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Deformation-induced long-range internal stresses and lattice plane 

misorientations and the role of geometrically necessary dislocations 

 

HAEL MUGHRABI 

Institut für Werkstoffwissenschaften, Allgemeine Werkstoffeigenschaften, 

Universität Erlangen-Nürnberg, Martensstr. 5, D-91058 Erlangen, Germany 

 

 

Abstract 

The goal of this study is to develop a unified picture of the role of geometrically necessary 

dislocations (GNDs) in the evolution of long-range internal stresses and lattice plane 

misorientations in the heterogeneous dislocation pattern of deformed crystals. For this 

purpose, X-ray diffraction techniques are considered as the pertinent experimental tools. On 

the modelling side, the composite models of single/multiple slip serve to interpret the 

experimentally measured long-range internal stresses quantitatively in terms of densities of 

GNDs. However, in order to be able to deduce from experiment the evolution of those GNDs 

that are responsible for the observed lattice plane misorientations, the composite model must 

be refined. Quite generally, one and the same GND array can give rise to both long-range 

internal stresses and lattice plane misorientations. 

 

On this basis, available experimental data obtained on cyclically and tensile-deformed copper 

(and copper-manganese) single crystals were analyzed quantitatively. The stresses acting 

locally in the “hard” dislocation cell walls and in the “soft” cell interiors and the magnitude of 

the internal stresses are found to increase approximately linearly with the applied stress. In 

spite of the fact that the density of the GNDs always amounts to only a few per cent of the 

total dislocation density, they are responsible for the long-range internal stresses and/or for the 

misorientations. An analysis of the evolution of the lattice plane misorientations shows that 

the kink walls and the dislocation sheets/grids in stage II are geometrically necessary 

boundaries (GNBs), whereas the dislocation cell walls formed by multiple slip are incidental 

dislocation boundaries (IDBs). 

 

Keywords: deformation mechanisms, geometrically necessary dislocations, internal stresses, 

misorientations, X-ray topography, transmission electron microscopy 
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1. Introduction 

During plastic deformation of crystalline materials, dislocations multiply and assemble in 

heterogeneous dislocation distributions such as dislocation tangles, bundles, wall and cell 

structures, compare the reviews by Frank Nabarro (to whom this article is dedicated), Holt 

and Basinski [1] and by others [2,3,4,5]. In addition to the increasing dislocation density, the 

evolution of deformation-induced long-range internal stresses [5,6,7] and increasing lattice 

plane misorientations [8,9,10] are important features of the evolving dislocation pattern. 

These features are manifestations of the evolution of a non-homogeneous deformation on a 

microscale, in spite of the fact that, on a macroscopic scale, deformation is homogeneous. A 

characteristic of this non-homogeneous deformation is the accumulation of local “excess 

dislocations” of one sign.  

 

Today, it has become common practice to refer to these excess dislocations as “geometrically 

necessary” dislocations (GNDs), almost irrespective of whether they are necessary or not. In 

the original introduction of GNDs by Cottrell [11] and later by Ashby [12], the definitions 

differed somewhat. In the present paper, we shall retain the term GNDs, but only after making 

some hopefully clarifying remarks. Cottrell, referring to “more macroscopic aspects of 

dislocation geometry”, clearly had macroscopic non-homogeneous deformation modes such 

as bending or twisting in mind when stating that “dislocations (i.e. GNDs) are necessary to 

accommodate the non-uniform strains”. Ashby related the GND density to gradients of 

deformation occurring in “plastically non-homogeneous” materials and considered in 

particular particle-hardened materials. Thus, he referred to GNDs on a microstructural scale. 

Frank Nabarro questions the justification of the term “geometrically necessary” and sees it as 

a chicken and egg problem [13]. He asks: “Does the geometry (sharp interfaces or lattice 

curvatures) make the dislocations necessary or do “excess dislocations” cause the geometry?” 

The difficulty to define precisely what is meant is reflected in the diversity of the different 

contributions to the Scripta Materialia Viewpoint Set on “Geometrically Necessary 

Dislocations and Size-Dependent Plasticity” [14]. A number of the contributors emphasized 

the importance of the scale in considerations of GNDs.  

 

In the following, we find the formulation in the Introduction to this Viewpoint Set by 

Needleman and Gil Sevillano [15] helpful: “…..For the bent beam, the gradient of 

deformation is associated with the macroscopically imposed strain field. But even if the 

imposed field is macroscopically uniform, as in simple tension, dislocation structures develop 
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that lead to locally non-uniform deformation fields. These dislocation structures, which are 

also referred to as GNDs although the geometric necessity is lacking , can give rise to….” . 

This latter formulation corresponds to the author’s views, as expressed above and repeatedly 

before. The present work is dealing with macroscopically homogeneous and microscopically 

nonhomogeneous uniaxial tensile and cyclic deformations, in which GNDs are induced by 

and stored in the heterogeneous dislocation pattern.  

 

In the present context, it is stressed that these GNDs can give rise to both deformation-

induced long-range internal stresses and/or lattice plane misorientations. The limited available 

experimental data which allow to substantiate this statement have been obtained mainly in 

classical standard X-ray diffraction experiments. The advantage of X-ray diffraction lies in the 

fact that, with this one technique, quantitative information on the dislocation density and the 

lattice plane misorientations and a measure for the arrangement of dislocations can be 

obtained on a larger scale of some 100 µm [9]. A prime goal of this study will be to reassess 

existing data in an attempt to develop a unified picture. The available data will be evaluated 

with the aim to derive semi-empirical laws of evolution of both long-range internal stresses 

and lattice plane misorientations as a function of deformation. The long-range internal stresses 

will be discussed in the framework of the author’s composite model for single and multiple 

slip [16,6,7]. The lattice plane misorientations observed after tensile deformation in single slip 

will be assessed in terms of a recently developed microstructure-based model of the 

broadening of X-ray rocking curves [10], and a new evaluation of deformation-induced 

misorientations and long-range internal stresses evolving in multiple slip will be presented. 

  

2. Long-range internal stresses, the density of GNDs and the flow stress 

2.1 Single slip 

The formulation of the composite model for single slip was first developed in order to deal 

with the (localized) cyclic shear plasticity in the wall structure of persistent slip bands (PSBs) 

in fatigued metals [16,6,7]. The existence of deformation-induced long-range internal stresses 

(forward stresses in the “hard” walls and back stresses in the “soft” channels between the 

walls) was evidenced by transmission electron microscopy (TEM) [6] and by X-ray 

diffraction [7] and has been discussed in detail earlier. Here, we are mainly interested in the 

GNDs which build up at the interfaces between the walls and the channels, as illustrated in 

figure 1, and act as sources of internal stresses, leading to a redistribution of the local stresses 

and thereby ensuring compatible plastic deformation. Before proceeding to a more 
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quantitative treatment, it is noted in passing that, in figure 1, it is assumed that the PSB 

lamella is embedded in the surrounding matrix structure in such a fully constrained manner 

that any lattice plane bending accompanied by tilt misorientation due to the GNDs is 

suppressed.  

 

Now, if the local shear flow stresses of PSB channels and walls are τc and τw, respectively, 

then these local flow stresses are identical to the sums of the macroscopic shear flow stress τ 

and the corresponding deformation-induced long-range internal stresses, the back stress ∆τc in 

the channels and the forward stress ∆τw in the walls, respectively: 

                                                          τc = τ + ∆τc                                                                     (1) 

and                                                    τw = τ + ∆τw .                                                                  (2) 

The deformation-induced long-range internal stresses can be expressed in terms of the 

corresponding plastic and elastic shear strains γpl,c,γpl,w and γel,c,γel,w, respectively, as: 

                                 ∆τc =  -GΓfw(γpl,c - γpl,w) = +GΓfw(γel,c - γel,w)                                           (3) 

and                           ∆τw = +GΓfc (γpl,c - γpl,w) = -GΓfc (γel,c - γel,w),                                          (4) 

where fc and fw are the volume fractions of channels and walls, respectively, G is the shear 

modulus and Γ is Eshelby’s elastic accommodation factor (Γ≤1) which has been introduced in 

a rather formal sense and which will be commented upon later in more realistic terms, 

compare Section 4. It should be noted that the internal stresses can be written alternatively in 

terms of the plastic strain mismatch (γpl,c - γpl,w) or the equivalent negative elastic strain 

mismatch, i.e. -(γel,c - γel,w). The latter can then be converted easily into corresponding shear 

flow stresses via Hooke’s law.  

 

We turn now to the GND density in more detail than in earlier work [6,7], There, it was 

shown that the line density of the GNDs, n, measured along the normal to the glide plane, is:  

                                                  
G

)(nb cw

cel,wel,

ττ
γγ

−
=−= ,                                             (5) 

where b is the modulus of the Burgers vector. By averaging the local density of the GNDs 

over the wall spacing d, the mean GND density is obtained as 

                                                            
bGd

τ

d

n
ρ c )(22 w

GND

τ−
== .                                             (6) 

Thus, the spatially averaged GND density is directly proportional to the difference between 

the local flow stresses in the hard and soft regions and inversely proportional to the wall 
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spacing. Via equations 3 and 4 and making use of equation 5, ρGND can also be formulated in 

terms of the internal stresses as 

                                                 
w

c

c

w

GND

22

fbdGfbdG Γ

τ∆

Γ

τ∆
ρ

−
== ,                                               (7) 

or, inserting equations 1 and 2 in equation 6, in terms of the difference ∆τw - ∆τc as  

                                                        
Γ

τ∆τ∆
ρ

bdG

)(2 cw
GND

−
=  .                                                       (8) 

Finally, it is recalled that, in the composite model, the macroscopic flow stress τ is expressed 

in terms of the rule of mixtures as  

                                                          τ = fcτc + fw τw .                                                                (9) 

This set of relations provides a complete basis for a thorough analysis., as will be shown 

below for the PSB wall structure.  

 

2.1.1 Example of persistent slip bands (PSBs) in fatigued fcc metals 

All quantities introduced above can be obtained from experiment, as was shown first in the 

analysis of the PSB wall structure in fatigued copper single crystals [6,7]. In this case, the 

cyclic flow stress of PSBs at room temperature is τPSB ≈ 28 MPa. According to the most recent 

estimate [17], τc results from the partial superposition of a dipolar passing stress and an 

Orowan bowing stress of the bowed-out screw dislocations in the channels and is found to be 

τc  ≈ 17.7 MPa. Taking the mean values of the local stresses τw that were determined by 

measurement of the radii of curvature of bowed-out edge dislocations at the periphery of the 

dislocation walls, one obtains τw ≈ 65 MPa [6]. Thus, the approximate relationships  

                                                τc  ≈ 0.63 τPSB,  ∆τc ≈ -0.37 τPSB                                      (10) 

                                          and τw ≈ 2.3 τPSB , ∆τw ≈ +1.3 τPSB                                       (11) 

 follow. In the case of copper, the only data available are those discussed here which refer to 

cyclic deformation at room temperature. Hence, the evolution of the GND density ρGND and 

the internal stresses ∆τc in the channels and ∆τw in the walls as a function of different 

macroscopic shear flow stresses τPSB cannot be determined. However, in the case of nickel 

single crystals, deformed cyclically at four different temperatures between 77 and 750 K, 

Hieckmann [18] has produced complete sets of data of internal stresses by analysis of 

asymmetrically broadened X-ray diffraction profiles, compare [19]. From Hieckmann’s data, 

the following approximate relationships follow: τc ≈ 0.77 τPSB and and τw≈ 2.0 τPSB. These 

relationships, referring to four different temperatures and PSB stresses in the range from ca. 
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10 to ca. 100 MPa, compare favourably with the above results (relations 10 and 11) obtained 

on copper single crystals deformed cyclically at room temperature. 

 

Next, the GND density ρGND of the GNDs in PSBs in copper can be estimated according to 

equation 6 (or, alternatively, equations 7 or 8). Using the values τc  ≈ 17.7 MPa, τw ≈ 65 MPa, 

G = 42000 MPa, d = 1.4 µm [6,7], we obtain ρGND ≈ 6.7×10
12

 m
-2

. Since the mean dislocation 

density in the PSB wall structure is ca. 5×10
14

 m
-2

, this implies that the GND density is quite 

low and represents only little more than 1% of the total dislocation density, as concluded 

earlier [6]. 

 

2.2 Multiple slip 

Assuming an idealized dislocation cell structure, as indicated schematically in figure 2, the 

composite model has also been developed for symmetrical multiple slip. Essentially, a similar 

set of equations as before (equations 1 to 9) can be written down, as reported elsewhere 

[6,7,19]. Here, we shall confine ourselves to those features of the model that differ from the 

case of single slip and that are relevant to the role of GNDs as sources of internal stresses. 

Referring to figure 2, it is clear that, for ideally symmetric multiple slip, no lattice plane 

misorientations will be expected to develop. On the other hand, in the model shown in the 

figure, long-range internal stresses will arise as follows. Axial internal stresses are induced by 

pairs of dislocations of Burgers vectors b1 and b2 on two symmetric slip systems. These 

dislocation pairs can be considered as resultant dislocations with the Burgers vector bres lying 

parallel to the stress axis. It is expedient to formulate all stresses alternatively as axial stresses 

σ or resolved shear stresses τ, depending on which is more appropriate, keeping in mind that τ 

= φσ, where φ is the corresponding Schmid factor. Similarly, axial strains ε ≈ φγ (for small 

strains) can be formulated in terms of the resolved shear strains γ. In the case of [001]-

orientated fcc crystals, φ = 0.408. 

Proceeding as before, the density (in terms of “resultant” dislocations of Burgers vector bres) 

of those GNDs which are responsible for the internal stresses follows as: 

                                                     
Edbd

n
ρ

cw

res

GND

)(22 σσ −
==  .                                                    (12) 

Here, E is Young’s modulus and d is the transverse cell wall spacing. This approach is only 

approximately correct, since  it does not take into account Poisson contraction. Alternatively, 

in analogy to equation 7, ρGND can also be expressed in terms of the axial internal stresses 

∆σw and ∆σc  in the dislocation cell walls and cell interiors, respectively: 
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wc

c

cc

w

EfdbEfdb resres

GND

22 σ∆σ∆
ρ

−
== .                                                (13) 

In relation (13), the Eshelby factor Γ does not appear, because it has been argued that, in this 

case, Γ ≈ 1 [19]. Finally, in analogy to equation 8, ρGND can also be written as: 

                                                    
dEbres

cw

GND

)(2 σ∆σ∆
ρ

−
=  .                                                        (14) 

It is interesting to compare some numerical data for different deformations of tensile-

deformed [001]-orientated copper single crystals which were studied in detail by X-ray 

diffraction [6,7,19]. Here, the results of the analysis of two states of deformation, i) and ii), 

characterized by the resolved shear stresses τ and shear strains γ., will be reported. In the 

analysis, the following values were used: ∆τc and ∆τw (from [19], corrected according to [20] 

and converted to ∆σc and ∆σw), d obtained by TEM [19] and the total dislocation densities ρ 

from [19,21]. Finally, with the values ρGND , as estimated via equation 14 (with (E = 67000 

MPa), the ratios ρGND/ρ could be determined. The complete sets of data obtained are: 

i) τ = 26.2 MPa, γ = 0.068, τc = 23.3 MPa, ∆τc = -2.9 MPa, τw = 38.4 MPa, ∆τw = +12.2 

MPa, d = 2.3 µm, ρGND = 1.36×10
12

 m
-2

, ρ = 6.8×10
13

 m
-2

, ρGND/ρ ≈ 0.020. 

ii)  τ = 75.6 MPa, γ = 0.52, τc = 67.0 MPa, ∆τc = -8.6 MPa, τw = 101.3 MPa, ∆τw = +25.7 

MPa, d = 0.8 µm, ρGND = 8.79×10
12

 m
-2

, ρ = 3.46×10
14

 m
-2

, ρGND/ρ ≈ 0.025. 

Before discussing these exemplary results, it is emphasized that the results for ρGND are only 

quantitatively correct within a numerical factor of ca. 2, because the simple dislocation glide 

geometry assumed in the model (figure 2) does not correspond accurately in detail to the 

crystallography of the slip systems of [001]-orientated single crystals. The following findings 

are considered noteworthy:  

• The deformation-induced internal stresses increase with increasing deformation. A 

more detailed analysis [22] shows that the evolution of the local shear flow stresses 

and of the deformation-induced internal stresses can be represented by the following 

simple approximate relations: 

                                            τc ≈ 0.9 τ, ∆τc ≈ - 0.1 τ,                                                                (15) 

           and                           τw ≈ 1.4 τ, ∆τw ≈ +0.4 τ .                                                              (16) 

• The density ρGND of the GNDs is small and of the same order of magnitude as 

discussed in Section 2.1.1 for the case of PSBs. Also, ρGND increases with increasing 

deformation and total dislocation density ρ. Nonetheless, the ratio ρGND/ρ seems to 

stay approximately constant within the accuracy of the evaluation. This conclusion 
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corresponds to a similar result deduced from a determination of ρGND  by an analysis 

of the X-ray rocking curve broadening observed on copper single crystals that were 

deformed in tension in single slip into stage II of the work-hardening curve [10]. 

 

A more detailed analysis and discussion of these data will be presented elsewhere [22]. Here, 

it is noted that relations (15) and (16) seem to represent a quite general result. Thus, an 

analysis of X-ray data of Hilscher (reported in [20]) on tensile-deformed [001]-orientated 

single crystals of the substitutional alloy Cu-1.4at.%Mn also yields similar relationships. 

Figure 3 shows a plot of the local flow stresses (τw-τo) and (τc-τo) in the cell interiors and in 

the cell walls, respectively, corrected for the solid solution friction stress τo ≈ 10 MPa, against 

the applied flow stress (τ-τo), also corrected for τo. The results, formulated in analogy to 

relations 15 and 16, can be expressed as (τc-τo) ≈ 0.87(τ-τo) and (τw-τo) ≈ 1.43(τw-τo), 

respectively, and are found to be almost identical to the results obtained above for deformed 

[001]-orientated copper crystals. Finally in support of the conclusion that these results are 

quite general, it is noted that Hieckmann [18] has also found similar relationships between the 

local stresses and the applied stress in the case of tensile-deformed nickel single crystals of 

not only multiple slip but also single slip orientations.  

 

2.3 The effect of GNDs on the flow stress 

According to Ashby [12], the simplest possible “dimensionally correct” expression for the 

flow stress of a material containing, in addition to a density ρS of statistically stored 

dislocations , also a density ρGND of GNDs is given by the following Taylor-type flow stress 

law: 

                                             GNDS ρρατ += Gb ,                                                               (17) 

Here, α is a geometrical constant (arrangement factor), and the densities ρS and ρGND are 

spatially averaged values. In the author’s opinion, this expression needs refinement as 

follows. First, as shown in a more detailed consideration of the composite model [7,23,24], it 

can be concluded that only under conditions of multiple slip, when GNDs act as forest 

dislocations to glide dislocations do the GNDs make an appreciable contribution to the flow 

stress. Next, it must be taken into account that the dislocation density varies in space. With 

these arguments, it becomes clear that only a local space-dependent flow stress can be defined 

for a given site. In a simple one-dimensional picture, the variation of the local flow stress 

τloc(x) as a function of the coordinate x would then be given by 
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                                               )x()x(Gb)x( GNDSloc βρρατ += ,                                       (18) 

where the constant β (0 < β <1) takes into account globally that only a fraction of the GNDs 

contributes to a certain extent to the flow stress [7,23]. The macroscopic flow stress τ is then 

given by the spatial average of the local flow stresses, i.e. 

                                                       τ = 〈τloc(x)〉 .                                                                     (19) 

It should be noted that the rule of mixtures (equation 9) is only a special case of equation 19. 

 

3. Lattice plane misorientations and the density of GNDs as a function of deformation 

Lattice plane misorientations manifest themselves in TEM in spatially varying background 

“orientation contrast” that changes in a characteristic manner when the specimen is tilted. In 

principle, the axes of misorientation (twist and/or tilt) can be determined by inspecting 

different crystallographic sections under different angles of tilt. This technique is time- and 

specimen-consuming and can only yield qualitative results on a microstructural scale. On the 

other hand, the analysis of X-ray rocking curve broadening, measured on different 

crystallographic sections, taking into account also the variation for different so-called 

azimuthal angles [9,10], provides a global quantitative measure of the strength of the 

misorientations and allows also the determination of the dominant tilt and twist axes. As a 

complementary technique, X-ray Berg-Barrett topography with its much larger field of view 

than TEM can provide on a more global scale similar but somewhat less quantitative 

information. In addition, the dominant crystallographic directions are easily recognized in the 

topographs [8,10,25]. 

 

In face-centred cubic (fcc) single crystals deformed in single slip, dominant features of the 

dislocation arrangements are primary dipolar edge dislocation clusters in the form of braids 

and bundles, also as kink walls, and planar sheets or grids (which lie roughly parallel to the 

primary glide plane) in tensile deformation [1,2,3,4,5]. In cyclic deformation, the dipolar edge 

dislocations accumulate in so-called veins in the matrix and in dislocation walls in the PSBs, 

compare [26]. In both cases, the deformation-induced misorientations due to these dipolar 

edge patterns are mainly to-and-fro tilts around an axis along the line direction of the edge 

dislocations. Referring to the primary slip system [ 011
_

](111), the axis of tilt would be [ 121
_

].  
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3.1 Lattice plane misorientations after cyclic deformation in single slip 

In the case of cyclically deformed single crystals, only qualitative information is available. It 

has been shown by measurements of X-ray rocking curves that the misorientations observed 

are always much smaller than those found after tensile deformation [27]. This is probably a 

result of the much smaller dislocation glide paths in cyclic, compared to unidirectional 

deformation. TEM and X-ray Berg-Barrett topography reveal only negligible orientation 

contrast across individual dipolar dislocation veins and walls. However, in the case of the PSB 

dislocation walls and the walls found at higher amplitudes, both techniques show that there 

are also more appreciable misorientations with a much larger wavelength extending over 

some ten dislocation walls [28], compare the low-magnification TEM micrograph and the 

Berg-Barrett topograph of the primary glide plane shown in figure 4. These observations 

document that kink-wall-like dislocation structures exist which are separated by some ten 

walls. These kink walls are probably related to the surface patterns observed in cyclically 

deformed copper single crystals long ago [29]. As a complementary information, figure 5 

shows a low-magnification TEM micrograph of the ( 121
_

)-section of a copper single crystal 

that had been cyclically deformed at a higher plastic strain amplitude. Again, misorientations 

are recognized between regions separated by a larger number of dislocation walls. The details 

of the misorientations revealed depend on the diffraction conditions [28]. Crudely speaking, it 

is found that, in addition to the [ 121
_

]-axis of tilt, also a [111]-axis of twist is responsible for 

the misorientations observed. Similar more large-scale features of the dislocation patterns are 

also apparent in more recent ECC/SEM studies (ECC: electron channelling contrast, SEM: 

scanning electron microscopy) on individual grains of cyclically deformed nickel polycrystals 

[30] and on cyclically deformed copper single crystals [31].  

 

In view of the rather short dislocation glide paths in cyclic deformation, it is at present unclear 

how such subtle details with rather long-range periodicities develop in the dislocation 

patterns. It appears likely that the rather small broadening of the rocking curves of cyclically 

deformed copper single crystals [27] is caused mainly by these kink-wall-like structures and 

that most of the GNDs responsible for the misorientations are located in them, i.e. in only a 

fraction of the walls which are separated by larger distances. At the same time, however, there 

must be additional GNDs located on either side of each wall (with densities ρGND as given by 
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equations 5 to 8) so as to provide the internal stresses that are required to allow simultaneous 

deformation of the channels and walls.  

 

3.2 Lattice plane misorientations after tensile deformation in single slip 

The information on deformation-induced lattice plane misorientations found after tensile 

deformation of fcc crystals is much more detailed than that discussed above for cyclic 

deformation, compare some of the early work [32,33] and the more detailed later studies 

[8,9,10,25,28]. As discussed in some detail in [10], a difficulty existed in the unambiguous 

evaluation of the broadened X-ray rocking-curve half-width ∆β1/2 (which is proportional to 

the mean angle of misorientation β) in terms of microstructural parameters. Recently, the 

author introduced microstructural models for the dominant dislocation patterns introduced 

during stage II work hardening, namely for the kink walls which lie perpendicular to the 

primary Burgers vector 01]/21[
_

and the so-called sheets/grids which are layer-like dislocation 

networks consisting of primary and secondary dislocations and their reaction products and 

which lie roughly parallel to the primary glide plane (111), compare [1,2,3,4,5]. In these 

models, the rocking-curve half-width ∆β1/2 is related to the density ρGND of GNDs and the 

flow stress (or strain) in terms of known parameters of deformation. The arrangement of the 

GNDs in the dislocation kink walls observed in stage II of deformed fcc single crystals, as 

shown in figure 6, was represented in an idealized model (figure 7) which resembles the 

earlier model by Mader and Seeger [34], and the following relationship [10] was derived: 

                                   τ
ρ

ρ

α

Λθ
β∆ ⋅⋅≈ GND

22

II
21

2

3

bG
/  ≈ τ

ρ

ρ
⋅GND01690.  .                                 (20) 

Here, θII is the stage II work hardening coefficient, and Λ is the proportionality constant in the 

relationship between the dislocation glide path and the shear strain in stage II. In figure 8, the 

rocking-curve halfwidths ∆β1/2 (maximum values for the appropriate azimuthal orientations), 

taken from a fair number of partly unpublished rocking-curves which had been measured on 

copper single crystals deformed into stage II at room temperature and at 77 K, see [10] for 

details, are shown in a plot of ∆β1/2 versus τ. Within the scatter of the data, ∆β1/2 increases 

linearly with the flow stress τ. This finding has the following implications: 

• Since the flow stress τ and the shear strain γ are linearly related in stage II, the rocking 

curve half-width is also directly proportional to the shear strain γ, i. e. ∆β1/2 ∝ γ. In 

terms of Pantleon’s model of lattice plane misorientations [35,36], this means that, in 

the terminology of Kuhlmann-Wilsdorf and Hansen [37], dislocation kink walls are 
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so-called geometrically necessary boundaries, GNBs, in contrast to incidental 

dislocation boundaries, IDBs.  

• The ratio ρGND/ρ seems to be fairly constant in stage II. Of course, this statement 

applies strictly only to those GNDs that are responsible for the tilt misorientations and 

not necessarily to all GNDs, compare Section 4. From the slope of the straight line 

drawn through the data points in figure 8, the ratio ρGND/ρ is found to be about 0.047 

via equation (20). This implies that the GNDs responsible for the tilt misorientations 

comprise only less than 5% of the total dislocation density. This result is considered to 

be entirely reasonable.  

 

Based on less detailed available X-ray rocking curve data than in the preceding case, the twist 

misorientations of the sheets/grids around the normal to the glide plane were also evaluated in 

terms of a simple microstructural model [10] which is discussed in greater detail in ref. [22]. 

Again, a linear relationship was found between ∆β1/2 and τ, allowing the conclusion that the 

sheets/grids must also be considered as GNBs. 

 

3.3 Lattice plane misorientations after tensile deformation in multiple slip 

In the case of tensile-deformed [001]-orientated copper single crystals, there exist fortunately 

both detailed X-ray diffraction measurements of long-range internal stresses, as discussed in 

Section 2.2, and also X-ray rocking-curve data [38]. This latter work concentrated on the quite 

intricate interpretation of the experimental observations which revealed an astonishing 

dependence of the rocking-curve half-width on the so-called azimuthal angle which refers to 

the angle through which the specimen is rotated for a particular reflection around the normal 

to the reflecting glide planes. As said before in Section 2.2, it is emphasized that, in the case 

of ideally [001]-orientated crystals, any lattice plane misorientations can arise only, if 

deviations from ideally symmetric multiple slip occur. Here, we wish to discuss mainly the 

dependence of the rocking-curve half-width on the deformation. In reference [38], rocking-

curve half-widths, obtained from {002} X-ray reflections, are reported for three states of 

deformation between resolved shear strains of 0.068 and 0.52 and between shear flow stresses 

of 26.2 and 75.6 MPa. These data were analyzed with the following results [22]: 

• The maximal rocking-curve half-widths increase more weakly than linearly with the flow 

stress and can be represented quite well by a proportionality to the square root of the 

resolved shear strains, i.e. 

                                      ( )
o/ γγβ∆ −∝21 , with γo ≈ 0.014.                                         (21) 
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• According to Pantleon and Hansen [35] and Pantleon [36], the proportionality 

γβ∆ ∝21/  implies that the dislocation cell walls of the deformed [001]-orientated 

copper single crystals must be considered as incidental dislocation boundaries (IDBs) in 

the terminology of reference [37]. On the other hand, it is interesting to note that 

misorientations develop only after the resolved shear strain has exceeded a value of about 

0.014. This implies that, up to that shear strain, multiple slip is ideally symmetric and that 

misorientations occur only later, probably as a result of statistical deviations leading to an 

instability of ideally symmetric multiple slip.  

 

The above dependence of the misoríentations on the shear strains was first advocated by 

Argon and Haasen [39] as a consequence of an accumulation of random fluctuations in the 

fluxes of dislocations coming from either side of the cell wall. Frank Nabarro made a more 

specific calculation and derived, with some assumptions, the proportionality constant [40]. 

The more rigorous statistical derivation with an accurate determination of the proportionality 

constant was then performed by Pantleon [36].  

 

4. The simultaneous contribution of GNDs to internal stresses and lattice plane 

misorientations – effects of relaxation of internal stresses 

In the idealized cases considered so far, the GNDs either gave rise to deformation-induced 

long-range internal stresses (Section 2) or to deformation-induced lattice-plane misorienta-

tions (Section 3). However, in realistic dislocation distributions one and the same GND 

pattern can in general contribute simultaneously to both effects. If we consider as a ftrst 

example single slip in PSBs (figure 1), then it is clear that in this case no misorientations 

occur, because it is assumed implicitly that the PSB slab which is embedded in the 

surrounding matrix is so heavily constrained that to-and-fro bending due to the GND arrays is 

suppressed, as will be discussed in more detail elsewhere [22]. Once bending is allowed to 

occur to a certain extent, some misorientations will develop and, at the same time, the long-

range internal stresses will relax partially. Thus, the GNDs will be the source of both the 

somewhat relaxed internal stresses and the misorientations that can develop as a consequence 

of relaxation. Since relaxations of this type must be considered as very likely, it appears 

realistic to conclude that, in general, one and the same GNDs contribute partially to giving 

rise to long-range internal stresses and partially to inducing lattice plane misorientations. 

However, without a more detailed model, there is no one-to-one relationship between these 

two contributions of GNDs. It follows from these dislocation-specific features that the “elastic 
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accommodation factor” Γ (that was introduced in a formal sense in Section 2.1), when applied 

to dislocation problems, loses some of the meaning that it had in Eshelby’s original continuum 

mechanics treatment of the “inclusion problem” [41]. It is emphasized that, in the original 

composite model which was formulated as a Masing model [6,16], elastic accommodation 

was not taken into account. In later work, the Eshelby accommodation factor was introduced 

in a rather formal sense, like here, and it was emphasized that the experimental data suggest 

strongly that elastic accommodation is negligible (Γ ≈ 1) in contrast to the result that one 

would obtain, if one modelled the dislocation walls as an Eshelby ellipsoid [7]. 

 

Considering multiple slip as another example and referring to figure 2, it is clear that any 

deviation from symmetric multiple slip will lead to misorientations in addition to the long-

range internal stresses discussed previously. Finally, considering the very schematic 

illustration of the dislocation kink walls in figure 7, it would be unrealistic to assume that 

deformation (in particular at low temperatures) produces such idealized low-energy low-angle 

boundary patterns. Rather, in a more realistic picture, deviations must be expected which will 

then give rise to some long-range internal stresses in addition to the misorientations. Similar 

reasoning applies to the sheets/grids in work hardening stage II that were discussed briefly in 

Section 3.2. In all cases, the consequences with respect to the role of the GNDs acting 

simultaneously as sources of both internal stresses and of lattice plane misorientations will be 

similar as discussed above. Hence, an unequivocal identification and separation of the roles of 

the GNDs acting as either sources of long-range internal stresses and/or sources of lattice 

plane misorientations will not be straightforward without additional information in the form 

of more specific models or will have to be based on assumptions. 

 

Nonetheless, the data on GND densities available so far (Sections 2.1.1, 2.2, 3.2, 3.4) indicate 

consistently that both the GND density responsible for the internal stresses and the density of 

those GNDs that give rise to misorientations increase with increasing deformation in a similar 

fashion and in such a manner that the ratio ρGND/ρ , referring to all GNDs, remains almost 

constant.  

 

5. Concluding remarks 

The preceding discussion which was based largely on an assessment of experimental X-ray 

diffraction data obtained on cyclically and unidirectionally deformed crystals, is regarded as a 

first step towards achieving a unified picture of the role of GNDs in the development of the 
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dislocation pattern during plastic deformation. In this picture, the GNDs are inseparably 

related to the evolution of both long-range internal stresses and/or lattice plane 

misorientations during plastic deformation. Both features are typical of macroscopically 

homogeneous but microscopically nonhomogeneous deformation. The following results of the 

(semi-)quantitativeanalysis of the deformation-induced long-range internal stresses and/or 

lattice plane misorientations in cyclically and tensile-deformed copper single crystals and the 

roles played by the GNDs in this context are considered noteworthy: 

• The composite model takes full account of the deformation-induced long-range internal 

stresses but does not explain per se the evolution of lattice plane misorientations.  

• With plausible modifications such as taking into account (partial) internal stress relaxation 

and deviations from ideally symmetric multiple slip, the composite model can provide 

information on deformation-induced misorientations.  

• The stresses acting locally in the hard cell walls and in the soft cell interiors, respectively, 

and the magnitudes of the corresponding internal forward and back stresses, respectively, 

increase in good approximation linearly with the applied stress. 

• From the analysis of the evolution of the lattice plane misorientations during deformation 

it could be concluded that the dislocation kink walls and the dislocation sheets/grids 

formed in single-slip deformation in work-hardening stage II are so-called geometrically 

necessary boundaries (GNBs), whereas the dislocation cell walls formed in multiple slip 

deformation are so-called incidental dislocation boundaries (IDBs). 

• In general, it is concluded that one and the same GND pattern contributes to both the long-

range internal stresses and the lattice plane misorientations. 

• In all cases analysed, either with respect to the internal stresses or with respect to the 

misorientations, the density of the GNDs was found to be small, representing a fraction of 

the total dislocation density which amounts to only to a few percent and remains almost 

constant throughout deformation. 

 

The examples discussed here represent typical selected and particularly simple situations 

characteristic of plastic deformation of copper single crystals. It is assumed that these results 

are also characteristic of other deformed fcc crystals. It can be envisaged that, in a next step, 

the same underlying principles can be applied in order to study more complex situations such 

as, for example, the role of GNDs in the microstructural evolution in individual grains of 

plastically deformed polycrystals [42]. Since, at present, X-ray diffraction techniques are 

probably the most appropriate tool to study these features of the dislocation pattern, there is 
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hope that, in such future experiments, today’s possibilities of high-energy high-intensity 

synchrotron radiation, compare e.g. [42,43,44], will be utilized and allow to obtain more 

systematic results and of higher accuracy than in this study.  
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Figure Captions 

 

Figure 1: Composite model of single slip in the PSB wall structure. a) Schematic illustration 

of dislocation distribution and glide processes. Note GNDs at the wall/channel interfaces. b) 

Compensation of shear strain mismatch bezween channels and walls by GNDs. c) 

redistribution of the locally acting stresses. From [6]. 

 

Figure 2: Composite model for symmetric multiple slip. a) Schematic illustration of showing 

two intersecting symmetrical slip systems with the accumulation of GNDs at the cell wall 

peripheries. b) Replacement of pairs of glide GNDs of Burgers vectors b1 and b2 by resultant 

Burgers vector bres lying parallel to the walls. Schematic illustration of long-range internal 

stresses set up in the cell interiors and in the cell walls. From [6,16]. 

 

Figure 3: Local flow stresses τw-τo, τc-τo versus applied stress τ-τo in tensile-deformed Cu-1.4 

at.%Mn single crystals. τo ≈ 10 MPa: solid solution friction stress. The faint line under 45° 

refers to the case of equality of local and applied stresses, i.e. absence of internal stresses. 

Data of Hilscher from [20]. 

 

Figure 4: Large-scale tilt misorientations around line direction of primary edge dislocations 

(Burgers vector bp) in the PSB wall structure.of copper single crystal deformed cyclically at a 

plastic shear strain amplitude of γpl = 5×10
-3

. a) X-ray Berg-Barrett topograph of primary 

(111) glide plane, showing orientation contrast. Note different scales in vertical and horizontal 

directions. b) Low-magnification TEM micrograph of section parallel to primary glide plane 

(111), showing long-range changes in background contrast. After [28]. 

 

Figure 5: Low-magnification TEM micrograph of ( 121
_

)-section of copper single crystal 

deformed cyclically at a plastic shear strain amplitude of γpl = 1.45×10
-2

. The changes in 

background contrast due to variations of local orientations should be noted. After [28]. 

 

Figure 6: Experimental evidence of dislocation kink walls in copper single crystals deformed 

into work hardening stage II. a) TEM micrograph of section parallel to (101) plane containing 

the primary Burgers vector bp, showing dipolar edge dislocation kink-wall cluster. From [5]. 
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b) X-ray Berg-Barrett topograph of primary glide plane (111), showing orientation contrast 

around the axis [ 121
_

]. Courtesy of B. Obst [25]. 

 

Figure7: Schematic model of GND distribution in kink bands. D: kink wall spacing, h: 

vertical spacing between GNDs, β: average angle of misorientation. Primary Burgers vector 

bp is horizontal. From [10]. 

 

Figure 8: Maximal halfwidths ∆β1/2 of X-ray rocking curves, obtained with different 

reflections with azimuthal positions for which the component of [ 121
_

] axis perpendiculat to 

plane of incidence is maximal, plotted against shear flow stress τ. From [10]. 
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