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ABSTRACT 

      In fcc metals kink-pair formation in dislocation lines aligned along close-packed lattice 

directions can give rise to internal friction effects called Bordoni relaxation. The resulting 

internal friction peak is a superposition of several individual peaks, each with complex 

features. In order to study this behaviour, the differential equation describing the movement of 

dislocation segments by thermally activated kink-pair formation is solved numerically. It is  

assumed that the kink mobility is high. As result the movement is asymmetric, since the 

backward movement can occur by kink collapse without need of thermal activation. The 

influence of the external parameters such as segment length, number of geometrical kinks, 

internal stress,  amplitude and frequency of the applied stress and temperature on the position 

and shape of the internal friction peaks is studied. When the original configuration is in a 

bowed out state, the Paré condition is satisfied. Application of an external stress increases the 

magnitude of internal friction by aligning originally inclined dislocation segments in the 

direction of the Peierls valleys. 

 

 

§ 1. Introduction 

      Straight dislocations lying along close-packed lattice directions have, upon moving, to 

surmount the ridges of the Peierls-Nabarro potential [1-3]. The crossing of the potential ridges 

can occur by thermally activated formation of kink-pairs, a process which has been studied in 

great detail in the literature (for summary see [4–7]).  

   Thermally activated kink-pair formation in dislocations can give rise to internal friction 

effects at low temperatures, which in fcc lattices are called Bordoni relaxation There exists a 

vast literature on the subject and the experimental results have been reviewed by Fantozzi et 

al. [8] and Richie and Fantozzi [9]. Various attempts have been made to model the mechanism 
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of the Bordoni relaxation. Esnouf and Fatozzi [10], Schlipf and Schindlmayr [11] and 

Stadelmann and Benoit [12] considered the occupation probability of various positions of a 

bowed out dislocation segment and assumed that the transition between neighbouring 

configurations occurs by kink-pair formation in forward and backward direction. A detailed 

study of the relaxation process was made by Bujard et al [13], who compared the treatments 

of the bow-out of a dislocation segment in the string model and the kink-chain model. From 

their experimental observations using a two-wave acoustic coupling method, they concluded 

that the results could be explained by a somewhat modified string model. Their experimental 

results also indicated that the kink mobility in fcc metals is very high, and that in contrast to 

the Fantozzi-Schlipf-Stadelmann model the annihilation of kink-pairs is not a thermally 

activated process. Ulfert and Seeger [14] and Seeger [6] derived an analytical expression for 

the relaxation time from the relaxation function, which is the response to a stepwise increase 

in applied stress. 

    We use here a different approach and are going to describe the dislocation behaviour by 

solving numerically the differential equation for the dislocation velocity under the action of an 

periodically varying external stress. This will allow to treat a situation, where the forward and 

backward movement of the dislocations shows different dynamic response and to perform 

‘numerical experiments’, allowing to study the influence of the external parameters like 

segment length, internal stress, stress amplitude and temperature on the energy dissipation. 

 

§2. The basic assumptions 

   In order to obtain the rate equation for the dislocation movement we will make the 

following assumptions: 

   i) We consider a dislocation segments of length L pinned at the end points  either in the 

same Peierls valley, or ng valleys of separation a apart with small inclination g = nga/L << 1. 

The segment may  be subjected to a stress  

                                                         σ(t) = σi + σ0 sin(2πνt )                                            (1) 

where σi is some homogeneous time independent internal or external stress and σ0 the 

amplitude of the periodic applied stress. 

     ii) We will assume that the kink mobility is high, and once a kink-pair has been formed  

across a saddle point, the kinks will move apart sideways under the action of the applied stress 

to their equilibrium position in a time small compared to 1/ν. This seems be in accordance 

with experimental observations [13]. Under these conditions the velocity of the dislocation is 
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controlled by the rate of kink-pair formation Γ per unit length. For a segment of length l 

moving in the y-direction it is given by 

                                                         Γ= al
dt

dy
                                                    (2) 

with kink height a [4, 7]. 

     iii) We will assume the final position of the kinks once formed will approximate the 

configuration of the ideal bow-out in the line tension model. A frictionless dislocation 

segment of length L running along the x-direction in a single Peierls valley (ng=0) would, 

under the action of an applied stress σ,  bow-out to a configuration Y(x) which for Y<<L can 

be approximated by a parabola  

                                        













−=

2

2

0
L

x4
1YY                                                         (3a) 

with ideal apex height Y0   

                                                        b)t(
8

L
)t(Y

2

0 σ
γ

=                                                      (3b) 

and with line tension  γ = γ0Log(R/r0). Here γ0 is the pre-logarithmic factor of the line tension  

and R and r0 of the usual outer and inner somewhat ill defined cut off radii. 

       When the dislocation movement is controlled by kink-pair formation the instantaneous 

configuration will be of trapezoidal shape i.e. a parabola truncated by a straight chord at 

height y (See Fig. 1) and the kinks accumulate at the side branches forming part of the 

parabola.    

                                                 [Insert Fig. 1 about here] 

  iv) Actually not an assumption but rather as result of the high kink mobility, the oscillation 

of the bow-out is asymmetric. Whereas the forward movement must occur by kink-pair 

formation, the backward movement under the action of a reverse stress is accomplished by the 

collapse of kinks, coming from the side branches, without the need of thermal activation. 

    v) We neglect that in fcc metals dislocations are dissociated into partial dislocations. This 

can have serious consequences and can lead to multiple equilibrium configurations and the 

possibility of the formation of fractional kinks [15, 16]. Therefore we may expect that a 

number of different activation energies can exist and as result a widening of the internal 

friction peak will occur. The dynamic behaviour of the individual segments will, however, not 

be affected. 
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§3. Thermal activation 

    In trying to derive the formation rate of kink-pairs from the theory of irreversible 

thermodynamics, we encounter the usual difficulties in treating thermally activated processes. 

The problem is aggravated by the fact, that we even do not have steady-state conditions. 

Under the small stresses σ0 usually employed in internal friction experiments, the saddle point 

configuration for the formation of kink-pair consists out of two well formed kinks of opposite 

sign separated by a critical activation distance b2ad 00 σγ= , where a is the kink height and 

b the Burgersvector. The saddle point energy for kink-pair formation is then  

                                                     σγ−= 0

3

KKP ba2H2H                                           (4) 

where HK is the energy of an isolated kink [4, 7]. 

            Since typically d0 is larger than 100 b the formation of the kink-pair by thermal 

fluctuations  must be described by a diffusive drift of the kinks in the interval d0 across the 

saddle point [17] and we must apply the diffusion theory of thermal activation. The situation 

has been discussed in great detail [7, 18] and has been summarised by Seeger [5]. Based on 

the work of Kramers [19] on diffusion-controlled reactions, he derived for the formation rate 

Γ of kink-pairs  per unit length in an otherwise straight dislocation under the action of a stress 

σeff 

                                     ( ) ]
kT

)(CH2
exp[zF

kTb

C eff2K1 µσ−
−=Γ                                   (5a) 

where 
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1z1
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=                                                                          (5b) 
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
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Here C1 is a frequency factor which also contains the changes in entropy between the ground 

state and the saddle point and C2= 2a
3
bµγ0 with  shear modulus µ .  HK is the formation 

enthalpy, DK the diffusion coefficient and mK the effective mass of a single kink and kT has 

its usual meaning. For z <<1 we have F(z) = z/2, however, for z −>0 the theory breaks down 

[5]. For z >>1 corresponding to high kink mobilities we have F(z) =1 and the formation rate 

would formally agree with the one obtained from transition state theory of thermal activation. 

                The dynamic behaviour is influenced by the magnitude of the dimensionless 

parameter Z introduced in eq. 5c. Its magnitude is difficult to asset.  For the rest mass of the 
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kink we have mK=HK/ 2
0c  with sound velocity c0 [5]. For HK>>kT and for high kink mobility 

Mann [20] has shown, that agreement with transition state theory can be obtained by setting 

DK = 8wKc0, where wK is the kink width. We will use this relation to obtain an order of 

magnitude estimate of Z. Another estimate for the order of magnitude would be DK =νD b
2
 

with Debye frequency νD . This would lead to a somewhat lower value of Z. With reasonable 

values for a and γ0 we find from eq. 5c 

                                                        
kT

bH

b

w
38Z

3
KK µ

≈ .                                       (6) 

Introducing the reciprocal temperature M= T0/T and using as referenced temperature T0 = 100 

K, we find from eq 6 with plausible values for the different parameters Z ≈ 2⋅ 10
4
 M  but 

considering the uncertainties involved we will investigate the behaviour over a wide range of 

Z values. 

  

§4. The dynamic equation for ng=0 

      We first consider here a simple configuration, where the dislocation segment of length L 

is anchored in the same Peierls valley, and hence no geometrical but kinks are present (ng=0). 

The configuration is shown schematically in Fig. 1. When under the action of an external 

stress σ(t) the segment starts to move in the Peierls potential, it will take up the trapezoidal 

shape of height y ( Fig. 1). Due to the bow-out a back stress σb will build up and when y(t) 

reaches ideal apex height Y0(t) of the frictionless dislocation, the effective stress σeff = σ −σb  

will vanish. The back stress σb will not be homogeneous along the segment length and the 

largest forward stress exists in the centre of the segment, where kink nucleation will occur 

preferentially. We can globally take account of this back stress by setting 

                                                          σeff = σ (Y0- y)/Y0                                                   (7) 

       Instead of describing the results in terms of the acting stress σ(t), it is of advantage in 

visualizing the results to introduce the ideal apex height Y0(t) = L
2
bσ(t)/8γ as variable. With 

the geometrical relation for the instantaneous segment length l = L 0Yy1−  we obtain from 

eq. 2 for the velocity  dy/dt  of the chord under the action of a periodically varying stress 

σ(t)= σi + σ0sin(2πνt) as 

                
( )






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



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with                                          z = Z ( )
43

02
y)t(Y

bL

8
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




−

µ

γ
                                                  (8b) 

and  

                                                     C3 = 16 a
3
 γ0 γ / b

2
                                                            (8c) 

       A solution of the highly non-linear differential equation is only possible by numerical 

methods. When we have determined y(t), we can also obtain the area A(t) swept over by the 

moving dislocation segment during a cycle. It is given by 

                            ( ) ( )( )2
3

0000 Y/y11LY
3

2
)yY(lLY

3

2
)t(A −−=−−=                             (9) 

       The energy loss per cycle ∆W is determined by the area of the dynamic hysteresis and 

hence is given by 

                                     dt
dt

d
)t(bAd)t(bAbdA)t(W ∫ ∫∫

σ
=σ=σ=∆  .                              (10) 

         The internal friction Q
−1

 is defined as the relative energy loss per cycle and given by 

Q
−1

=∆W/W, where W= µσ 2
2
0  is the maximum elastic energy per unit volume stored in the 

cycle. 

 

§5. Numerical evaluation 

      For the numerical solution of the differential equation eq. 8 we used a slightly modified 

version of the standard program of MATEMATICA. For the material parameters we used as 

typical values γ0=µb
2
/(2π), γ=µb

2
, a=b, µb

3
 = 4 eV and 2HK= 0.15 eV. The constant C1 was 

adjusted, that for T−>∞ the frequency of formation f0 was in the usual  range of  10
10

 to 10
13

 

sec
-1

 [8]. The value of the parameter Z was varied between 10
3
 and 10

7
. The frequency ν of 

the external stress  was varied between 1 and 10
9

 sec
-1

 and for the amplitude of the applied 

stress we used the values of σ0 = 10
-6µ  and σ0 = 10

-5µ.  The range of internal stresses 

investigated was between σi  = 0 and σi = 10
-4µ. 

 

§6. The straight segment (ng = 0, σi = 0) 

       For a straight dislocation segment of length L anchored at each end at points in the same 

Peierls valley with internal stress σi = 0, the initial condition for the differential equation eq. 8  

is y(0) = 0. This is a very special situation, and we only treat it to show, that the kinetic 

response of a symmetric configuration differs from the one under a bias stress. The numerical 

solution obtained for L/b = 10
4
 and σ0/µ = 10

-6
 is shown in Fig. 2 (lower part) for  

                                                 [Insert Fig. 2  about here]                                          
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values of  M = T0/T, for which the energy dissipation is close to the maximum. We show here 

the applied stress (in units of 10
-6µ), which is proportional to the back stress of the bow-out 

with ideal apex height Y0(t) given by eq. 3b (curve marked Y0) and a back stress caused by 

the instantaneous bow-out with height y(t) (curve marked y). For a segment of length L the 

actual bow-out heights are obtained with the scaling factor L
2
b/8γ. 

        For t = 0 and when y(t) approaches Y0(t) the effective stress σeff  of eq. 7 vanishes and 

hence dy/dt = 0. In the return cycle, when y(t) catches up with Y0(t) , the movement will 

occur as in a frictionless dislocations, since the kinks can enter from the side branches and 

collapse. The phase lag between y(t) and Y0(t)) leads to a dynamic hysteresis, which for 

various values of temperature are shown in Fig 3. 

                                                 [Insert Fig. 3 about here] 

The energy dissipation is proportional to the area of the dynamic hysteresis. For high 

temperatures it vanishes, because the bow-out approaches the ideal behaviour and for low 

temperatures it vanishes, because no movement occurs. 

       We have also studied the influence of the segment length L on the energy loss. The area 

swept over is proportional to the product Y L and for a fixed stress σ the height Y scales with 

L
2
. Hence the energy loss for a single segment scales with L

3
. In order to compare the 

behaviour for different lengths L, the internal friction peaks shown in Fig. 4  are normalised 

by L
3
. We see  

                                                 [Insert Fig. 4 about here] 

that apart from the difference in height, the peak shape remains the same, but for larger L the 

peak maximum shifts to smaller values of M (or to higher temperatures). The shift of the 

reciprocal peak temperature M0 can be represented by  M0 = 0.905 − 0.064 ln(L/b). From the 

shape of a Debye peak, also shown in Fig. 4, it can be seen that the width of each individual 

peak is about 1.4 larger than the one of a Debye peak. Since a distribution of the segment 

lengths L would lead to some widening of the total peak, we considered the influence a 

distribution of segment lengths N(L)=L/L0
2
 exp[−L/L0] [21]. The resulting relaxation peak 

resulting from the superposition showed a width of about 1.6 times of a Debye peak. 

 

§7. The bowed out segment (ng=0, σi ≠0) 

     Under the action of a sufficiently high static internal stress σi , the dislocations acquires 

originally a bowed out equilibrium configuration. When we now superimpose a periodically  

varying stress with amplitude σ0 < σi  , the smallest bow-out  height occurs at the end of the 
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backward phase at time t0 = 3/(4ν) of the cycle with a stress σi − σ0. The backward movement 

can occur by kink collapse and hence is in phase with the applied stress.  Only when the 

forward movement starts, kink-pair formation must occur and hence the initial condition for 

the differential equation eq. 8 is now y(t0) = L
2
b(σi−σ0)/8γ. We note, that at the beginning of 

the forward movement, the effective length of the segment aligned  along the Peierls valley is 

very small and in the continuum limit we have l(t0) = 0. The segment length will first increase 

in length by the side movement of the intrinsic kinks on both side arms and decrease when the 

bow-out height approaches its maximum. The solution of the differential equation when 

solved for l(t) reproduces exactly these features . 

       The numerical solution obtained for for L/b = 10
4
, σi/µ = 2.5 10

-6
 and σ0/µ = 10

-6
 is 

shown in Fig. 2 (upper part). The meaning of the curves Y0 and y is the same as discussed 

above. The curve y corresponds to values of M = T0/T , for which the energy dislocation is 

close to the maximum. The resulting dynamic hysteresis  for various values of the temperature 

are shown in Fig. 5.  

                                                 [Insert Fig. 5 about here]                              

The shape of the dynamic hysteresis differs from the one for σi = 0 shown in Fig. 3. This 

result from the fact, that in the forward cycle, even when the apex at low temperatures cannot 

bow out due to the lack of kink-pair formation, the existing kinks in the side branches will 

move apart in phase with the applied stress. 

        We have also studied the influence of the internal stress σi on the shape and the 

magnitude of the internal friction maxima. The result is shown in Fig. 6 for internal stresses 

ranging from 1.1 10
-6

 ≤ σi/µ ≤10
-5

.  

                                                 [Insert Fig. 6 about here] 

When σ0 >σi the behaviour becomes rather complex and the hysteresis becomes a mixture of 

the features shown in Fig.3 and Fig.5. 

       We see that the magnitude of the internal friction peak is largest when the applied stress 

σ0 is about of the same magnitude as the internal stress σi . In regions with higher internal 

stress σi, the internal friction maximum becomes smaller and shifts to higher temperatures 

(lower values of M).  A distribution of internal stresses therefore can also lead to some 

widening of the peak. In Fig. 6 we have also shown a superposition of the different peaks, 

with different values of σi together with the shape of an Debye peak. Where as the individual 

peaks have widths of about 1.4 times the Debye peak, the width of the superimposed peak is 

1.6 times as large. 
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§8. The inclined segment (ng>0) 

       When a segment of length L anchored at ng Peierls valley, it will contain ng geometrical 

kinks. Its projection on the coordinate x and running along the direction of the Peierls valleys 

may be Lg .  The relaxation function for this configuration has been studied in detail by Seeger 

[6]. With the origin at the forward anchoring point, the ideal  bow-out under the action of a 

stress σ  can be approximated for an original slope g = nga/Lg <<1 

                                                       Y = (s Lg – g)x − s x
2                                                   

     (11) 

where  s = σb/2γ. For small stresses only the geometrical kinks will move and will be shifted 

in phase with the applied stress. Kink-pair formation will only become necessary, when the 

bow-out overshoots the Peierls valley of the forward anchoring point. This will occur at a 

critical stress σcr = 2gγ/bLg , where the tangent to the bow-out that the forward anchoring 

point is aligned with the directions of the Peierls valley. Simple geometrical considerations 

show, that for σ > σcr the movement can be described by the dynamic equation given by eq. 

8with the replacements       

            L ⇒ Lg − g/s ,        Y0 ⇒ Yg = (s Lg − g)
2 

/4s,         l ⇒ Lg gY/y1−         (12) 

      With these replacements the new dynamic equation has no rational solution, unless the 

acting stresses σ exceeds the critical stress  σcr. When the static internal stress σi is about 

equal to the critical stress σcr the internal friction is large. This results from the fact that in this 

situation a small increase in stress will lead to a large increase in the effective length, where 

kink-pair formation can take place. When the height of the bow-out overshoots the position of 

the forward anchoring point, the behaviour becomes more and more similar to the situation 

with ng= 0 as discussed in the previous section, now however with a variable segment length 

L. The change of the peak height with increasing σi is shown in Fig. 7. 

                                                 [Insert Fig. 7 about here] 

 

§9. The general segment 

     Whereas TEM observations in semiconductors or in the bcc metals at low temperature 

usually show long straight dislocation sections along closed packed directions, no such 

straight segments were observed in fcc metals. Here dislocations usually form tangles with a 

wide range of curvature. This is an indication that the Peierls energy and resulting Peierls 

stress are rather low. It is however important to point out that also such segments can 

contribute to the Bordoni  relaxation. Let us for instance consider a closed dislocation loop, 

which under the action of internal stress σi will take up a shape which can be approximated by 
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sections of an ellipse elongated in the direction of the Burgersvector. In order to be in stable 

equilibrium, it must, however, be fixed at two points. When this loop is subjected to a small 

periodic stress σ0 << σi , it will shrink in the reverse cycle, but in the forward cycle the 

segments with tangent parallel to close-packed directions can only expand by thermally 

activated kink-pair formation. This will occur at the apex of the long or short main axis, 

which are in edge or screw orientation, or in between at segments of 60° or 30° orientation, 

also along close-packed or second close-packed directions. Their behaviour can formerly be 

described as in section 7 with ng ≠ 0, σi  ≠ 0.and with length L of the order  of  magnitude 

somewhere between the values of the two main axes of the  ellipse. 

 

§10. The effective activation energy 

         When we assume that the formation rate can be expressed by ν = ν0 exp[-Heff/kT], we 

can determine the effective activation enthalpy Heff by the shift in peak temperature T with 

change in  frequency ν from 

                                                   
)kT/1(d

)ln(d
Heff

ν
−=                                                (13). 

     In our treatment we have assumed H = 2HK = 0.15 eV. From the  shift of the peak 

temperature Tp determined numerically we ‘observed’ in the frequency range  1 ≤ ν ≤ 10
6 

 

[sec
-1

] peak temperatures in the range 62 K ≤ Tp ≤ 125 K and values for the effective 

activation energy in the range 0.141eV ≤ Heff ≤ 0.135 eV. The resulting ‘experimental’ 

effective activation enthalpy can,  within an error limit of  ± 1⋅ 10
-3

 eV, be represented by 

                                                       Heff = 2HK − 1.5 kT  .                                          (14) 

In the range of values of Z given by eq. 5d, we have F(z) ≈ z/2.  We therefore find that the 

dislocation velocity  given by eq. 8 is v ∼ (kT)
-3/2

 exp[-2HK/kT], which, when differentiated, 

would lead to the result of eq. 14. We see that the agreement with theory and ‘numerical 

experiment’ is excellent.  

 

§11.The Paré condition 

     Considering a straight dislocation segment of length L in a two well potential, Paré [22] 

pointed out, that when a kink-pair is formed the elastic energy increases by 2HK
 
and that an 

appreciable interchange of the population between the two configurations can only occur 

when they have about the same energy. This can be established when the energy difference is 

compensated by an internal bias stress σi  satisfying the condition      
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                                                            σibaL = 2 HK                                                   (15) 

       In continuum theory (using isothermal elastic constants) the elastic energy is a free 

energy, where the entropy, resulting from the vibrational lattice modes, is formally 

represented by the temperature derivative of the shear modulus. But by introducing a kink-

pair, the vibrational  spectrum of the system is changed and two vibrational modes of the 

dislocation are replaced by a vibrational and translational mode of the kink-pair. This gives an 

additional contribution ∆S to the entropy, which in the continuum treatment in eq.15 has not 

been accounted for. Therefore the right side of eq. 15 should be replaced by 2HK −T∆S. An 

estimate of ∆S by Alefeld  [23] showed, that the a critical stress σi can be reduced 

considerably. 

     The situation is however different, when the original configuration is in a bowed out state 

under the action of an internal stress σi. Arsenault [24] and Esnouf and Fatozzi [10] for 

instance have shown, that there exist, on account of the line tension (or kink-kink interaction), 

wide shallow potential valleys of the elastic energy, which have an absolute minimum around 

an equilibrium bow-out height h0(σ) with a number of kink-pairs n0(σ) = h0/a. Bow-outs 

which differ in height by a single kink-pair have then (due to the mutual elastic interaction) an 

energy difference much less than 2HK. During the forward cycle the number of kink-pairs 

always is n(t) < n0(σ) and hence the formation of additional kink-pairs is energetically 

favourable. When in the reverse cycle n(t) catches up with n0(σ), the backward movement 

will occur by kink-pair collapse in phase with the effective stress, without the need of thermal 

activation. 

    The fact, that the height of the Bordoni maximum increases reversibly, when a static 

external stress is superimposed, has been considered as proof of the Paré concept. As shown 

above, there is, however, also a different explanation for this stress dependence. Most of the 

segments in an unstressed sample will be somewhat inclined to the direction of the Peierls 

valley. They can only participate in the internal friction mechanism, when by an internal (or 

superimposed external) bias stress they are bowed out to an amplitude, where they start to be 

lined up with the direction of the Peierls valley.  

 

§12. Discussion 

       The present approach differs in essential aspects from previous treatments. Paré [22] and 

Stadelmann and Benoit[12] considered the simple case of a two well potential. Esnouf and 

Fantozzi [10] (hence EF) and Schlipf and Schindlmayr [11] (hence SS) considered an 
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ensemble of  segments with different number ni of kink-pairs, where under the action of a 

varying stress  the variation dni/dt is established by the formation of kink-pairs in the forward 

and backward direction from and into the set ni-1 and ni+1. This kinetic equation overlooks the 

fact, that a stable kink-pair cannot be formed in the directions opposite to an acting stress, 

since no saddle point exists. The treatments further neglect the fact, that the probability of 

kink-pair formation is proportional to the (variable) chord length l(t). In the treatment of SS it 

is assumed, that each segment produces a Debye peak, for which the relaxation time depends 

on the length and the internal stress. Both treatments, as well as an earlier one of Arsenault 

[24], derived the activation energy for kink-pair formation from the line tension model. Since 

this is a local approach, it cannot correctly obtain the saddle point energy of kink-pair 

formation at low stresses, which is not controlled by the crossing of the of the Peierls ridge, 

but by the long-range interaction to of the two kinks of opposite sign [4, 7]. As result there is 

in their treatments no direct correlation between the measured effective activation energy 

(derived from the peak shift) and the energy 2HK of the kink-pair and since the distribution of 

lengths and σi values enters in the exponent, the total internal friction peak obtained by 

superposition is very wide. In the treatment of Ulfert and Seeger [14] and Seeger [6] the kink-

kink interaction is implicitly accounted for. Though postulating a high kink mobility, it is 

assumed that the velocity of the chord is controlled by the drift velocity of the kinks and the 

kink concentration ρK in thermal equilibrium. Under these conditions the relaxation time for 

the relaxation function, which is the unidirectional response after a step-wise increase in 

internal stress, was determined.  

     A main difference to the previous models results also from the different treatment of the 

kinetic behavior. In contrast to the assumptions of SS and EF, the kinetics is not described by 

a periodic disturbance of an equilibrium distribution of  kinks, which produce variations in the 

bow-out heights of the different segments. The energy dissipation rather results from the fact, 

that in the forward movement each segment lags behind the corresponding equilibrium bow-

out. The backward movement, however, occurs by kink-pair collapse in phase with the 

applied stress. 

      We have studied here the dynamic behaviour of an individual dislocation segment, by 

solving numerically the differential equation for its velocity and obtained hereby the correct 

solution for a system, which satisfies the basic assumption of  §2. When we assume that these 

assumptions apply for the Bordoni relaxation, we can perform ‘numerical experiments’, by 

studying the influence of the variations in the external parameters. We can also analyse the 

situation, where the forward and backward movement is asymmetric, a situation which hardly 
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could be handled by analytical methods. The solution was obtained under the assumption, that 

the kink mobility is high and the kinks reach the end of the segment of length L, under the 

action of an effective stress σ, in a time small compared to the inverse frequency 1/ν. In order 

that this condition applies, the velocity vK  of the kink must satisfy the condition 

                                            
µ

σµ
ν≈σ=

kT

b
bba

kT

D
v

3

D
K

K ν≥ L                                     (16) 

For this estimate we have assumed a temperature-independent diffusion coefficient DK =νDb
2
 

with Debye frequency νD . This seems to be justified for fcc metals, where the kinks are very 

wide, typically between 15b and 50b [15, 16], and hence can move sideways without the need 

of thermal activation. With reasonable values for the parameters, the condition of eq. 16 

should be generally satisfied, except maybe at extremely low stresses σ/µ ≤10
-8

 and/or at 

frequencies in the MHz range. 

      It is fortunate that for the general features of the internal friction maximum, the details of 

thermally activated rate process - whether transition state or diffusion theory- is not of major 

importance. All treatments of the formation of kink-pairs by thermal activation at low stresses 

contain the exponential term exp[−2HK/kT] and the various thermodynamic treatments differ 

then only in the temperature dependence of the pre-exponential frequency factor. The 

dynamics of the individual segments is mainly controlled by the instantaneous segment length 

l(y,Y0) and the effective stress σeff(y,Y0), where the ideal apex height Y0 changes proportional 

to the applied stress σ. In the Peierls potential the instantaneous chord height y would show a 

stepwise increase with step height a. We used here a continuous function y(t) which somehow 

averages over segments, and no systematic error is expected from this simplification.  

       Rather critical for the dynamics is the assumption, that the overall shape of the bow-out   

(and hence the equilibrium positions of the kinks once formed), is determined by the line 

tension approach. This would not be expected, when the interaction energy between two kinks 

of the same sign, separated by a distance r, is given by the asymptotic potential U = γa
2
/2r, as 

used in the existing models for kink-chains [13, 23]. This potential is only valid for abrupt 

kinks and the energy would diverge, when  two kinks of opposite sign approach each other. 

For kinks with finite width the interaction potential between the kinks at close distance is 

however weaker [25, 26] and when two kinks of opposite sign meet, the energy approaches 

the one of a kink of twice the height. Since, as discussed above, the kinks in fcc metals are 

rather wide [15, 16], already for moderate bow-out heights the kinks in the side arms begin to 

overlap and hence a treatment within the framework of the line tension approach seems to be 
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appropriate and should describe the typical features. A more detailed realistic treatment of a 

kink-chain could however, when available, modify the results somewhat. 

     The internal friction peaks with peak height 1

mQ−  observed experimentally result of course 

from a superposition of a large number of individual peaks. With increasing superimposed 

static stress σi the total value of 1

mQ−  first increases, because more segments a brought in a 

position to contribute to the internal friction. When however the external stress becomes too 

large, the internal friction will decrease again, since in highly curved segments the chord 

length  along the Peierls valleys will become smaller. The individual internal friction peaks 

have a width of about the 1.4 times the width of the Debye peak. When the segment length L 

increases, the peak temperature TP increases slightly and the individual peak height 1

mq−  

increases proportional to L
3
. When σi increases, TP also increases slightly and 1

mq−  decreases. 

A reasonable distribution of each of the parameters L and σi would only lead to a moderate 

widening of about 1.6 times of the Debye peak. Since the width,  observed experimentally for 

the internal friction peaks, is three to four times the Debye width, it is unlikely that it results 

from a distribution in σi and L. It rather will result from a distribution of activation energies. 

An analysis of the experimental observations, assuming a superposition of Debye peaks to test 

this assumption, remained inconclusive [27]. A distribution of the formation energy of kink-

pairs is, however, to be expected in dissociated dislocations as present in fcc metals. Here the 

height and profile of the Peierls potential is not unique, but also depends on the (variable) 

separation of the partial dislocations [15, 16] and a number of metastable equilibrium 

configurations and fractional kink-pairs can exist.  
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                                                       Figure captions. 

 

Fig. 1.  Ideal bow-out Y(x) with apex height Y0(t) and actual bow-out y(t) in the Peierls 

potential. 

 

Fig. 2.  Time dependence of stress σ in units of 10
-6µ. Curve marked Y0 is applied stress, 

which is equal to the back stress of the ideal bow-out Y0 . Curve marked y is the  back stress 

of the instantaneous bow-out y(t) at a temperature T, where about the maximum energy 

dissipation occurs. The value of the bow-out for a segment of length L can be obtained by the 

scaling factor  L
2
b/8γ. The acting stress on the moving segment is the difference Y0−y. Lower 

curve for σi = 0.  Upper curve for σi = 3 10
-6µ.  

 

Fig. 3. Dynamic hysteresis for a segment originally along the Peierls valley for various 

temperatures T: 

(1) below the peak temperature Tp ,  (2)   near the peak temperature Tp ,  

      (3) above the temperature Tp . 

 

Fig. 4.   Internal friction peaks Q
-1

 (arbitrary units) normalized by L
3
 as function of reciprocal 

temperature for  (1) L= 3 10
3
b,  (2) L= 10

4
b,  (3) L= 3 10

4
b , with Debye peak D. 

 

Fig. 5.    Dynamic hysteresis for a segment with original bow-out  due to an internal stress σi  

for various temperatures T: 

    (1) below the peak temperature Tp ,  (2) near the peak temperature Tp , 

    (3) above the temperature Tp . 

 

Fig. 6.   Internal friction peaks Q
-1

 (arbitrary units) for a segment of length L = 10
4
b as 

function of reciprocal temperature, for σ0= 10
-6µ and various values of the internal stress σi  : 

(1) σi = 1.1 10
-6µ ,  (2) σi = 2.5 10

-6µ ,  (3) σi = 6 10
-6µ ,  (4) σi = 10

-5µ , 

 D are Debye peaks, S is superposition of peaks (1) to (4). 

 

Fig. 7.    Maximum height of Internal friction peaks Q
-1

 (arbitrary units) for a segment of 

length L=10
4
b inclined to the Peierls valley (ng = 50) as function of ratio σi/σcr . The straight 

lines connecting  the ‘measured’ points serve only for visualization. 
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