) 1/2 a 0 = 2a {110} . (1)
The kink height a, a quantity that can be determined quite accurately by the analysis of the cyclic-deformation data in terms of kink-pair formation (see Sect. 2), is related to a ijk by

a = a ijk , (2) 
provided the set {ijk} of elementary slip planes is unique.

The energy of formation of an isolated kink, H k , and the activation volume of kink-pair formation, V kp (σ * ), are two more quantities that may be deduced with good accuracy from the analysis of the flow-stress data in terms of the kink-pair theory [3]. Following Einstein [5], from the kink formation energy H k we may derive the kink mass

m k = H k /c 2 d , (3) 
where c d is the speed of the small-amplitude oscillations of the dislocations in their Peierls valleys.

The activation volume V kp does not have a unique value but depends on the effective resolved shear stress σ * acting on the dislocations during the kink-pair generation. The functional dependence V kp = V kp (σ * ) is highly characteristic of the kink-pair generation process. It permits, therefore, a stringent test of the correctness of the underlying theory, provided that we can relate the effective stress reliably to the measured flow stress σ.

The determination of σ * = σ * (T, εpl ) starts from the relationship [6] 

σ = σ M + σ * (T, εpl ) . ( 4 
)
Eqn ( 4) is based on the physical picture that during the plastic deformation preceding the σ * measurement a long-range internal stress field had been built up. Evidence for the existence of such a stress field is, inter alia, the Bauschinger effect [7]. The flow stress is controlled by the kink-pair generation at those locations at which the long-range field opposes the dislocation where ±σ M stands for typical extremal values of the internal field. Because of its long-range nature, the σ M contribution cannot be overcome by thermal activation, hence it is strain-rate independent. However, since it originates from the elastic response to the dislocation strain fields, σ M may depend weakly on temperature through the temperature dependence of the elastic moduli, as indicated by the subscript M (see Eqn ( 4)). As will be discussed in Sect.

4.1, it is the quite different dependence on εpl and T that permits the reliable separation of the two terms of Eqn (4).

The proposal [8] that the kink-pair generation in a 0 111 /2 screw dislocations does not only control the flow stress of the refractory bcc metals but is also responsible for the so-called γ-relaxation in these metals [START_REF] Chambers | Dislocation Relaxations in Body-Centered Cubic Transition Metals[END_REF] led to the prediction that the two different phenomena should

give the same H k values. This prediction has been verified on several bcc metals including Nb [START_REF] Seeger | Selected Topics on Condensed Matter Physics[END_REF][START_REF] Seeger | [END_REF]. However, more recently the sub-resonance internal-friction measurements of D'Anna and Benoit [12,13] on Nb and Ta have shown that the γ-relaxation is a more complex phenomenon than was hitherto thought. The present situation will be discussed in Sects 5 and 6.

The diffusivity D k of the kinks is a further property that may be deduced by the present approach, though much less accurately so than the kink height a, the kink formation energy H k , and the activation volume of kink-pair formation V kp (σ * ). It is related to the kink mobility µ k by Einstein's formula

µ k = D k k B T , ( 5 
)
where k B denotes Boltzmann's constant, and thus determines the speed

v k = abD k σ * k B T (6)
of kinks drifting along a dislocation line that is acted upon by the effective shear stress σ * .

The knowledge of D k is important for the quantitative interpretation of the α -relaxation, which is attributed to the redistribution of so-called geometrical kinks in screw dislocations that are pinned in different Peierls valleys [14,15].

High-purity niobium was the first material in which cyclic-deformation data were analyzed in terms of the kink-pair generation theory [4]. It turned out that the data below the so-called upper-bend temperature T were not sufficient for a critical comparison with the predicted V kp (σ * ). The present investigation extends the measurements to lower temperatures and provides more data on the strain-rate dependence, in particular in the temperature regime in which information on the kink diffusivity may be obtained. It uses crystals of similar over-all purity as in the earlier work, as indicated by the residual resistance ratio (see Sect. 3.1).

Specific efforts have been made to minimize the possibility of hydrogen contamination (see

Sect. 3.3).
The present approach has been stringently tested on ultrapure Mo single crystals, with the result that the agreement between theory and experiment is almost perfect [16,17]. It appeared therefore appropriate to start out with an outline of the theory and the underlying assumptions (Sect. 2), to be followed by a fairly detailed description of the experimental procedures (Sect. 3) and the data analysis (Sect. 4). Sect. 5 will treat the relationship between the present work and the γ-ralaxation.

Theoretical Framework

In this section we sketch the derivation of the equations relating the kink properties to the experimental data. The contribution of dislocations of strength b and density N d to the resolved shear-strain rate is

εpl = bN d v d (σ * , T ) , ( 7 
)
where v d denotes the stress-and temperature-dependent average speed of the dislocations on their slip plane. Under the conditions of the present experiments v d is expressed in terms of the rate of kink-pair generation per unit dislocations length, Γ k = Γ k (σ * , T ), as

v d = a Lk Γ k (σ * , T ) . ( 8 
)
Eqn ( 8) is applicable if the drift of the kinks along the dislocation lines is stopped by unsurmountable obstacles with average separation Lk . If the obstacle separations L k are very large, the distances travelled by the kinks are limited not by L k but by the annihilation of kinks of opposite sign. An expression for v d that allows for both possibilities has been given elsewhere [15,18]. In Sect. 6.1 it will be shown that in the present case the simplification leading to Eqn (8) is indeed allowed. As described in detail elsewhere [START_REF] Seeger | Physical Acoustics, Principles and Methods[END_REF][START_REF] Seeger | Dislocations 1984[END_REF], the calculation of the kink-pair generation rate Γ k may be reduced to the one-dimensional problem of calculating the escape rate Γ 1 of fictitious particles of mass m k /2 over a potential barrier. From the partition function of a one-dimensional 'gas' of freely moving kinks it follows that the relationship between Γ 1 and Γ k , or, according to Eqns (7) and (8), between Γ 1 and εpl , contains the temperature- [START_REF] Seeger | Physical Acoustics, Principles and Methods[END_REF][START_REF] Seeger | Dislocations 1984[END_REF]. It depends on the circumstances and on the quality of the experimental data whether in the temperature dependence of the plastic strain rate εpl this factor may be neglected compared with the factor exp (-H kp /k B T ) to be discussed below.

dependent ratio Γ k /Γ 1 ∼ T -1/2
The 'particles' in the one-dimensional problem are assumed to be supplied at the minimum ∆E(0, σ * ) = 0 of a potential ∆E(q, σ * ) that depends not only on the 'position' q of the 'particles' (equal to the kink-anti-kink separation of a pair of kinks of opposite sign) but also on the effective stress σ * . Starting from Kramers' theory of thermally activated reactions [START_REF] Kramers | [END_REF]22], solutions of this problem that are valid in different parameter regimes have been given in the literature [START_REF] Seeger | Physical Acoustics, Principles and Methods[END_REF][START_REF] Seeger | Dislocations 1984[END_REF]. Since in the original unreduced multidimensional problem the barrier over which the 'particles' have to escape in order for 'free' kinks to be generated is a saddle point of the potential relief, in the one-dimensional formulation we shall continue to refer to the potential barrier, located at q = q s , as the 'saddle point'.

The force causing the 'particles' to drift in the potential ∆E(q, σ * ) is the sum of the contribution abσ * of the effective stress σ * , and of a contribution deriving from the interaction between the two kinks. At large kink-anti-kink separations q, this interaction may be calculated from elasticity theory. The leading term in a series of powers of 1/q is modelindependent and given by -a 2 γ 0 /2q 2 , where γ 0 denotes the pre-logarithmic factor of the dislocation line tension γ d [23]. For a given dislocation character and line direction, γ 0 /b 2 is determined entirely by the second-order elastic constants c ij , hence γ 0 may be considered as known. For materials with strong elastic anisotropy such as Nb, the relationship between γ 0 and c ij may be quite complicated, so that numerical computation is required. The recent derivation of an analytical expression for screw dislocations in 111 directions in cubic materials [24] has required considerable effort.

The approach just described is known as elastic-interaction (EI) approximation [3]. Within its range of validity, the saddle-point location is determined by

a 2 γ 0 2q 2 s = abσ * , (9) 
hence

q s = aγ 0 2bσ * 1/2 . ( 10 
)
The saddle-point energy is given by

H EI kp = 2H k - a 2 γ 0 2q s -abq s σ * = 2(H k -ασ * 1/2 ) ( 11 
)
with

α: = a 3 bγ 0 2 1/2 . ( 12 
)
If considered as a function of the effective stress, Eqn [START_REF] Seeger | [END_REF] gives us the EI-approximation to the kink-pair formation energy H kp (σ * ). From it follows the activation volume of kink-pair formation as

V kp = - ∂H kp (σ * ) ∂σ * S ≈ - ∂H kp (σ * ) ∂σ * T = ασ * -1/2 = V EI kp . ( 13 
)
The subscripts S and T indicate that the partial differentiation has to be performed at constant entropy S or, virtually equivalently, at constant temperature T .

A further quantity appearing in Kramers' theory is the (negative) curvature of ∆E(q, σ * ) at the saddle point. In terms of the quantity λ s = λ s (σ * ) with the dimension of an inverse time defined by

m k λ 2 s 2 := ∂ 2 ∆E(q, σ * ) ∂q 2 σ * =const, q=qs (14) 
[20], the present approximation gives us

λ 2 s = (bσ * ) 3/2 2a m 2 k γ 0 1/2 . ( 15 
)
If the kink-anti-kink separation in the saddle point configuration, q s , is less than the critical value

q = aγ 0 2bσ * 1/2 , ( 16 
)
where σ * will be defined below, the strain fields of the two kinks overlap more than can be handled by the linearized theory of elasticity. Then a physical picture of the kink-anti-kink interaction is required that brings the Peierls potential U (u) to bear. [U (u) is defined as the approximation and to approximate the reaction to changes of the energy stored per unit length in the dislocation strain field by the dislocation line tension

γ d = γ 0 ln r ∞ r 0 . ( 17 
)
In Eqn (17) the inner cut-off radius r 0 takes into account the failure of the linearized theory of elasticity inside the dislocation core. The outer cut-off radius r ∞ is of the order of magnitude of the kink width w. A self-consistency procedure gives for a 0 111 /2 screw dislocations in Nb the numerical value ln (r ∞ /r 0 ) = 2.55 [25,26].

Since the data of Sect. 4 do not extend to very low temperatures, in their analysis in terms of the LT approximation we may confine ourselves to the leading terms in σ * . With the abbreviations

σ := 2aU (a) exp (β) b , U (a) := d 2 U (u) du 2 u=a ( 18 
)
and

β := a u=0 u 2U (a) U (u) 1/2 - 2 a -u du = 1 ν=0 ν 2U (a) U (aν) 1/2 - 2 1 -ν dν ( 19 
)
we then obtain for the activation volume of kink-pair formation

V LT kp = ab γ d U (a) 1/2 ln σ σ * (20)
and for the enthalpy of kink-pair formation

H LT kp (σ * ) = 2H k -ab σ * γ d U (a) 1/2 1 + ln σ σ * . ( 21 
)
The parameter β is independent of the strength and the period of the Peierls potential, as may be seen as follows. In the interval 0 ≤ u ≤ a we may write

U (u) = u 2 (a -u) 2 f (u/a) U (a) a 2 , ( 22 
)
where f (u/a) is a smooth function satisfying f (0) = f (1) = 0. Changing the variable of integration to η := (a -u)/a gives us 

β = 2 η=1 η=0 η -1 f (η) -1/2 -1 dη . ( 23 
f (η) = 1 -δη(1 -η) , (24) 
leads to

β = -2 ln (1 -δ/4) . ( 25 
)
The choice δ = 0 gives us β = 0. The corresponding Peierls potential U (u), known as Eshelby potential [27], is rather sharply peaked at u = a/2. For potentials that are even more peaked we expect small negative β. Potentials that near their maxima are flatter than the Eshelby The change-over from the EI approximation to the LT approximation does not involve any change in the number or the properties of the dislocations. The strain rate εpl is affected only by the change in H kp (σ * ), hence we may define σ * , already introduced in connection with Eqn (16), by

H EI kp (σ * ) = H LT kp (σ * ) (26) 
or, taking into account the relationship (17) between γ d and γ 0 , by

σ * 1 + ln σ σ * 2 ln r ∞ r 0 = 2aU (a) b . ( 27 
)
A graph representing the solution of Eqn (27) has been given elsewhere [28].

By employing the approximations ( 13) and ( 20) up to σ * , we find that V kp (σ * ) should show a sharp bend at σ * = σ * . A quantitative measure of the bend is the ratio

V EI kp (σ * ) V LT kp (σ * ) = 1 2 1 + 1 ln (σ/σ * ) . ( 28 
)
It may be obtained experimentally by extrapolating the measured activation volumes ln (r ∞ /r 0 ) may be estimated from theory as mentioned above, the shape parameter β. More on this parameter and its calculation from U (u) may be found in the Appendix.

V kp (σ * ) towards σ * . From ln σ σ * -2 ln 1 + ln σ σ * = β + ln ln r ∞ r 0 (29) it follows that V EI kp (σ * )/V LT kp (σ *
At moderately high temperatures, at which the effective stress σ * is not too low, Kramers' theory [START_REF] Kramers | [END_REF] gives us for the one-dimensional escape rate referred to above

Γ 1 = ν 0 TghΦ exp - H kp (σ * ) k B T , ( 30 
)
where Φ is an auxiliary parameter defined by

Sinh 2Φ := 2m k µ k λ s . ( 31 
)
ν 0 denotes the frequency of the small-amplitude vibrations of straight dislocation lines in their Peierls valleys.

Eqn (30) fails if σ * → 0, as may be seen as follows. The EI-approximation is applicable, hence we may take λ s from Eqn (15) and obtain [START_REF] Seeger | Dislocations 1984[END_REF] Sinh

2Φ := 4µ k (bσ * ) 3/4 2a m 2 k γ 0 1/4 . ( 32 
)
The limit σ * → 0 corresponds to Φ 1. Thus, Eqn (30) reduces, with Eqn (5), to

Γ 1 = 2 2a m 2 k γ 0 1/4 ν 0 D k k B T (bσ * ) 3/4 exp - H kp (σ * ) k B T . ( 33 
)
At temperatures T > ασ * /k B one expects, by straightforward physical arguments, Γ 1 ∼ µ k σ * . In contrast to this expectation, Eqn (33) predicts Γ 1 ∼ σ * 3/4 . Thus, as already stated, its validity is restricted to 'moderately' high temperatures. An admittedly somewhat complicated expression that not only gives the correct high-temperature limit but includes Eqn (33) has been derived elsewhere [START_REF] Seeger | Dislocations 1984[END_REF].

In the other limit, TghΦ ≈ 1, the pre-exponential factor of Eqn ( 30) is independent of D k /k B T and σ * . This corresponds to the well-known transition-state theory of thermally activated reactions. Thus, in order to deduce the kink-diffusivity D k = D k (T ) from flow-stress mesurements, we have to go outside the range of validity of the transition state theory, i.e.

to fairly small σ * . A consequence of this is that for the determination of D k the temperature variation of σ M , small as it may be, must be determined as precisely as possible.

The temperature dependence of D k depends on whether the kink mobility is limited experience in their motion along dislocation lines. For definiteness, we assume that the latter case obtains and that we may interpret the experimental data in terms of a kink migration enthalpy H M k according to

D k = D 0 exp - H M k k B T . ( 34 
)
In Sect. 4.2 we shall see that the present experimental results are compatible with this interpretation.

In Fig. 1 The first field takes into account that with increasing temperatures more and more kinks are annihilated by anti-kinks before they encounter the 'unsurmountable obstacles' referred to at the beginning of this section, whereas in the second one Kramers' 'classical' theory has to be replaced by a quantum-mechanics treatment that allows for the tunnelling of the 'particles' through the saddle-point barrier. In this regime the knowledge of the kink mass m k is crucial.

The present experiments stay outside both regimes, however.

At σ * < σ * , i.e., when the line-tension approximation is valid, the relationship between the effective shear stress and the temperature of deformation may be written as

σ * 1/2 = A (T K -T ) ( 35 
)
with the abbreviation

A := k B ln ( ε0 / εpl ) 2α ( 36 
)
and the so-called knee temperature

T K = 2H k k B ln ( ε0 / εpl ) . ( 37 
)
The parameter A may be obtained from the slope of σ * 1/2 -vs-T plots, the knee temperature factor ε0 depends on σ * and/or T (as in general it does), the preceding equations predict that

T K
AT K = H k α (38)
is independent of the plastic strain rate εpl .

At σ * > σ * , i.e. in the regime TghΦ ≈ 1, in which Kramers' theory reduces to the transition-state theory, we obtain by combining Eqns ( 7), ( 8), ( 21), ( 30) and [START_REF] Werner | Proc. 8th International Conference on the Strength of Metalls and Alloys[END_REF] the following relationship between temperature and effective stress:

T T K = 1 -σ * 1 + ln σ σ * ab γ d U (a) 1/2 k B T K ln ε0 εpl -1 = 1 -σ * 1 + ln σ σ * γ d U (a) 1/2 ab 2H k . ( 39 
)
The strain-rate independent Eqn (39 2 ) will be tested in Sect. 4.3.

3 Experimental Procedures (96%), 10 ml HNO 3 (65%), and 12 ml HF (40%). In order to remove carbon picked up during spark erosion, the specimens were once more decarburized in an oxygen atmosphere of 1.5 × 10 -6 mbar at 2170 K. Hydrogen picked up during polishing was removed by electronbeam heating in ultra-high vacuum for 4 h at 2570 K.

The residual resistance ratios (295 K/4.2 K, superconductivity suppressed by a magnetic field) were between 3.5 × 10 3 and 4 × 10 3 . Under the extreme assumption that a residual resistance ratio of 3500 is due to one kind of impurities only, contamination with 47 atppm hydrogen, 8.5 atppm carbon, 7.3 atppm nitrogen, 8.5 atppm oxygen, or 152 atppm tantalum would account for it [29,30]. More realistic is the assumption that the crystals contained all or most of these elements in correspondingly lower concentrations.

3.2 Pre-deformation procedure and flow stress measurements (Ackermann-

Mughrabi technique)

Prior to measurements involving changes in temperature or strain rate, a well defined stable microstructure was established by cyclic pre-deformation until the maximum flow stress reached during the cycling and the shape of the hysteresis loops did not change any more during further cycling. The resolved shear strain amplitude ε pl = 4.8 × 10 -3 employed in the pre-deformation was large enough to ensure macroyielding by large-scale motion of both non-screw and screw dislocations at the resolved plastic shear-strain rate εpl = 1.5×10 -3 s -1 .

Establishing stable hysteresis loops required cumulative strains up to ε pl,cum = 4×N S ε pl = 25

where N S denotes the number of cycles after which this 'saturation state' was reached.

The optimal pre-deformation temperature, T pd , was determined by the criteria that the flow stress must be independent of the pre-deformation strain rate εpl (this means

T pd > T K )
and that in the tests at T < T pd the flow stress must be independent of whether the temperature T was reached from above or below. The latter criterion guarantees the statistical stability of the microstructure during the tests. It was fulfilled for T pd ≥ 350 K. In order to stay on the safe side, T pd = 370 K was chosen for the measurements to be reported in Sect. 4. In agreement with the electron-microscopy observations of Luft et al. [31] on molybdenum single crystals, deformation cycles above the pre-deformation temperature provoked rearrangements of the dislocation pattern. After pre-deformation, the temperature was lowered in steps of 5 K. At each temperature, hysteresis loops were recorded at plastic strain rates εpl ranging from 6.5 × 10 -5 s -1 to 3.5×10 -3 s -1 . After about 50 cycles at different temperatures and strain rates, the specimens were cycled for some ten cycles at the above-mentioned pre-deformation conditions in order to eliminate small changes in the microstructure that might have occurred. The initial microstructure was considered restored when the saturation flow stress of the pre-deformation measurements had been reached again. By repeating this procedure, several hundreds of flow-stress measurements at different temperatures and strain rates could be performed on one single specimen at approximately constant microstructure and constant crystallographic orientation of the load axis.

Constant plastic strain rates εpl were achieved in a servo-hydraulic closed-loop-controlled MTS system using a triangular command signal for plastic strain. Axial strain of the specimen and load were measured with an extensometer and a load cell, respectively. A dual-slope function generator permitted changes of εpl during a deformation cycle when a given percentage of the plastic strain amplitude ε pl was reached. In the present experiments this percentage was set to 75%. (For a more complete description of the method, which allowed us to minimize changes of microstructure when changing to higher εpl , to reduce time consumption and to minimize stress relaxation effects during deformation at very small εpl , see [16].) From the absolute values of the peak loads of the hysteresis loops F t in tension and F c in compression the resolved flow stress was calculated according to

σ = µ |F t | + |F c | A , ( 40 
)
where A denotes the cross sectional area of the gauge length of the crystals and µ the Schmid factor for [111]( 101) slip.

The specimens were deformed at 120 K ≤ T ≤ 295 K in an isopentane bath that was cooled by liquid nitrogen flowing through a coil controlled by a solenoid valve, and at 295 K ≤ T ≤ 370 K in a silicon oil bath that was heated with a nickel-chromium conductor connected to a controllable DC power supply. In both cases the constancy of temperature was better than The vacuum chambers were evacuated by a turbomolecular pump unit while the specimens were kept under strain control in order to avoid deformation of the specimens by the atmospheric pressure on the vacuum chamber. Since the limited space available enforced the use of a long evacuation line with small diameter, the achievable vacuum was limited to about 10 -3 mbar. The specimen was brought into thermal equilibrium with the surrounding temperature bath by heat conduction through the metallic fixtures and the metallic vacuum vessel, both of which were in contact with the fluid of the temperature bath. All temperature changes were performed under stress-zero control, thus guaranteeing that the specimen could react freely to the thermal expansion. When the extensometer signal reached a constant value, the control mode was switched from load to strain control and the strain-rate changes were performed.

4 Experimental Results and Analysis on which the data to be presented below were obtained unless otherwise stated, we found σ M (370 K) = 17.5 MPa. Although independent of εpl (cf. Sect. 3.2), σ M (350 K) was slightly but clearly measurably larger than σ M (370 K). This indicated the need for the correction for the temperature dependence of the elastic moduli alluded in Sects 1 and 2. We thus replaced Eqn (4) by

σ * (T, εpl ) = σ(T, εpl ) -σ M (T p ) M sh (T ) M sh (T p ) . ( 41 
)
The shear modulus M sh for screw dislocations in 111 directions was calculated according to Chou and Sha [32] using the temperature dependence of the elastic compliancies s ij of Armstrong et al. [33]. This gave an increase of σ M between 370 K and 170 K by about 5%. The 'upper bend' of σ * (T, εpl ) at σ * = (93 ± 5) MPa is brought out very clearly in Fig. 4 (Insert Figure 4 about here.), where the σ * -T data have been plotted according to Eqn (35). The deviations from straight lines on the high-temperature side of the plot are due to the failure of the transition-state theory and contain, according to Sect. 2, information on the kink diffusivity. The boundary between the applicability of the approximations Eqn (33) and the transition-state approximation

Γ 1 = ν 0 exp - H kp (σ * ) k B T , ( 42 
)
is marked by the dash-dotted line (see Figs 3 and4). The increase of -∂σ * /∂T | εpl with decreasing temperature that sets in at the so-called 'lower bend' temperature Ť occurs at too low temperatures to be investigated with the present cooling technique. It is attributed to a transformation of the screw-dislocation cores to a configuration that allows them to slip on {110} planes [34].

In analyzing the measurements in the regime σ * < σ * quantitatively, we have the choice between a 'global' fit of the data based on Eqn (30) with unrestricted Φ, or separate fits to Eqn (33), derived for the regime controlled by kink diffusion, or Eqn (42), following from by the transition-state approximation. Global fits were performed for similar but considerably larger data sets on molybdenum single crystals by Hollang et al. [16]. We have developed a different procedure that starts out with the determination of the knee temperature T K by means of Eqn (35) and connects later (Sect. 4.3) the EI results with the LT approximation.

The 'knee temperatures' T K obtained by extrapolating the fits to Eqn (35) to σ * = 0 are listed in Fig. 4. As Fig. 5 shows (Insert Figure 5 about here.), they obey very well the linear relationship (37) between 1/T K and ln εpl . We obtain ε0 = 1.14 × 10 8 s -1 from the ordinate intersection and 2H k = (0.68 ± 0.01) eV from the slope. Eqn (12) then gives us α: = (a 3 bγ 0 /2) Eqn ( 43) is in almost perfect agreement with a {112} (cf. Eqns (1)). Its incompatibility with a {110} demonstrates that {110} planes are definitely not the dominant slip planes of highpurity niobium single crystals in the temperature range 180 K ≤ T ≤ 250 K. Good agreement of the measured a with a {112} was found also in other refractory bcc metals investigated (Ta [36,[START_REF] Werner | Proc. 8th International Conference on the Strength of Metalls and Alloys[END_REF], Mo [16], W [START_REF] Brunner | [END_REF], α-Fe [39]; see Table 1). Since it is extremely unlikely that mixtures of different kink height, e.g. of a {110} and a {123} , always give the same result, the conclusion that {112} was the dominant slip plane in the present experiments is compelling.

As already emphasized, above about 220 K we may obtain information on the kink- bining Eqns ( 7), ( 8), ( 21) and ( 33), making use of the H k , α and ε0 values derived by the preceding fitting procedure. The tendency of these preliminary values to decrease with increasing temperature suggested the description of the kink diffusivity by the Arrhenius law (34). For extra accuracy, flow stress measurements were performed at 10 different strain rates at 220 K, 240 K, 260 K, 280 K, 300 K, 320 K and 340 K. Using preliminary H M k and D 0 obtained in this way as additional starting values, we carried out a 'pseudo-global' least-square fit of Eqns ( 7), ( 8), ( 21) and (33) to the flow-stress data σ * < σ * with the restriction that H k , α and H M k should stay within the uncertainties of the previous fits. The D k values found in this way are shown in Fig. 6 as full circles and may be described by

H M k = (15 ± 10) meV , D 0 = (0.9 ± 0.3) × 10 -6 m 2 s -1 . ( 44 
)
The temperature range over which D k could be deduced is too narrow to establish with certainty that the kink diffusivity does obey Eqn (34). Support for this interpretation comes from the order of magnitude of the pre-exponential factor D 0 according to the following ar- 

k B T ln ε0 εpl = 2H k -ab γ d U (a) 1/2 σ * 1 + ln σ σ * ( 45 
)
and plotting k B T ln ( ε0 / εpl ) versus σ * [1 + ln (σ/σ * )] (see Fig. 7). (Insert Figure 7 about here.). From the slope in Fig. 7 we get

ab γ d U (a) 1/2 = (9.13 ± 0.13) × 10 -29 m 3 . ( 46 
)
From the ordinate intersection we obtain 2H k = 0.68 5 ±0.01 5 eV, which agrees with the result of the data analysis in the EI regime. The uncertainty of σ was without significant effect on the quantities deduced from Fig. 7.

Eqn [START_REF] Igata | [END_REF] allows us to derive the kink height a making use of the data obtained at σ * > σ * only. We eliminate ln (r ∞ /r 0 ) from Eqn (27) with the help of Eqn ( 17 The assumptions are:

(1) Temperature and strain-rate dependence of the plastic strain rate εpl are essentially determined by the Arrhenius factor exp {-H kp (σ * )/k B T }, where the activation enthalpy H kp (σ * ) does not explicitly depend on temperature.

(2) Any temperature or stress dependence due to the pre-exponential factor is small compared with that due the Arrhenius factor and at least approximately known.

If the stress dependence of the pre-exponential factor is negligible, the activation volume is

given by the well-known expression

V kp (σ * ) = k B T ∂ ln εpl ∂σ * T . ( 47 
)
In contrast to V kp (σ * ), the expression for H kp (σ * ) is influenced by the T -dependence of the pre-exponential factor. In the special case that the pre-exponential is proportional to T -1/2 , the activation enthalpy may be obtained from The comparison of V kp (σ * ) as obtained from Eqn (47) with the curves computed from Eqns ( 13) and [START_REF] Seeger | Dislocations 1984[END_REF] in Fig. 9 shows the predicted discontinuity at σ * = 93 MPa even more clearly. Also clearly visible is the σ * -1/2 divergence of V kp (σ * ) towards σ * = 0. It may be used to test whether σ M has been chosen correctly. Activation volumes between 20b 3 and 50b 3 as they have been observed at small σ * are very typical for the stress-assisted kink-pair generation in the refractory bcc metals, independent of the Peierls potential U (u). In the early 1960s, Chambers [START_REF] Chambers | Dislocation Relaxations in Body-Centered Cubic Transition Metals[END_REF] introduced a nomenclature of the relaxation processes in the refractory bcc metals that has remained in use till now with small modifications, such as the distinction between the α-relaxation (attributed to kink-pair generation in non-screw dislocations) and the α'-relaxation (attributed to the migration of geometrical kinks in a 0 111 /2 screw dislocations). In 1971, it was proposed that the γ-relaxation is due to the stress-assisted generation of kink pairs in screw dislocations, i.e to the flow-stress-controlling process discussed in the present paper [8]. The attribution of the γ-relaxation and of the strain-rate and temperature dependence of the flow stress to the same process is not trivial and should therefore be subjected to experimental tests, since the Ackermann-Mughrabi technique investigates the flow stress on dislocation densities far beyond those of the micro-strain regime, whereas relaxation studies by means of low-amplitude internal friction measurements are usually performed on much lower dislocation densities at or close to micro-strain conditions.

H kp (σ * ) = 1 2 k B T -k B T 2 ∂σ * ∂T εpl ∂σ * ∂ ln εpl T . ( 48 
The physical quantity most suitable for a quantitative comparison is the enthalpy of formation of a pair of widely separated kinks, 2H k . In the flow-stress measurements it is obtained as the limit σ * → 0 of H kp (σ * ), in the internal friction measurements by analyzing the shift of the temperature of internal friction peaks as a function of the measuring frequency f . The agreement of the two types of measurements found in many cases (for recent reviews see [START_REF] Seeger | [END_REF]15]) allowed us to conclude that the γ-relaxation involves the generation of kink pairs on the {112} slip planes of screw dislocations [START_REF] Seeger | Selected Topics on Condensed Matter Physics[END_REF]. This conclusion has opened the door for the understanding of the β-relaxation of the Chambers nomenclature, which for decades had remained without a convincing explanation. The β-relaxation appears now to be due to the kink-pair generation of a 0 111 /2 screw dislocations, too, though not on {112} planes but on {110} slip planes [41]. This assignment, derived with the help of the flow-stress measurements, has important consequences for the following.

An entirely unexpected result was revealed by the internal friction work of D'Anna and

Benoit [12] on slightly deformed Nb and Ta. In extensive measurements based on isothermal frequency sweeps in the range 10 -4 Hz ≤ f ≤ 10 -1 Hz, these authors made the surprising discovery that in the temperature range of the γ-relaxation two relaxation peaks may appear that respond quite differently to moderate anneals. In Nb, after a deformation of about 

τ = τ ∞ exp H γ k B T (49)
determined in a first run at increasing temperatures up to 280 K gave

H γ = (0.68 ± 0.03) eV, τ ∞ = 1.2 × 10 -13 s -1 , (50) 
in good agreement with 2H

{112} k as derived from the present flow-stress measurements. After annealing at 290 K, an internal-friction peak was still observed in roughly the same temperature regime as before but now with

H γ = (0.59 ± 0.03) eV, τ ∞ = 7 × 10 -12 s -1 . ( 51 
)
This peak proved stable against annealing at 290 K, in contrast to the peak described by Eqn (50). Because of the different annealing behaviour D'Anna and Benoit denoted the peak with the lower activation enthalpy as reversible γ-peak and the peak with the higher activation enthalpy as irreversible γ-peak.

A most surprising and difficult-to-understand aspect of the preceding results is that it is the unstable peak that is fully compatible with the results of the flow-stress measurements, whereas the activation energy of the stable peak is clearly incompatible with 2H {112} k . In the following we consider two interpretation proposals that start from opposite assumptions and that, therefore, should not be too difficult to distinguish by appropriately designed experiments. Common to both proposals and in agreement with the now accepted view [8] is that both peaks are attributed to the same dislocations, namely a 0 111 /2 screw dislocations.

Proposal (a) assumes that the annealing removes obstacles to the kink motion along the screw dislocations (e.g. jogs, dislocation nodes) to such an extent that the condition Lk x k , where x k denotes the mean distance of the kinks in thermal equilibrium, is violated (cf. Sect.

2). The consequences of this for the temperature dependence of the net rate of kink-pair generation, Γ k , is illustrated in Fig. 10 Proposal (b) has been developed at length elsewhere [START_REF] Seeger | [END_REF]15]. Its basic idea is that during the annealing residual impurities (e.g. oxygen atoms) migrate towards the cores of the screw dislocations and modify them in such a way that at the temperature of the internal friction experiments the dislocations do no longer slip on {112} but on {110} planes, as they do in pure material at low temperatures. The modification of the screw dislocation cores by the incorporation of foreign atoms has been shown to be responsible for the alloy softening in bcc metals [34,43]. From Conrad's collection of flow-stress data on impure (by present standards) Nb [START_REF] Conrad | The Relation between the Structure and Mechanical Properties of Metals[END_REF], the activation enthalpy of {110} slip has been deduced as

2H {110} k = (0.59 ± 0.02) eV (52) 
[11], in excellent agreement with Eqn (51).

On the basis of the experimental evidence available at present, Proposal (b) is more likely to be the correct one. While Proposal (a) has the attractive feature that it does not invoke the interference of an ill-defined impurity species, in contrast to Proposal (b) it fails to explain why the decrease of H γ should stop just at the measured value of 0.59 eV, which in Proposal (a) does not have physical significance of its own. As argued elsewhere [START_REF] Seeger | [END_REF],

the idea that the interaction of residual oxygen might modify the screw-dislocation cores and thus be indirectly responsible for the suppression of the 'irreversible' γ-peak and the appearance of the 'reversible' peak by annealing is indeed supported by the work of Igata and his associates on the influence of oxygen on the γ-relaxation of Nb [START_REF] Igata | Internal Friction and Ultrasonic Attenuation in Solids[END_REF][START_REF] Igata | [END_REF]. A further piece of evidence supporting Proposal (b) is that earlier internal-friction measurements on Nb containing detectable concentrations of hydrogen atoms, which are known to give rise to alloy softening, showed a peak at 270 K (f = 1Hz) with

H γ = (0.61 ± 0.02) eV, τ 0 = 1 × 10 -12 s -1 , (53) 
[ 47,48] that is fully compatible with Eqns (51) and ( 52). (Note that in the relaxation process by kink-pair generation in dislocations the activation energy is well-defined, whereas the pre-exponential factor of the relaxation time depends somewhat on the microstructure [42].) be identified with the β-peak of Chambers [START_REF] Chambers | Dislocation Relaxations in Body-Centered Cubic Transition Metals[END_REF] and that the criticism by Funk and Schultz [50] of Chamber's concept of an intrinsic β-relaxation in the refractory bcc metals should be withdrawn.

6 Discussion and Summary gives, within experimental error, quantitative agreement with the period 2 1/2 a 0 of the Peierls potential on {112} planes. We conclude that in the temperature regime investigated, in which the waviness of the slip-line pattern on the side surfaces indicates frequent cross slip, the {112} planes are the elementary slip planes of the screw dislocations, i.e. the planes on which the dislocations slip between the individual cross-slip events. For crystal orientations near the middle of the standard orientation triangle and pre-deformed specimens (this excludes the possibility of anomalous slip [51,52,53]) dominance of the {110} slip may definitely be excluded in the temperature range investigated. Below the temperature T = Ť of the so-called lower bend (not investigated in this work) the dominant slip planes are the {110} planes. For a detailed discussion of this transition from the viewpoint of thermodynamics see [34].

At small kink-kink separations, the interaction between neighbouring kinks is no longer independent of the Peierls potential U (u). It may therefore differ somewhat from metal to metal. Nevertheless, without having to specify U (u), the kink-formation energy H k and the distance a between adjacent Peierls potentials may be derived from the present data with good accuracy . As already alluded to, the numerical values agree well with those obtained at σ * < σ * .

(Insert Table 1 about here.) The numerical results from both stress regimes are listed in the first column of Table 1. The data are arranged in three groups. The top group contains the results that may be obtained rather directly from the measurements. (For the meaning of σ see Eqn (18 1 ).) The numerical values, in particular 2H

{112} k and a, are in good agreement with those derived in a preliminary data analysis [START_REF] Holzwarth | Proc. 9th International Conference on the Strength of Metalls and Alloys[END_REF]. In the last mentioned reference [START_REF] Holzwarth | Proc. 9th International Conference on the Strength of Metalls and Alloys[END_REF] the reader may find a comparison with earlier work of Ackermann et al. [4] and Anglada and

Guiu [56]. The entries of the middle group list the information that had to be taken from the literature in addition to the lattice constant a 0 and the dislocation strength b (in the present case b = 3 1/2 a 0 /2). These values were used to calculate the quantities listed in the bottom group, viz. U (a), defined by Eqn ( 182 ), and β, defined by Eqn [START_REF] Seeger | Physical Acoustics, Principles and Methods[END_REF]. U (a) is equal to the curvature of the Peierls potential at the bottom of its valleys. β characterizes the shape of the Peierls potential since it is independent of its period and its strength. Columns 2 and 3 contain the results on Ta and Mo that were obtained by basically the same measuring and data-analysis procedures as used for Nb. The β values of all three metals are very close to zero. We recall that the Eshelby potential [27] leads to β = 0. For this potential H kp (σ * ) has been calculated analytically [3,[START_REF] Seeger | Dislocations 1984[END_REF]. Nevertheless, for the following reason we have refrained from using this exact result for estimating the Peierls stress σ P from the condition H kp (σ P ) = 0, . Whereas the Eshelby potential is symmetric according to the definition (A.6), the Peierls potentials of dislocations with Burgers vector directions 111 and slip planes {112} are necessarily asymmetric. This means that in the present case we must distinguish between the Peierls stress in the twinning and in the anti-twinning direction [28].

The appearance of two different Peierls stresses is directly related to the tension-compression asymmetry of the flow stress. Since in the present paper this phenomenon has not been investigated (see Eqn (40)) and since an adequate theoretical treatment requires considerable mathematical effort, we postpone the discussion of the Peierls stress for {112} slip. The Peierls stress for {110} slip of the a 0 111 /2 screw dislocations in the refractory bcc metals may be obtained by extrapolating σ * (T ) towards T = 0 K.

In the last two columns of Table 1 we have included the results of Brunner [START_REF] Brunner | [END_REF]39] The analysis of the present experimental data has been based on Eqn (8). In terms of Fig. 10 this corresponds to Lk x k . If this condition was violated, and, hence, Eqn (8) was no longer applicable we should have observed a decrease of the activation energy with decreasing x k , i.e. increasing temperature. In the temperature regime investigated there was no indication for this, hence Eqn (8) was applicable.

The results on Nb summarized in Table 1 were obtained by deformation in vacuum. To terminate the discussion of the flow-stress measurements we compare them with the results of measurements on three Nb crystals that were deformed in direct contact with the temperature Internal friction measurements (f = 5.7 Hz) showed an exceptionally sharp maximum at 210 K that is thought to be characteristic of phase transitions in the Nb-H system [START_REF] Buck | [END_REF]. The direct contribution of the hydride to εpl is presumably negligible. The strains accompanying the hydride formation are likely to lead to an increase of σ M . This, however, would be difficult to take into account quantitatively, since at T > 210 K the hydride phase may grow or shrink during the measurements, depending on the pre-history. What is difficult to understand even qualitatively is that N d Lk comes out larger in the immersed samples than in the vacuumdeformed ones. Hydrides on dislocations should have reduced Lk . The hydride formation might have increased the dislocation density. However, it is hardly conceivable that the density of mobile screw dislocations increases to the extent that the increase of N d Lk by a factor of 4 could be accounted for. A possible explanation is that the increase in 2H k is an artefact caused by the temperature dependence of the growth or shrinking of hydride particles. The anomalous increase of N d Lk would disappear if the 'true' 2H k had remained unchanged.

Internal friction

The use of a forced-vibration torsion pendulum enabled D'Anna and Benoit [13] to investigate the γ-relaxation of Nb and Ta over a wider frequency range than was possible before and to determine the activation energy H γ rather accurately. In Nb, the activation energy of their Šesták proposal [8] referred to in Sect. 1. From this we conclude that the kink-pair generation responsible for the 'irreversible' γ-relaxation takes place on {112} planes.

The nature of the 'reversible' γ-relaxation of D'Anna and Benoit has been discussed in considerable detail [START_REF] Seeger | [END_REF], with the results (1) that it is due to the kink-pair generation in a 0 111 /2 screw dislocations but on {110} rather than on {112} planes, (2) that it is identical with the β-relaxation studied by Chambers and others (for references see [41]), and (3) that the influence of hydrogen on the β-relaxation frequently reported in literature is indirect, namely due to the promotion of the slip-plane transition {112} → {110} referred to above. 

:= u U (a) 2U (u) 1/2 , v = u a , (A.2)
and the requirement

F (1/2) = 0 . (A.3) From (A.2) follows (1 -v) dF (v) dv v=1 = v dF (v) dv v=0 = 1 . (A.4)
Insertion of (A.2) into (A.1) and integration by parts gives us

β = 2 vF (v) + ln (1 -v) v=1 v=0 -2 1 0 F (v)dv . (A.5) If the potential is 'symmetric', i.e. if U a 2 -u = U a 2 + u , (A.6)
F (v) is antisymmetric with respect to v = a/2, hence the integral in (A.5) vanishes and (A.5) then simplifies to

β = 2 lim v→1 F (v) + ln (1 -v) . (A.7)
Hence the knowledge of F (v) at v = 1 suffices for the evaluation of β.

As an example that has enough flexibility to represent a wide range of symmetric periodic potentials we consider where Tables and Table Captions Material Nb Ta [36,[START_REF] Werner | Proc. 8th International Conference on the Strength of Metalls and Alloys[END_REF] Mo [16] W [START_REF] Brunner | [END_REF] In the regime of the line-tension approximation (LT) the lines are fitted to the experimental data using Eqn (39). The transition between the regimes of the line-tension and the elastic interaction approximation at a strain-rate independent stress σ * ≈ 93 MPa is indicated. In the transition-state approximation regime (σ * ≥ 25MPa) the fits were based on Eqn (42), at higher temperatures with non-negligible effects of kink diffusion (σ * < 25MPa) on Eqn (33). 

U (u) = a 2 U (
k 2 = 1 -k 2 = Λ (1 + Λ) (A.

  Slip planes and kink properties of screw dislocations in high-purity niobium A. SEEGER * and U. HOLZWARTH † Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, D -70569 Stuttgart, and Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, D -70569 Stuttgart, Germany Dedicated to Professor Frank Reginald Nunes Nabarro on the occasion of his 90 th birthday on March 7 th , 2006

  H M k = (15±10) meV. In agreement with the above-mentioned prediction, the same H k values are obtained above and below σ * . The Nb data are compared with those on Ta, Mo, W, and α-Fe, which all exhibit a similar pattern. The comparison with the internal-friction measurements of D'Anna and Benoit shows very clearly that the classical γ-relaxation of Nb -called irreversible by D'Anna and Benoitis caused by the thermally activated generation of kink pairs in a 0 111 /2 screw dislocations on {112} planes. For the more recently discovered reversible γ-relaxation two alternative mechanisms are discussed. The one based on kink-pair formation in screw dislocations on {110} planes appears to be the more likely one. This interpretation implies that the reversible γ-relaxation is identical with the β-relaxation and thus substantiates Chambers' claim of the intrinsic nature of the β-relaxation. keywords: plasticity of metals, dislocation dynamics, refractory metals, mechanical properties, deformation mechanisms, internal friction, Peierls barriers, body-centred cubic metals, kinks in screw dislocations.

  determination of the elementary slip planes of screw dislocations by this technique works as follows. The strong temperature and strain-rate dependence of the flow stress of high-purity bcc metals is attributed to Peierls barriers of the screw dislocations that are much larger than those of non-screw dislocations. The screw dislocations overcome their Peierls barriers by stress-assisted generation of pairs of kinks of opposite sign (for short: kink pairs or kinkanti-kink pairs) and subsequent drift of the kinks along the dislocation lines with an average v k . In a given crystal structure, the separation of adjacent Peierls barriers, a ijk , is uniquely determined by the crystallographic plane {ijk} on which the kinks are formed.

  most strongly. This justifies the linear superposition of the two terms in Eqn (4),

  energy of a straight dislocation line if it is displaced by u from the position of minimum energy.] In this case it is expedient to introduce the so-called line-tension (LT)

  Thus, β is indeed entirely determined by the shape function f (u/a). The simplest non-trivial ansatz

  potential lead to positive β. If we exclude the possibility that the potentials are dented at u = a/2, Eqn (25) gives us δ ≤ 8/3 and hence β ≤ 2 ln 3 ≈ 2.2. Realistic upper limits of β are presumably closer to zero.

  ) is determined entirely by dislocation properties and hence independent of the strain rate and, to an excellent approximation, of the measuring temperature. Its measurement allows us to determine the combination β + ln [ln (r ∞ /r 0 )] and, since

  by phonon or electron scattering or by the Peierls barriers of the second kind that kinks 11

  in a double-logarithmic plot of σ * versus k B T /D k (Insert Figure1about here.), the uninterrupted full curve marks the division between the two regimes discussed in the two preceding paragraphs. Also shown is the interrupted line σ * = σ * that separates the range of validity of the line-tension approximation from that of the elastic-interaction approximation. Note that these two divisions are independent of each other. Fig.1reflects roughly the situation that obtains for the Peierls barriers of a 0 111 /2 screw dislocations in refractory bcc metals but may look quite different in other cases. In a properly extended figure two further fields appear in the lower right-hand and the upper left-hand corner, respectively.

  by extrapolating these plots towards σ → σ M . Irrespective of whether the pre-exponential Page 22 of 47 http://mc.manuscriptcentral.com/pm-
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 113 Material and crystal preparationSingle crystals oriented for single slip on the plane ( 101) (Schmid factor µ ≈ 0.5) were prepared from electrolytically deposited high-purity niobium plates obtained from General Metals Technologies Corporation. According to the manufacturer, the plates contained very low concentrations of substitutional impurities of tantalum, molybdenum and tungsten. They were cut into stripes and remelted by electron-beam melting in high vacuum to bars that were subsequently chemically polished in order to remove impurities taken up during remelting.Cylindrical rods obtained by swaging were purified by electron-beam zone melting, then annealed twice in an oxygen atmosphere of 3 × 10 -6 mbar to remove dissolved carbon, and at least three times in ultra-high vacuum to remove oxygen, nitrogen, and hydrogen as well as metals with low melting points. The purified rods were swaged to 4 mm in diameter and chemically polished to 3.8 mm. Single crystals were grown by electron-beam zone melting in ultra-high vacuum by seeding the rods on properly oriented crystals and cut into pieces of 55 mm length. A well-defined gauge length with a reduced diameter of 3.3 mm on 10 mm length was produced by spark erosion. A surface layer of about 0.2 mm thickness that might possibly have been damaged was removed by chemical polishing in a solution of 15 ml H 2 SO 4

3 . 3

 33 Avoidance of hydrogen contaminationConsiderable effort was spent on avoiding contamination with hydrogen during plastic deformation. In preliminary experiments it was found that after the pre-deformation at 370 K the residual resistance had increased by much more than could be accounted for by the increase of the dislocation density. This was attributed to contamination by hydrogen. Internal friction measurements indicated indeed that at the end of the deformation experiments the hydrogen content exceeded the starting concentration by orders of magnitude, which could have been at most 50 atppm (cf. Sect 3.1) but was presumably distinctly lower. A thin oxide layer did not prevent the hydrogen contamination because during deformation it was continuously destroyed by the formation of slip steps.The contamination problem was solved by fitting the crystals into small elastic metallic vacuum chambers that were deformed together with the samples, thus avoiding direct contact with the temperature bath. As shown in the longitudinal cut of Fig.2(Insert Figure2about here.), the chambers consisted of two parallel discs with cylindrical extensions, housing the gripping parts of the crystals, and of a metal-bellow segment enclosing the space between the discs that housed the gauge length of the crystals. The metal-bellows segment allowed easy elastic deformation of the vacuum chamber. The discs and their cylindrical extensions were machined from a single piece of steel to ensure vacuum tightness. The fabrication started by drilling a hole along the axis of a round steel rod of 40 mm in diameter, which exactly matched the crystal diameter on the gripping part. The material around this hole was removed by machining until only a thin wall of 0.2 mm thickness was left.When mounting the specimens on the fatigue machine this thin-walled extensions of the vacuum chambers were deformed in a way that ensured sufficient gripping contact between the specimens and the machine fixtures as well as vacuum tightness. A small tube attached to the upper lid permitted evacuating the chamber. The upper and lower component of the vacuum chamber were assembled with the metal-bellow element and the specimen in between them. All connections between the discs and the metal bellows were made with a special vacuum adhesive (ECCOBOND, Emerson & Cuming Inc.). Slitted iron spacers were used to adjust the diameter of the chamber on the extensions to the grips of the MTS-machine. The force needed to deform the chamber was negligible compared with that required to deform

4. 1

 1 Determination of σ * (T, εpl ) and σ * At and above T = 350 K, changing εpl did not affect the flow stress σ, hence the saturation flow stress reached during pre-deformation cycling was identified with σ M = σ -σ * . On the single crystal Nb 95/1, which was deformed in vacuum as described in Sect.3.3 and 

Fig. 3 (

 3 Fig. 3 (Insert Figure 3 about here.) shows the results of a few hundred measurements at five different strain rates. The regularity of the data demonstrates that the microstructure

  screw dislocations with Burgers vector b = a 0 111 /2. With b = 3 1/2 a 0 /2, a 0 = 3.3007 × 10 -10 m, and γ 0 = 3.4 × 10 -10 N [4, 35], we obtain the kink height a = (1.43 ± 0.05)a 0 = (4.73 ± 0.15) × 10 -10 m . (43)

  diffusivity D k . The D k values shown in Fig. 6 (Insert Figure 6 about here.) as open squares were deduced from the measurements above 220 K at εpl = 1.5 × 10 -3 s -1 by com-

  gument. The period of the Peierls potential of the second kind experienced by the kinks migrating along a 0 111 /2 screw dislocations is b = 2.858 × 10 -10 m. The attempt frequency ν 0 k = D 0 /b 2 ≈ 10 -13 s -1 following from the transition-state theory in its simplest form (en-) is of the order of magnitude of the frequency of short-wavelength lattice vibrations, as expected. 4.3 The regime of intermediate effective stresses (σ * > σ * ) Making use of the strain-rate dependent T K values of Sect. 4.2, a fit of the effective stresses σ * > σ * to Eqn (39) yields 2H k = (0.69±0.02) eV, σ = (7.1±0.2) GPa and ab[γ d /U (a)] 1/2 = (9.1 ± 0.2) × 10 -29 m 3 . These fit values may be cross-checked by rewriting Eqn (39) as

  ), solve for γ d /U (a), and insert the result into Eqn (46). With the numerical values σ * = 93 MPa, σ = 7.1 GPa, γ 0 = 3.4 × 10 -10 N and b = 2.858 × 10 -10 m, we then find a = 4.84 × 10 -10 m in agreement with the result Eqn (43) obtained at σ * < σ * . Thus, kink energy 2H k and kink height a come out the same irrespective of whether they are deduced in the EI regime or in the LT regime. One could hardly wish a more convincing demonstration that the flow stress is determined by the same mechanism on both sides of the 'hump' at σ * . Finally we obtain from Eqn (27) U (a) = (2.0 ± 0.1) GPa and from Eqn (18) β = 0.06 ± 0.05.4.4 The stress dependence H kp (σ * ) and V kp (σ * )The stress dependence of the kink-pair formation enthalpy H kp (σ * ) and the activation volume of kink-pair formation V kp (σ * ) may be derived with a minimum of assumptions from the sensitivity of the flow stress at constant temperature, ∂σ * /∂ ln εpl | T , and the temperature dependence of the effective flow stress at constant plastic strain-rate, ∂σ * /∂T | εpl[40]. Both quantities may be obtained by the present experimental techniques.

)Fig. 8

 8 Fig. 8 compares the H kp (σ * ) values obtained from Eqn (48) with H EI kp (σ * ) and H LT kp (σ * ) as calculated from Eqns (11) and (21) with 2H k = 0.69 eV and a = 4.8 × 10 -10 m, U (a) = 2.0 GPa, σ = 7.1GPa, and ln (r ∞ /r 0 ) = 2.55. The agreement is good, in particular in the stress regime where experimental errors are small. The σ * 1/2 -rise of H kp (σ * ) at σ * → 0 and the break in the slope at σ * is clearly visible.
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2 ×

 2 10 -3 at about 190 K, the fit of the relaxation times

  [18,42]. (Insert Figure10about here.) Whereas at Lkx k , the case so far considered exclusively, the activation energy is given by 2H k , it decreases gradually towards H k as Lk increases. (For simplicity, we neglect small corrections due to H M k and logarithmic terms in k B T .) The proposal postulates, as indicated in Fig.10by the series of dots, that the annealing changes the situation in such a way that the 23 gradually. At the same time, the pre-exponential relaxation time τ ∞ increases, in qualitative agreement with the observations by D'Anna and Benoit[12].

  Acceptance of Proposal (b) implies that the 'reversible peak' of D'Anna and Benoit should

6. 1

 1 The flow stress and its interpretationAs the most impressive feature of the present experiments we consider the striking internal consistency and reproducibility of the flow-stress determinations. This has been made possible by the Ackermann-Mughrabi technique that enabled us to obtain extensive data sets on one single crystal without any change of the crystallographic orientation of the stress axis.Various quantitative cross checks of the interpretation in terms of the theory of kink-pair generation with subsequent kink diffusion could be performed. The data obtained at σ * > σ M agreed with those obtained at σ * < σ M , hence the ansatz Eqn (4) may be considered experimentally verified. The formation energy 2H k and the height a of kinks in a 0 111 /2 screw dislocations determined at effective flow stresses σ * < σ * agree with those determined at effective flow stresses σ * > σ * . This shows that the 'upper bend' of the flow-stresstemperature relationship, characterized by the strain-rate-independent effective stress σ * , is not due a change in the dislocations promoting plastic deformation or the mechanism controlling their movement. Rather, the bend is quantitatively accounted for by the transition between two different regimes of the interaction between kinks and anti-kinks as a function of their separation. Moreover, as shown in Sect. 4.4, the 'model-free' determination of the activation enthalpy and the activation volume is fully compatible with the fits to the EI and LT approximation of the kink-pair generation model.At large kink-kink separations, the interaction between the kinks is mediated by the elastic strain fields of the kinks. Its strength is described by the product a 3 bγ 0 = 2α 2 , where a is the separation of adjacent Peierls valleys and thus equal to the period of the Peierls potential U (u), b the dislocation strength, and γ 0 the pre-logarithmic factor of the dislocation line tension (equal to b 2 times a function of the elastic constants and thus computable from information). For a 0 111 /2 screw dislocations the experimentally determined a 3 bγ 0

  on W and α-Fe as far as they pertain to T > Ť . They were obtained by a different technique (stress relaxation after successive tensile deformation) and did not allow us to deduce D k , U (a) or β. The compatibility of a/a 0 with {112} slip is complementary to the results shown in the first three columns as it was obtained at plastic strains that exceeded the micro-strain regime only little, in contrast to the cyclic deformation work on Nb, Ta and Mo, which involved high dislocation densities.

  these measurements the Peierls valley separation a = (4.98 ± 0.15) × 10 -10 m was only slightly higher than in Table1. The interpretation of the kink diffusivity according to Eqn(34) gave H M k = (15 ± 10) meV and D 0 = (0.7 5 ± 0.25) × 10 6 m 2 s -1 , i.e. the same results as for the crystals deformed in vacuum. A critical quantity is the formation enthalpy of a kink pair in the limit σ * → 0, which came out as 2H k = (0.71 ± 0.02) eV. Its precise value has a strong influence on the numerical value of the product N d Lk of the dislocation density N d and the mean distance of unsurmountable obstacles to the kink motion, Lk . In the immersed crystals N d Lk = (11.5 ± 2.5) × 10 5 m -1 was considerably larger than the 'vacuum value' N d Lk = (3.0 ± 1.5) × 10 5 m -1 .

9 ) 1 -

 91 is a parameter determining the shape of the potential. The case Λ = 1, k 2 = k 2 = 1/2 corresponds to a potential with a flat maximum at u = a/2 [U (a/2) = 0]. The cases 1/2 < k 2 < 1 correspond to potentials with local minima at u = a/2 (mod a).Insertion of (A.9) into (A.2) gives usdF dv = π sin πv ∆(πv) (A.10) (k 2 /2) sin 2 π(1 -v) -cos π(1of 0 ≤ k 2 ≤ 1/2 the parameter β varies between -0.90 and -0.21. β becomes zero at Λ = 1.47.

Figure 1 :

 1 Figure1: Double logarithmic plot of abσ * /γ 0 versus (k B T /D k ) × (a/m k γ 0 ) 1/2 illustrating the regimes in which the kink-kink interaction can be described by the line-tension approximation or the elastic-interaction approximation. The range of validity of the transition-state theory is separated by the bold lines from the regime of kink-diffusion control.

Figure 2 :

 2 Figure 2: Longitudinal cut of a vacuum chamber protecting the Nb crystals from contamination up-take by direct exposure to the temperature bath. The extensions on the hatched lids of the chamber housing the gripping part of the Nb crystals are very thin (0.2 mm); they are represented by a line, visible between disc (lid) and the spacer.

Figure 3 :

 3 Figure 3: Temperature and strain rate dependence of the effective stress σ * (T, εpl ) determined on the single crystal Nb 95/1 after pre-deformation at 370 K. Above 350 K, σ * (T, εpl ) ≡ 0 for all strain rates investigated.

Figure 4 :

 4 Figure 4: Determination of the knee temperatures T K . The extrapolation of the straight lines to σ * 1/2 = 0 determines the knee temperatures for each εpl . The extrapolation to zero temperature gives AT K = (24 ± 0.5) MPa 1/2 .

Figure 5 : 36 PageFigure 6 :

 5366 Figure 5: Determination of 2H k and ε0 according to Eqn (37).

Figure 7 :

 7 Figure 7: Plot of k B T ln ( ε0 / εpl ) versus σ * [1 + ln (σ/σ * )] for σ = 7.1 GPa. The extrapolation of the straight-line fit to σ * = 0 yields 2H k = (0.68 5 ± 0.01 5 )eV. The slope of the line is (9.13 ± 0.13) × 10 -29 m 3 = 3.9 b 3 .

Figure 8 :

 8 Figure 8: Stress dependence of the kink-pair formation enthalpy H kp (σ * ). The experimental data were obtained by means of Eqn (48). The full line is a fit of Eqn (11) with 2H k = 0.69 eV, a = 4.8 × 10 -10 m. The dash-dotted line a fit of Eqn (21) using the same values for 2H k and a together with σ = 7.1 GPa and U (a) = 2.0 GPa. The transition between the EI and the LT approximation at σ * ≈ 93 MPa is indicated.

Figure 9 :

 9 Figure 9: Stress dependence of the activation volume V kp (σ * ). The experimental data were obtained by means of Eqn(47). The transition between the LT and the EI approximation regimes at σ * is indicated. The ratio of the extrapolations of V LT kp (σ * ) and V EI kp (σ * ) towards (σ * ) is 1.61 ± 0.05 (cf. Eqn (28)).

Figure 10 :

 10 Figure 10: Schematic plot of ln L k versus 1/k B T . Increasing Lk during annealing (see dots) causes the activation energy H γ to decrease gradually from 2H k to H k .

  

  

  

  

  

  

  

  

  

  'irreversible' internal-friction peak, H γ = (0.68 ± 0.03) eV, agrees well with 2H k determined in the present work (see Table1) that we may consider this as a verification of the Seeger-
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  The situation in Ta is less clear. Here, too, D'Anna and Benoit distinguish between an 'irreversible' and a 'reversible' γ-relaxation. In contrast to the earlier result H γ = (1.00 ± 0.03) eV[57], the activation enthalpy of the 'irreversible' process H γ = (0.79 ± 0.02) eV does not agree with the 2H k value of Table1. The latter value, obtained by the Ackermann-
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Mughrabi technique and attributable to kink-pair generation on {112}-planes, is in agreement with earlier flow-stress measurements of Mordike and Haasen on high-purity Ta single crystals

[58]

. In Mo, W, and α-Fe the agreement between H γ and 2H k is good

[START_REF] Seeger | [END_REF]

. This suggests that in the case of the Ta measurement of D'Anna and Benoit the 'irreversibility' of the internal-friction peak has influenced the H γ determination.

Table 1 :

 1 Compilation of the kink-pair formation energy 2H k , the kink migration energy and pre-exponential factor, H M k and D 0 , the kink height a, the 'hump' stress σ * , and the parameter σ defined in Eqn (26) as derived from flow-stress measurements on Nb (this work), Ta, Mo, W, and α-Fe. The values for γ 0 and ln (r ∞ /r 0 ) are literature data used to calculate the quantities U (a) and β from Eqns (27) and (18).

	α-Fe [39]
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A Appendix -Evaluation of the shape factor β

In order to evaluate