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A self-consistent mean field calculation of the

phenomenological coefficients in a multicomponent alloy with
high jump frequency ratios

V. Barbe∗, M. Nastar
Service de Recherches en Métallurgie Physique, CEA/Saclay,

91191 Gif-sur-Yvette Cedex, France.

Abstract

We present an improvement of the self-consistent mean field (SCMF) approximation of the Lij

which extends its applications to alloys presenting high jump frequency ratios. The theory uses

a vacancy-atom exchange model which depends on temperature and local composition through

thermodynamic and kinetic parameters. Kinetic correlations due to the vacancy mechanism are

represented by a time dependent effective Hamiltonian. In the case of high jump frequency ratios

it is shown that long return paths of the vacancy need to be considered, which is shown to be

equivalent to introduce many-body long-range effective interactions. We compare this theory

to existing formalisms and Monte Carlo simulations for systems both without and with atomic

interactions.

∗Author for correspondence. Email : vincent.barbe@cea.fr.
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1 Introduction

A general method providing with an analytical expression of the phenomenological coefficients Lij of

an alloy from an atomic description of the single jumps is still missing, although it is a crucial step

to build a predictive model of matter transport. Numerical approaches like Monte Carlo simulations

also proved their efficiency in simple models of non-interacting alloys [1, 2, 3] as well as in interacting

alloys [4, 5, 6] : however the achievement of a predictive model by these methods is limited to

short ranges of composition and temperature. Besides, diffusion experiments are usually performed

at high temperature and for a few compositions, and only some of the total set of the transport

coefficients characterizing the diffusion properties of an alloy are measured (see for example Belova

and Murch [7, 8]). An extrapolation of the data to another range of temperature and composition

is possible only if the obtained information completed by thermodynamic data allows to adjust an

atomic diffusion model, as done by Grandjean, Bellon and Martin [9] in the Ni-Cu system with a

simplified diffusion model. On the other hand ab initio calculations are now able to compute atomic

jump frequencies, although mainly in dilute alloys [10, 11, 12].

The difficulty of evaluating the Lij comes from the many-body nature of the difusion problem [13].

In addition to the correlation between sites due to the thermodynamic interactions between the

chemical species, one needs to consider the kinetic couplings produced by the vacancy diffusion

mechanism. These complex kinetic couplings can be strong even in a non-interacting alloy : in the

case of an infinite jump frequency ratio they lead to the so-called percolation limit (the concentration

where fB becomes zero if B is the infinitely ‘rapid’ species). These effects are included in the random

lattice gas theories from Manning [14, 15] to the more recent developments by Tahir-Kheli and

Elliott [16], Holdsworth and Elliott [17] and eventually to the most efficient model of Moleko, Allnatt

and Allnatt [18], but they are introduced by hand in diffusion models of interacting alloys. Inspired by

the Manning method they are based on a tagging process of the atoms. The difficulty introduced by

2
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the thermodynamic interactions lies in the non-random relative positions of the chemical species, as

well as jump frequencies depending on the surroundings of the exchanging atom-vacancy pair. Apart

from the SCMF theory, existing models treat both aspects using the jump frequency model of the

Path Probability Method (see for example the review by Akbar [19]). Kikuchi and Sato [20, 21, 22]

derived approximate expressions for the correlation coefficients, while the model of Stolwijk [23] was

verified to be in excellent agreement with Monte Carlo simulations in bcc binary alloys, but these

methods do not provide with the whole set of the phenomenological coefficients, while the later model

of Qin, Allnatt and Allnatt [24] is, on the contrary, limited to the Onsager matrix of an interacting

binary alloy and was not extended to the case of a tracer in a binary alloy.

The SCMF theory developed by Nastar, Dobretsov and Martin [25, 26, 27] starts from a more

recent atomic diffusion model introduced by Martin [28] and extended by Nastar et al. [29], Athenes

and Bellon [30] and Le Bouar and Soisson [31] including a variation of the saddle point energy as well

as equilibrium energy with the surrounding nearest neighbours (nn) of the exchanging atom-vacancy

pair. This theory leads to a complete Onsager matrix in a multicomponent system : matter fluxes

are evaluated under gradients of chemical potential, and correlations due to the vacancy mechanism

are described by a time dependent effective Hamiltonian. Until now only pair effective interactions

were considered, which restricted the SCMF applications to alloys with limited jump frequency ratios

(between 0.1 and 10 typically). The present study aims at introducing n-body interactions (n > 2)

in order to describe more accurately the diffusion in alloys with high jump frequency ratios as far as

the percolation limit.

In section II the effective Hamiltonian and its associated non-equilibrium distribution function P

are presented. Kinetic equations are derived from a Master Equation applied to P . A first extension

considering pair and triplet effective interactions (section III) makes the link between the vacancy

return paths and the accuracy of the predicted Lij. This section presents also another more efficient

3
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derivation, based on a decoupling scheme proposed by Moleko, Allnatt and Allnatt [18] to account for

all the return paths of the vacancy. In opposition to the random lattice gas theories, the SCMF theory

provides with an expression of effective jump frequencies with respect to the microscopic parameters

of the diffusion model. Section IV compares the SCMF results with the previous available theories

and Monte Carlo simulations, and proposes a new interpretation of the Moleko et al. decoupling

scheme in terms of an iterative method related directly to the vacancy paths. A more detailed review

of the existing models in an interacting alloy is also included.

2 The SCMF theory

2.1 Non-equilibrium distribution

We consider a system of atoms and vacancies distributed on the Ns sites of a rigid lattice. A

configuration n of the system is described by the occupation numbers {nα
1 , nβ

1 , . . . n
V
1 , nα

2 , nβ
2 . . .}

where nα
i is equal to 1 when the site i is occupied by the species α. The atomic interactions contribute

to the configurational Hamiltonian Ĥ∗ as :

Ĥ =
1

2!

∑
i,j,A,B

V AB
ij nA

i nB
j +

1

3!

∑
i,j,k,A,B,C

V ABC
ijk (t)nA

i nB
j nC

k + . . . (1)

where the sums run over all species, including vacancies. At equilibrium, the probability of one

configuration n is

P̂0 = exp

[
β(Ω +

∑
α,i

µαnα
i − Ĥ)

]
. (2)

The quantity β = 1/kBT is the reciprocal temperature, Ω is the grand canonical potential which

guarantees the relationship
∑

n P̂0(n) = 1 and µα is the chemical potential of the species α relative

to vacancies, that is the difference between the chemical potential of α and the one of vacancies.

This formulation ensures that all chemical potentials µα are independent.

∗Throughout this section, quantities which are a function of the configuration n will be marked by the ‘hat’ sign :
Ĥ stands for H(n). Moreover, the species indexes are noted in capital letters A,B, . . . when the sum includes the
vacancies, and in greek caracters α, β, . . . when the sum runs over chemical species only.

4
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Out of equilibrium, we follow Vaks’ formalism [32] and define the new probability of a configura-

tion n by the product of an equilibrium and a non-equilibrium part :

P̂ (n, t) = P̂0(n)P̂1(n, t) (3)

where the non-equilibrium contribution has the characteristic form :

P̂1(n, t) = exp

[
β

(
δΩ(t) +

∑
α,i

δµα
i (t)nα

i − ĥ(t)

)]
(4)

Following Vaks [33], in addition to the corrections to the chemical potentials and to the grand

canonical potential due to non-equilibrium, we have introduced an unknown time-dependent function

which will express a new set of correlations between the occupation numbers. This function ĥ(t) is

chosen to have the form of an Hamiltonian as a function of the occupation numbers and will be called

effective Hamiltonian :

ĥ(t) =
1

2!

∑
i,j,α,β

vαβ
ij (t)nα

i nβ
j +

1

3!

∑
i,j,k,α,β,γ

vαβγ
ijk (t)nα

i nβ
j nγ

k + . . . . (5)

The unknown time-dependent functions vαβ...
ij... are called for convenience effective interactions al-

though their physical meaning is in no way comparable to the configurational interactions V αβ...
ij... .

2.2 Kinetic model for the vacancy mechanism

The unknown effective interactions will be related to the transport coefficients of the system by

modelling its kinetic behaviour. Following Vaks [33], we use the Master Equation :

dP̂ (n, t)

dt
=
∑
ñ

[
Ŵ (ñ → n)P̂ (ñ, t)− Ŵ (n → ñ)P̂ (n, t)

]
, (6)

where Ŵ (n → ñ) is the probability of the transition from the configuration n to the configuration

ñ per time unit. In the case of the vacancy mechanism, we assume that a transition from one

configuration to another is composed of only one exchange between an atom and a vacancy on a

nearest neighbour (nn) site. The probability of this exchange per time unit is :

Ŵ (n → ñ) = nα
i nv

j ŵ
αv
ij (n). (7)

5
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In the case of an interacting alloy, the exchange frequency ŵαv
ij (n) has the classical thermally

activated form (see [25]) :

ŵαv
ij = γijγα exp

[
−β
(
Ê(s) − Ĥ

)]
(8)

Here γij is a factor equal to 1 if i and j are nn and to zero otherwise, γα is an attempt frequency

which is assumed to depend only on the exchanging atomic species, and the term in the exponential

is the ‘migration enthalpy’ of the atomic exchange, that is the difference between the energy of the

system in the initial configuration and when the jumping atom is at the saddle point between i and j.

When considering a single atomic jump, only the contribution of the jumping atom α to the saddle

point energy of the system has to be taken into account. We shall assume that this contribution Êα
(s)

depends at the same time on the jumping species and on the surrounding atoms and express it in

terms of pair interactions :

Êα
(s) =

∑
σ,k 6=i,j

V ασ
(s)kn

σ
k (9)

As neither site i nor j are effectively occupied when the jumping atom is at the saddle point (s), the

sum must run only on all other sites.

Consequently, one can write equation (7) accounting for the properties of the occupation numbers :

nα
i nv

j ŵ
αv
ij (n) = nα

i nv
j exp

[
−β
(
Êα

(s) − Ĥα
i − Ĥv

j + Ĥαv
ij

)]
, (10)

where Ĥα
i is the partial derivative of Ĥ with respect to the occupation number nα

i . The last three

terms correspond to the interacting bonds broken by the exchanging species in order to leave their

initial position.

2.3 System of kinetic equations in the point approximation

For the calculation of the transport coefficients, we consider now the particular case of a system out

of equilibrium, with the following conditions :

6
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• The system is near an homogeneous equilibrium state, so that the non-equilibrium quantities

are next to zero.

• Thanks to suitable boundary conditions, the driving force is an homogeneous chemical potential

gradient.

• The system is assumed to be in steady state.

In these conditions, we solve the Master equation in order to calculate the unknown effective inter-

actions.

We start by recalling an important result of Nastar el al. [25] regarding the thermodynamic

averages within the framework of point approximation, also called Bragg-Williams approximation.

This approximation states that equilibrium averages of a product of occupation numbers

of different sites can be decoupled as :

〈nα
i nβ

j . . .〉(0) = 〈nα
i 〉(0)〈n

β
j 〉(0) . . . . (11)

Together with the detailed balance, one proves that the equilibrium averages of quantities of the type

of equation (10) make appear mean exchange frequencies ωα which depend only on the species of

the jumping atom. This property was proven in Appendix A of [25] assuming that the saddle point

energies were independent of the configuration and that the thermodynamic interactions involving

vacancies were put to zero. We generalize this result in Appendix A to non-zero atom-vacancy

interactions and a saddle point energy expressed in terms of pair interactions. Within this context

the thermodynamic average of equation (10) can be written as :

〈nα
i nv

j ŵ
αv
ij 〉 = γijωα

cα

cv

〈nv
i n

v
j 〉. (12)

7
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Assuming that the configuration Hamiltonian and the saddle point energy are expressed only in

terms of nn pair interactions, the average frequency ωα has the form :

ωα = γα exp

[
−β

(
z′
∑

σ

V (s)
ασ cσ − z(

∑
σ

Vασcσ − Vαvcv)

)]
, (13)

where z is the coordination number of the system and z′ is the number of nn at the saddle point

position (z′ = 4 in the fcc structure, z′ = 6 in bcc).

The last step of the SCMF method is to solve the Master equation. Instead of searching P̂ as

a solution of the Master equation, we define it by its moments 〈nα
i 〉, 〈nα

i nβ
j 〉, that we name n-point

moments. The kinetic equations of the type of equation (6) is applied to those moments. With help

of equation (13), it comes

d〈nα
i nβ

j nγ
k . . .〉

dt
=

∑
s 6=i6=j 6=...

〈nβ
j nγ

k . . . (nα
s nv

i ŵ
αv
si − nα

i nv
sŵ

αv
is )〉+∑

s 6=i6=j 6=...

〈nα
i nγ

k . . . (nβ
s nv

j ŵ
βv
sj − nβ

j nv
sŵ

βv
js )〉+ . . . (14)

After linearization with respect to the terms β(δµα
i − δµα

s ) and βĥα
s and with help of equation

(12), one can write the latter equation as a function of the mean exchange frequencies ωα and of the

non-equilibrium quantities :

d〈nα
i nβ

j nγ
k . . .〉

dt
= βωα

cα

cv

∑
s 6=i6=j 6=...

γis〈nβ
j nγ

k . . . nv
sn

v
i (δµ

α
s − δµα

i − ĥα
s + ĥα

i )〉(0) +

βωβ
cβ

cv

∑
s 6=i6=j 6=...

γjs〈nα
i nγ

k . . . nv
sn

v
j (δµ

β
s − δµβ

j − ĥβ
s + ĥβ

j )〉(0) + . . . , (15)

where (0) means averaging over the equilibrium distribution function P0, and ĥα
s is the partial deriva-

tive of ĥ with respect to the occupation number nα
s . Furthermore, the difference β(δµα

i −δµα
s ) is equal

to the difference of the total chemical potentials since the equilibrium contribution to the difference

is equal to zero. The number of n-point moments to account for depends on the truncation of the

effective Hamiltonian ĥ : if restricted to nn pair effective interactions, it is sufficient to solve the

kinetic equations of all nn 2-point moments.

8
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2.4 Transport coefficients and correlation effects

The link with the transport coefficients is based on the time derivative of the one-point moment 〈nα
i 〉.

This moment can also be defined as an equilibrium local concentration cα
i . Applying equation (15),

one recognizes the equation of matter conservation

dcα
i

dt
= −

∑
j 6=i

Jα
i→j, (16)

where the flux of atoms α from site i to site j is identified as :

Jα
i→j = −βωα

cα

cV

γij〈nV
i nV

j (µα
j − µα

i − ĥα
j + ĥα

i )〉. (17)

As the system of equations (15) is linear in the differences between sites of the chemical potentials,

the effective interactions that are deduced from (15) are a linear combination of gradients of chemical

potentials. We can then define the transport coefficients of the system regarding the species α as :

L(0)
αα = βωαcαcV (18)

〈nV
i nV

j (ĥα
j − ĥα

i )〉 = c2
V

∑
σ

(δασ − f (α)
ασ )(µα

j − µα
i ), (19)

the latter equation being valid only when the sites i and j are nearest neighbours. Here the L and f

coefficients follow the usual definitions : the superscript L
(0)
ii stands for the uncorrelated

part of the Onsager coefficient, and the correlation coefficients f are defined as :

f
(i)
ij =

Lij

L
(0)
ii

, (20)

where the superscript is omitted if i equals j.

As we can see, the uncorrelated part of the transport coefficients is obtained without the help of

the effective Hamiltonian. Correlation effects (off-diagonal terms of the L-matrix) appear only when

the effective Hamiltonian is taken into account at least until the pair effective interactions, and they

are defined by the linear relation between the partial derivatives of ĥ and the driving forces (µα
j −µα

i ).

9
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3 Application of the SCMF model to strongly correlated

systems

The calculation of the transport coefficients of an interacting alloy by the SCMF method was de-

rived by Nastar el al. [25] using two main approximations : firstly, the point approximation in

the calculation of equilibrium thermodynamic averages, and secondly the truncation of the effective

Hamiltonian to infinite-range pair interactions. The results, which we recall in the next paragraph,

were very satisfactory in a binary alloy as long as the ratio of the mean exchange frequencies ωα was

between 0.1 and 10. To enhance the accuracy of the SCMF method beyond this limit, we derive

the kinetic equations for an effective Hamiltonian which includes triplet effective interactions and

propose a simplified treatment of these quantities to reach infinite-range interactions.

3.1 Resolution of the kinetic equations with pair effective interactions
within the point approximation (PEIPA)

In this paragraph we recall the results obtained in [25]. For the thermodynamic averages, one must

pay a particular attention to the following relation :

nα
i nβ

i = δαβnα
i (21)

where δαβ is the Kroenecker symbol. This relation has a prior importance in the following develop-

ments of the calculation. In particular, the expression of the fluxes in equation (17) becomes :

Jα
i→j = −βωαcαc2

V γij

[
µα

j − µα
i −

∑
σ

(
vασ

ij − vασ
ji

)
cσ

]
= −βωαcαc2

V γij

[
µα

j − µα
i − (hα

ij − hα
ji)
]

(22)

where hα
ij is the contribution to the effective field experienced by an atom α on a site i due to another

site j. Note that the difference (
∑

σ,k vασ
ik nσ

k −
∑

σ,k vασ
jk nσ

k) was eliminated since by symmetry it is

equal to zero.
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Equation (19) then becomes :

hα
ij − hα

ji =
∑

σ

(δασ − f (α)
ασ )(µα

j − µα
i ). (23)

To calculate the pair effective interactions, it is sufficient to consider the time derivative of the

2-point moment 〈nα
i nβ

j 〉, or the 2-point correlator Kαβ
ij = 〈(nα

i − cα
i )(nβ

j − cβ
j )〉. With help once more

of the detailed balance, we find :

dKαβ
ij

dt
= βωαc2

V cαcβ

∑
s 6=j

γis

(
hαβ

sj − hαβ
ij

)
+βωβc2

V cαcβ

∑
s 6=i

γjs

(
hβα

si − hβα
ji

)
+cβ

j Jα
i→j + cα

i Jβ
j→i (24)

where the quantity hαβ
ij is a difference between partial effective fields defined by :

hαβ
ij =

∑
σ

vασ
ij cσ − vαβ

ij (25)

When i and j are not nn, the flux Jα
i→j is equal to zero, and the associated equations (24) can

be taken into account by simply introducing a geometrical factor z∗ in the corresponding nn 2-point

correlator equation :

−ωαcαcβc2
V (z∗ − 1)hαβ

ij − ωβcαcβc2
V (z∗ − 1)hβα

ji + cβ
j Jα

i→j + cα
i Jβ

j→i = 0 (26)

The factor z∗ expresses the geometry of the system through the influence of long-range 2-point

correlators. Its calculation leads to a simple relation with the tracer self-correlation factor f0 in the

same geometry :

f0 =
z∗ − 1

z∗ + 1
(27)

The final expressions for the correlation coefficients in a binary alloy AB are then given by :

fAA = 1− 2ωAcB

(z∗ − 1)(ωA(1− cB) + ωB(1− cA)) + 2(ωAcB + ωBcA)

f
(A)
AB =

2ωBcB

(z∗ − 1)(ωA(1− cB) + ωB(1− cA)) + 2(ωAcB + ωBcA)
(28)

The coefficients fBB and f
(B)
AB are obtained by inverting indexes A and B in the latter expressions.
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3.2 Truncation to triplet effective interactions (TEIPA)

In order to improve the accuracy of the model when the mean exchange frequencies are very different

(for example ωB/ωA � 1), we choose to take into account the triplet effective interactions in the

expression of the effective Hamiltonian ĥ(t) :

ĥ(t) =
1

2!

∑
i,j,α,β

vαβ
ij (t)nα

i nβ
j +

1

3!

∑
i,j,k,α,β,γ

vαβγ
ijk (t)nα

i nβ
j nγ

k (29)

The flux of species α as a function of the effective interactions then becomes in the point approx-

imation :

Jα
i→j = −βωαcαc2

V γij

[
µα

j − µα
i −

∑
σ

(
vασ

ij − vασ
ji +

∑
σ′,s

(vασσ′

ijs − vασσ′

jis )cσ′

)
cσ

]
(30)

which is strictly equivalent to equation (22), given the definition of the partial effective fields hα
ij.

Equation (23) remains unchanged for the same reason. The calculation of the time derivative of the

2-point correlator gives rise to notable differences :

dKαβ
ij

dt
= βωαc2

V cαcβ

∑
s 6=j

γis

(
hαβ

sj − hαβ
ij −

∑
s′ 6=i,j,s

(hαβ
sjs′ − hαβ

ijs′)

)

+βωβc2
V cαcβ

∑
s 6=i

γjs

(
hβα

si − hβα
ji −

∑
s′ 6=i,j,s

(hβα
sis′ − hβα

jis′)

)
+cβ

j Jα
i→j + cα

i Jβ
j→i (31)

where the partial effective fields h bear the following expressions :

hαβ
ij = hα

ij − hαβ
ij

=
∑

σ

cσ

(
vασ

ij +
∑
s,σ′

vασσ′

ijs cσ′

)
−

(
vαβ

ij +
∑
s,σ′

vαβσ′

ijs cσ′

)
(32)

hαβ
ijs = hα

ijs − hαβ
ijs

=
∑
σ,σ′

cσcσ′vασσ′

ijs −
∑
σ′

cσ′vαβσ′

ijs (33)

The basic equations dKαβ
ij /dt = 0 are not sufficient to calculate the correlation effects now that

we have introduced the unknown triplet effective interactions. The simplest and straightforward way
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to complete the set of equations is to calculate the time-derivative of the 3-point correlators Kαβγ
ijk .

Assuming that the 4-point effective interactions are set equal to zero, their expression is :

dKαβγ
ijk

dt
= βωαcvcαcβcγ

( ∑
s 6=j 6=k

γis

(
hαβγ

sjk − hαβγ
ijk

)
− γij(h

αγ

jki
− hαγ

ikj
)− γik(h

αβ

kji
− hαβ

ijk
)
)

+βωβcvcαcβcγ

( ∑
s 6=i6=k

γjs

(
hβαγ

sik − hβαγ
jik

)
− γji(h

βγ

ikj
− hβγ

jki
)− γjk(h

βα

kij
− hβα

jik
)
)

+βωγcvcαcβcγ

( ∑
s 6=i6=j

γks

(
hγαβ

sij − hγαβ
kij

)
− γkj(h

γα

jik
− hγα

kij
)− γki(h

γβ

kji
− hγβ

ijk
)
)

(34)

where we have introduced more compact forms for partial effective fields :

hαβγ
ijk = hα

ijk − hαβ
ijk − hαγ

ikj + hαβγ
ijk (35)

hαβ

ijk
= hα

ij − hαβ
ij − hα

ijk + hαβ
ijk (36)

3.3 A decoupling scheme

The calculation of the time derivative of all 3-point correlators implies a heavy geometrical effort and

the long-range interactions do not seem to converge towards a simple physical value as for the pair

interactions. As an alternative set of equations, we shall refer to the Moleko, Allnatt and Allnatt [18]

decoupling scheme (MAA), that was used within the framework of the Random Lattice Gas theory

to calculate the correlation coefficients in non-interacting systems. We need to express a hierarchy

of 1-point, 2-point and 3-point quantities, identify a relation between the 2-point and 1-point ones

and impose the same relation between the 3-point and 2-point ones. In the TEIPA formalism, the

analogue of the equilibrium fluctuations are the non-equilibrium quantities {h(n)} defined by the

following expressions :

{h(1)}α
i = δµα

i +
∑
σ,s

vασ
is cσ +

∑
σ,σ′,s,s′

vασσ′

iss′ cσcσ′

{h(2)}αβ
ij = vαβ

ij +
∑
σ,s

vαβσ
ijs cσ

{h(3)}αβγ
ijk = vαβγ

ijk . (37)
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In an isotropic cristal, symmetry considerations lead to the simplified form of the 1-point non-

equilibrium function :

{h(1)}α
i = δµα

i . (38)

Equation (19) provides with a direct relationship between the 1-point and 2-point functions :

∑
σ

({h(2)}ασ
ij − {h(2)}ασ

ji )cσ =
∑

σ

(δασ − f (α)
ασ )({h(1)}σ

j − {h(1)}σ
i ). (39)

This relation is strictly equivalent to the one identified in the work of Moleko et al [18], involving

in the same way the macroscopic term (δασ − f
(α)
ασ ). As an additional set of equations, we transpose

this relation to the 3-point and 2-point functions by adding to each member a given site k occupied

by a given species β. The new equation states :

∑
σ

({h(3)}ασβ
ijk − {h(3)}ασβ

jik )cσ =
∑

σ

(δασ − f (α)
ασ )({h(2)}σβ

jk − {h(2)}σβ
ik ). (40)

It is worth noting that equation (39) is valid only when sites i and j are nearest neighbours, as

its equivalent in the MAA formalism is also valid only at the limit of infinite wavelenghts. On the

contrary, the deduced relationship equation (40) is to be applied for all wavelenghts in the MAA

formalism and for all (i, j) couples in ours. With help of the latter relation, one can re-write the time

derivative of the 2-point correlator within a Decoupled TEIPA formalism (DTEIPA) :

dKαβ
ij

dt
= βωαc2

V cαcβ

∑
s 6=j

γis

(
hαβ

sj − hαβ
ij −

∑
σ

(δασ − f (α)
ασ )(hσβ

sj − hσβ
ij )

)

+βωβc2
V cαcβ

∑
s 6=i

γjs

(
hβα

si − hβα
ji −

∑
σ

(δβσ − f
(α)
βσ )(hσα

si − hσα
ji )

)
−cβ

j Jα
i→j − cα

i Jβ
j→i. (41)

Because of the application of equation (40) to all (i, j) couples, the system can be reduced to a

single equation associated with the nn correlators, except that the coordination number z is replaced

by z∗ as earlier. The equation to solve is of the following type :

−ωαcαcβc2
V (z∗ − 1)

∑
σ

f (α)
ασ hσβ

ij − ωβcαcβc2
V (z∗ − 1)

∑
σ

f
(β)
βσ hσα

ji − cβ
j Jα

i→j − cα
i Jβ

j→i = 0. (42)
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In the particular case of a binary alloy, one obtains the following relations between the correlation

coefficients :

fAA = 1− 2ωAcB

(z∗ − 1)((fAA(1− cB) + f
(A)
AB cA)ωA + (fBB(1− cA) + f

(B)
BA cB)ωB) + 2(ωAcB + ωBcA)

f
(A)
AB =

2ωBcB

(z∗ − 1)((fAA(1− cB) + f
(A)
AB cA)ωA + (fBB(1− cA) + f

(B)
BA cB)ωB) + 2(ωAcB + ωBcA)

(43)

and the expression for fBB and f
(B)
BA are obtained by inverting A and B in the above equations. As

for the approximation of pair effective interactions, we could not reach an analytical expression for

the correlation coefficients in a ternary alloy ABC with three different frequencies. Nevertheless, the

numerical solving of the system formed of equations (42) for all couples (αβ) presents no difficulty

and does not require additional geometrical calculation.

It is to notice that equation (40), which is the basis of our decoupling scheme, can also be

interpreted in terms of the non-equilibrium distribution function of an alloy under a gradient of

chemical potential using equations (2)-(4). Such an analysis is to be found in Appendix B of the

present study.

4 Results and discussion

The particularity of the SCMF model when used in the point approximation is that an interacting

alloy eventually appears like a non-interacting alloy where the species-dependent exchange frequencies

depend on the composition of the system but not on the atoms surrounding the exchanging pair.

Note that the same SCMF model when used in a higher statistical approximation provides with a

set of exchange frequencies depending on the local environment, although this treatment was

used up to now only in the simple case of a dilute alloy [27]. It is then straightforward

to compare the results of the different approximation levels of the SCMF ([25] and this work) with

the main theories available for the random lattice gas system, the formalisms of Manning [14, 15]

and of Moleko et al. [18]. In a second part, the SCMF theory will be tested against the models of
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Stolwijk [23], Kikuchi and Sato [20, 22] and Qin, Allnatt and Allnatt [24] devoted to solid solutions

of interacting alloys on the basis of available Monte Carlo simulations [6, 23, 34]. Due to the

use of the point approximation without a sublattice formalism, the SCMF theory in

its present versions is clearly designed for interacting alloys without long range order.

Hence reference theories as well as Monte Carlo simulations by Bakker [35], Murch [4],

Wang and Akbar [36] or Qin et al. [37] in ordered alloys shall not be adressed in this

discussion. Eventually, although all previous equations are meant for a general vacancy

content, all comparisons in this section will be carried out in the simple case of a binary

alloy AB in the limit of small vacancy content, which is the system where most of other

formalisms have been tested.

4.1 Non-interacting alloy

In this paragraph the exchange frequencies ωA and ωB are taken to be concentration-independent.

We introduce for convenience the reduced mean exchange frequencies ω = ωAcA + ωBcB and ω′ =

ωAcB + ωBcA. It is then possible to write a simplified expression of the correlation factors in the

PEIPA formalism

fAA = 1− 2ωAcB

(z∗ − 1)ω + 2ω′ (44)

f
(A)
AB =

2ωBcB

(z∗ − 1)ω + 2ω′ (45)

fA =
(z∗ − 1)(ω + ωB)

(z∗ − 1)(ω + ωB) + 2ωA

(46)

and in the DTEIPA formalism

fAA = 1− 2ωAcB

(z∗ − 1)((fAA + f
(A)
AB )ωAcA + (fBB + f

(B)
BA )ωBcB) + 2ω′

(47)

f
(A)
AB =

2ωBcB

(z∗ − 1)((fAA + f
(A)
AB )ωAcA + (fBB + f

(B)
BA )ωBcB) + 2ω′

(48)

fA =
(z∗ − 1)ωA(fAA + f

(A)
AB + f

(A)
AA∗ + f

(A∗)
A∗A − fA∗A∗)

(z∗ − 1)ωA(fAA + f
(A)
AB + f

(A)
AA∗ + f

(A∗)
A∗A − fA∗A∗) + 2ωA

(49)
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whereas the results in the Simple TEIPA formalism (STEIPA) are only numerical, corresponding to

consider a finite number of triplet interactions.

As expected by Nastar et al. [25], the difference between the TEIPA and PEIPA formalisms

increases with the exchange frequency ratio. When the exchange frequencies are equal (tracer in a

pure metal), the PEIPA already leads to exact results, and the effective interactions beyond pair

interactions are all found to be zero. Figures 1 and 2 show the predicted fBB coefficient in all three

approximations for exchange frequencies ratios ωB/ωA repectively equal to 10, 100 and 105 in a bcc

lattice. As for the STEIPA curves, only the triplet effective interactions corresponding to ‘compact’

triangles, i.e. formed of two pairs of nearest neighbours, are actually calculated. Taking into account

the next triplet effective interactions makes an almost undistinguishable change in the coefficient fBB,

even for the most correlated case. We note that, in this extreme case, only the DTEIPA predicts

a percolation effect, the percolation threshold being located at the concentration C(B) = 1 − f0.

The other correlation coefficients are not drawn, as all three approximations (PEIPA, STEIPA and

PEIPA) obey the Moleko and Allnatt [38] analytical relation :

∑
j

f
(i)
ij

ωi

ωj

= 1. (50)

As a consequence, only one correlation coefficient is sufficient to describe a binary alloy. We choose

to represent the coefficient fBB, which exhibits the most visible discrepancies between the different

theories.

When compared to other theories, the different SCMF approximations show noteworthy simi-

larities. Namely, the analytical expressions for the collective correlation factors of the PEIPA are

almost identical to the formalism of Kikuchi and Sato [20] within the framework of the path proba-

bility method, except that z∗ is replaced in the latter model by the coordination number z. In the

same way, the collective correlation factors of the DTEIPA correspond exactly to Manning’s [15] and

the MAA [18] formalisms which are known to be identical in the case of a binary alloy and very

17

Page 22 of 46

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

accurate when compared with the recent Monte Carlo simulations by Belova and Murch [2, 3]. As

for the tracer correlation factor, the DTEIPA equals the most accurate MAA theory. Namely, due

to the similarity of the decoupling scheme, the results of both DTEIPA and MAA coincide also in

the ternary alloy, as in the general multicomponent systems. To investigate the physical meaning

of the effective interactions introduced by the SCMF formalism, we look at the different theories in

terms of vacancy escape frequencies as introduced by Manning. Beyond Manning’s model, we make

a difference between the escape frequency of a vacancy when it is involved in a collective correlation

factor, Hcol, and in a tracer correlation factor, H tr. The formalism in which the escape frequency is

calculated will be refered to in subscript, e.g., Hcol
PEI stands for Hcol

PEIPA. The analytical expressions

of those quantities in the SCMF formalism are to be seen in equations (44)-(49) which all exhibit

the characteristic form :

fAA = 1− 2ωAcB

Hcol + 2ω′ (51)

fA =
H tr

H tr + 2ωA

(52)

The value of Hcol
PEI = (z∗−1)ω with z∗ = (1+f0)/(1−f0) corresponds to a vacancy moving through

uncorrelated jumps in a one-component system with an exchange frequency ω. As a consequence, only

the first return jump of a vacancy is precisely accounted for in the PEIPA for the calculation of the

collective correlation effects. In the DTEIPA, Hcol
DTEI = (z∗−1)((fAA+f

(A)
AB )ωAcA+(fBB+f

(B)
BA )ωBcB)

expresses the main physical assumption of Manning, who expressed the escape frequency as a func-

tion of the macroscopic correlation coefficients : all possible paths for the return of the vacancy are

then taken into account whereas one considers only the escape frequency as a macroscopic quantity.

According to the Monte Carlo simulations which show the superiority of the MAA formalism, Man-

ning’s assumption was not sufficient in ternary systems. As an application, the calculation of H tr

needs a further improvement which is achieved by the DTEIPA or the MAA theory : both formalisms

take into account the correlations due to the tracer in the exchange frequency (three last terms of
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H tr
DTEI in equation (49)).

One last result will unify those remarks and enlight the link between the different approximations

of the SCMF and the return path of the vacancy which is actually taken into account. Following the

results of the DTEIPA, we express the collective correlation coefficients as

fAA = 1− 2ωAcB

(z∗ − 1)((f̃AA + f̃
(A)
AB )ωAcA + (f̃BB + f̃

(B)
BA )ωBcB) + 2ω′

, (53)

f
(A)
AB =

2ωBcB

(z∗ − 1)((f̃AA + f̃
(A)
AB )ωAcA + (f̃BB + f̃

(B)
BA )ωBcB) + 2ω′

, (54)

where the f̃ij are the correlation factors obtained in the PEIPA formalism (equations (44)-(45)). This

expression can be read from two different points of view. On the one hand, this calculation is the

second iteration in calculating ‘by hand’ the correlation coefficients in the DTEIPA by an iterative

method (IM) : the zeroth iteration bears fAA = 1 and fA
AB = 0, the first iteration gives the PEIPA

results, and at each step the correlation factors are calculated using equation (53) where the f̃ are

the result of the preceeding step. On the other hand, let us observe the infered escape frequency

of the ‘second interation’ Hcol = (z∗ − 1)((f̃AA + f̃
(A)
AB )ωAcA + (f̃BB + f̃

(B)
BA )ωBcB). As in Manning’s

spirit, this frequency includes all return paths of the vacancy through the macroscopic correlation

coefficients ; but those coefficients themselves express that, after a first jump, the vacancy migration

is uncorrelated in an average one-component system. Consequently, the ‘second-iteration’ escape

frequency may be interpreted as the precise accounting for two successive jumps. Numerically, the

obtained results are in good agreement with the STEIPA formalism (figures 1 and 2), which takes into

account only the triplet effective interactions corresponding to two consecutive nn pairs : the slight

difference may be due to the fact that, in the present STEIPA results, not all triplet interactions

were taken into account. More generally, one can see that the STEIPA results (or second step of the

IM) achieve approximately half the ‘distance’ between PEIPA and DTEIPA results, the latter being

considered as almost exact. The IM must naturally converge towards the DTEIPA results, which

is shown in figure 2 for the extreme case of ωB/ωA = 105 (percolation threshold) : a quantitative
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agreement is achieved for the step number 20 of the IM, whereas a qualitative behaviour is already

observed by the fifth step, which would correspond to a five-site return path of the vacancy.

As a conclusion, there seems to be a direct link between the effective interactions used in the

SCMF formalism and the actual return probability of a vacancy in the framework of the collective

correlation effect : the PEIPA (respectively STEIPA) models describe a system included in an

averaged one-component gas and restrict the correlation effects to the precise calculation of a single

(respectively double) jump of the vacancy, plus an uncorrelated path through this average gas. The

accuracy of this description decreases when the system becomes more correlated, i.e. when longer

return paths of the vacancy must be taken into account. Particularly, the percolation limit is well

described only with a decoupling scheme accounting for long-range paths. To further investigate the

link between effective interactions and return paths, a computer-calculation of the n-point moments

is required.

[ Insert figure 1 about here ]

[ Insert figure 2 about here ]

4.2 Interacting alloy

4.2.1. Existing models and simulations : In our knowledge there are three other models which

account for short range interactions. First one is the Path Probability Method (PPM) [20, 21, 22]

which was inspired by the Cluster Variation Method (CVM) developped for the calculation of thermo-

dynamic quantities. First versions provide with a semi-analytical expression of the phenomenological

coefficients of a multicomponent bcc alloy. The effect of surrounding is accounted for by means of

interactions with nn atoms which are broken when the migrating atom exchanges position with a

nn vacancy. Exchange frequencies are decomposed into a product of ‘breaking bonds’, each one
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corresponding to a probability of forming a pair multiplied by an exponential of the nn interaction

energy. The probability of a nn bond is then calculated using the pair approximation of the CVM.

A satisfying agreement with Monte Carlo simulations was obtained as long as jump frequency ratios

were not too high [20]. Within the same limitations of low correlation effects, the first version of the

SCMF theory [25] as well as the recent formalism introduced by Qin, Allnatt and Allnatt [24] are to

be cited. The latter leads to the Onsager matrix by calculating the two first moments of the time

correlation function in a binary system, but no self-consistent scheme was introduced in the case of

an interacting alloy : as a consequence it cannot predict a percolation limit, and its validity is limited

to ratios of exchange frequencies near from unity. Moreover, for sake of complexity, it was derived

only in the case of the simple cubic lattice, and was not extended to the tracer correlation factors.

Based on the same exchange frequency model, Stolwijk [23] could calculate the tracer correlation

factors of a binary bcc alloy and for the first time included a self-consistent scheme together with

the formalism of an interacting alloy. The derivation is mostly intuitive : it uses the breaking bonds

introduced by Kikuchi and Sato and extends the random walk theories of Manning to calculate the

probability of a tracer to come back to its position in competition with the nn of the vacancy. The

additional idea in comparison to Manning [15] is to introduce new frequencies which account for

the position of the tracer atom after a first jump and to assume that the escape probability of a

vacancy after the first exchange depends on the chemical species of the tracer atom. The obtained

self-consistent equations are numerically solved and the resulting correlation factors are compared to

the PPM ones [20] and to Monte carlo simulations using the same atomic model.

The Stolwijk estimation agrees very well with Monte Carlo simulations whereas the PPM results

are found to be quite different. The authors of the PPM method attributed the discrepancy to the

fact that ensemble averages were used into the calculation although strong correlation effects like a

percolation limit require to follow the motion of a small number of particles for a long time [21]. It is
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then suggested to replace ensemble averages by time averages and to use a tagging process to follow

an individual tracer atom. The time conversion consists then in tagging a tracer atom, replacing

the ensemble averages concerning the other atoms by equilibrium time averages and following the

ideas of Manning and Stolwijk to calculate the probability of an atom to exchange with a vacancy

as a probability in competition with the jump back of the tracer atom which has just exchanged its

position with the vacancy. This new PPM version applied to the calculation of correlation factors

in a binary bcc alloy leads to a percolation limit. In the case of a bcc disordered alloy without

interaction, this limit is found equal to 1/(z − 1), or to = (1− f0)/(1 + f0) under their assumption

that f0 = (z − 2)/z and is equivalent to a static calculation of the percolation limit using a pair

approximation of the CVM. However the classic percolation limit obtained by the most accurate

random lattice gas theories as well as our upgraded SCMF is (1− f0) : this value is satisfactorily

close to the one obtained by Monte Carlo simulations [2, 3], although not strictly equal

to the site percolation threshold of the considered cristallographic structure given by

such simulations [39].

Surprisingly, although the work of Sato and Kikuchi [21] was motivated by the results obtained by

Manning and Stolwijk, there is no explicit comparison with those theories. Only values for an alloy

without anti-symmetric term (VAA = VBB) are presented, for which Stolwijk’s simulations showed

no important correlation effects when the attempt frequencies are taken to be equal.

Eventually, one must consider the fact that no theory able to predict strong correlation effects

like a percolation limit has actually solved the problem of collective correlation coefficients (i.e.,

the Onsager matrix) in a general interacting concentrated alloy above the critical temperature.

Stolwijk [23] restricted his work to the tracer correlation coefficient, and Sato and Kikuchi, besides

the tracer correlation coefficient [21], derived their latest model in terms of the Lij only for the

concentrated tracer case [22], which reduces to a non-interacting alloy. Because both theories use a
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tagging procedure to follow individual trajectories of tracer atoms, they cannot easily be generalized

to a calculation of collective correlation coefficients. As a conclusion the present SCMF upgrade is the

only available theory which allows the calculation of all correlation coefficients in a multicomponent

interacting alloy above its critical temperature including strong correlation effects like a percolation

limit.

In terms of Monte Carlo simulations, the results of the DTEIPA approximation are tested against

the simulations of Stolwijk for the tracer correlation factor, which best take into account the effects

of thermodynamics in the alloy by using varying interaction energies for a same composition, as

well as against the recent simulations performed in simple cubic lattices for the collective correlation

factors [6, 34].

It is also to note that all these Monte Carlo simulations compute the transport coefficients in a

system at equilibrium using the generalized Einstein relations : new Monte Carlo simulations were

recently derived by Hartmann et al. [40] featuring a simulation box under a constant gradient of

chemical potential, which allows to measure the transport coefficient in ‘real’ conditions : in most

cases both methods appear to be equivalent if the gradient of chemical potential is not too high.

4.2.2. Results of the SCMF theory : In the SCMF theory, the correlation effects arise

only from the ratio of the attempt frequencies of both species together with two energy differences

: the ordering energy V = (VAA + VBB − 2VAB) and the antisymmetric term U = (VAA − VBB)/V .

In the existing Monte Carlo simulations, the attempt frequencies are assumed to be equal. As a

consequence, the correlation effects calculated by the SCMF model are the ones associated to the

exchange frequency ratio :

ωB

ωA

= exp

(
−βzV

2
[(cA − cB)− (cA + cB)U ]

)
. (55)

From a practical point of view, the results of the DTEIPA formalism in an interacting
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alloy could have been obtained in a simple way by adding this atomic model to the

previous MAA formalism. However, as the theoretical frame of the latter model is not

consistent with the presence of thermodynamic interactions, the SCMF theory provides

with a satisfactory theoretical basis for such a ‘shortcut’. The corresponding Monte Carlo

simulations represent a critical test of the SCMF theory since the exchange frequency ratio is not at

all controlled by the attempt frequencies like in non-interacting systems, but only by the interaction

energies. Besides, as the model is intended to deal with solid solutions without long range order,

the product | βV | should be inferior to the order-disorder transition value, which depends on the

cristallographic structure.

Figures 3b and 3d show the predictions of the SCMF model (PEIPA and DTEIPA) compared

with the Monte Carlo simulations by Stolwijk [23] in terms of tracer correlation coefficients in a bcc

binary alloy. In both cases, the use of DTEIPA instead of PEIPA clearly improves the agreement

between the SCMF model and the simulations. In the first case, the small change between PEIPA and

DTEIPA means that the ratio of the exchange frequencies in this case is relatively near from unity

(see figure 3a). Furthermore, in all cases, the agreement between SCMF and the MC simulations

stays quantitative, or at least semi-quantitative for a temperature T ≥ 1.3Tc. In the first two cases,

the agreement can be said to be quantitative practically on the whole temperature range.

[ Insert figure 3 about here ]

However, although the DTEIPA improves the results of the SCMF in this case, the discrepancy

with the simulations is still visible. This discrepancy may arise from the Bragg-Williams approxima-

tion used in the SCMF : when V/kT increases, the tendency to short range order is in contradiction

with the point approximation. Thus it appears that, in the vicinity of the critical temperature,

the correlation effects may be determined not only by the ratio of mean exchange frequencies, but

involve also the variation of exchange frequencies upon the local environment of the exchanging pair
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which is not explicitly taken into account by the present version of the SCMF theory. Eventually,

if Stolwijk’s model appears to be slightly more efficient, it must be noticed that the SCMF results

achieve a better accuracy than the Kikuchi and Sato [20] model.

The same arguments can be used when comparing the SCMF results to the theory of Qin et

al. [24] and Monte Carlo simulations [6, 34] in terms of collective correlation coefficients. Figures

4b and 4d show the factors fAA and f
(A)
AB in a simple cubic binary alloy with an ordering energy

V/kT = 0.63 as a function of the composition of the alloy. Due to the jump frequency ratios (upper

curves), the difference between the PEIPA and DTEIPA formalisms are always lower than 2% : as a

consequence only the DTEIPA is represented. In both cases we observe a visible discrepancy between

both theoretical models and the Monte Carlo simulations, while the results of the DTEIPA are very

near from the theory of Qin et al.. As the mean jump frequency ratio does not play an important

role, we expect that the limitations of both models concern the accounting of the local environment

of the jumping species. In a simple cubic lattice, it is known that the point approximation has

a low efficiency due to the low number of nn sites, which explains why the SCMF is less efficient

than in a bcc alloy. However, unlike Stolwijk’s model for the tracer diffusion, the method of Qin

et al. to account for the local environment is not sufficient to reach a quantitative agreement with

the Monte Carlo simulations, although it remains slightly better than the SCMF treated within the

point approximation. We can note that in the limit of a dilute alloy, a recent upgrade of the SCMF

theory [27] could ameliorate its results.

[ Insert figure 4 about here ]

Nevertheless, one advantage of the SCMF theory upon the models of Stolwijk [23] or Qin et al. [24]

is its ability to calculate both tracer and collective correlation coefficients with a reasonable accuracy

in interacting alloys. Figure 5 shows for example the four collective coefficients calculated for the

same conditions as figures 3b and 3d. Coefficients fAA and fBB bear the same global behaviour as
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the tracer coefficients fA and fB as expected, and the most important changes between the PEIPA

and DTEIPA approximations concern the cross coefficients as well as the diagonal coefficient of the

slowered atom, fBB.

[ Insert figure 5 about here ]

In conclusion, the main limit of the SCMF model in the DTEIPA formalism remains the use

of the point approximation, which can lead to a maximal error of about 25% in the calculation of

the collective correlation coefficients in a simple cubic alloy, although this error is lower in other

lattice structures like bcc. Consequently the next upgrade of this theory should be a more precise

accounting of the local environment, following for example the route of Nastar [27] in the case of a

dilute alloy.

5 Conclusion

We presented an upgrade of the SCMF theory which gives the transport coefficients of an interacting

system with short range order from an atomic diffusion model including a thermodynamic description

of the alloy. In the extreme case of a non-interacting system, our model reduces to the Moleko et

al. [18] (MAA) formalism which is known to be in excellent agreement with Monte Carlo simulations.

In interacting systems, a single effective jump frequency per species arises from the formalism as

a function of the atomic interactions : this property allows to build predictive diffusion models

accounting for the composition and temperature dependence of the jump frequencies and of the

infered correlation effects. Although the agreement with Monte Carlo simulations is slightly poorer

than earlier theories, principally due to the use of the point approximation, the upgraded SCMF

theory is the only one which combines the prediction of a percolation limit as well as the calculation

of the entire set of correlation coefficients in an interacting alloy with short range order. A

new interpretation of the Moleko et al. decoupling scheme is also proposed in terms of an iterative
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calculation of the correlation coefficients : the link with the return paths of the vacancy is now

quantitatively established as a function of the length of these paths. Within the SCMF formalism

it was recently shown that it is possible to introduce a better description of the short range order

effects on the atom-vacancy exchange frequency [27]. Next challenge will be to incorporate these

effects into the present SCMF version.
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Appendix A: Mean exchange frequency in the point approx-

imation

In this section we show how the statistical point approximation in the SCMF formalism leads to the

introduction of a single mean exchange frequency per atomic species. Let us consider the equilibrium

two-point moment defined by :

〈nα
i nβ

j 〉(0) =
∑
n

nα
i nβ

j P0(n), (56)

At equilibrium this quantity is assumed to obey the point approximation (equation (11)).

Let us consider the one-point moment 〈nα
i 〉(0). We introduce the function Ĝ = ln P̂0. As Ĝ is a

polynomial function of the occupation numbers and using equation (21), one can write :

〈nα
i 〉(0) =

∑
n

nα
i exp

[
Ĝ(nα

i = 1)
]

=
∑
n

nα
i exp

[
∂Ĝ

∂nα
i

+ Ĝ(nα
i = 0)

]
=

∑
n

nα
i exp

(
Ĝα

i + Ĝ− Ĝi

)
, (57)

where Ĝα
i is the derivative of Ĝ with respect to the occupation number nα

i , and we have introduced

Ĝi =
∑

A ĜA
i nA

i : Ĝ− Ĝi is the contribution to Ĝ which does not involve the occupation numbers of

site i, and Ĝα
i is the contribution to Ĝ fulfilling the condition nα

i = 1. From equation (57) and the

definition of P0 (equation (2)) it is straightforward to derive the relation :

〈nα
j 〉(0) = 〈nv

j exp[β(µα − Ĥα
j + Ĥv

j )]〉(0). (58)

It leads to the expression of the chemical potential :

exp(βµα) =
cα

cv

+
∑
A,j

cA(V αA
ij − V vA

ij ). (59)

Such a transformation applied to a two-point average introduces second order derivatives of the

Hamiltonian which represent the coupling between both sites :

〈nα
i nβ

j 〉(0) = 〈nα
i nv

j exp[β(µβ − Ĥβ
j + Ĥβ

ji − Ĥβα
ji + Ĥv

j − Ĥv
ji + Ĥvα

ji )]〉(0), (60)
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where Ĥβα
ji is the second derivative of Ĥ with respect to nα

i and nβ
j and Ĥβ

ji =
∑

A ĤβA
ji nA

i .

However a point approximation is equivalent to neglect those correlations between sites, since

equation (60) must be equal to the product of point averages which means a neglect of the second

partial derivatives and a separation of the average into two terms :

〈nα
i nβ

j 〉(0) = 〈nα
i 〉(0)〈nv

j exp[β(µβ − Ĥβ
j + Ĥv

j )]〉(0)

= 〈nα
i 〉(0)〈n

β
j 〉(0). (61)

We apply the same approximation to the saddle point energies normalized by temperature, which

converge to zero at high temperature like thermodynamic interactions. One has to note that such a

decoupling procedure is not applied to the effective Hamiltonian : a reason is that h normalized by

the temperature does not converge to zero at high temperature : for example the migration of atoms

in a pure metal at infinite temperature will not be random while all the energy couplings are to be

neglected, the kinetic couplings due to the vacancy mechanism being still present.

One eventually calculates the average in equation (12) as :

〈nα
i nv

j ŵ
αv
ij 〉 = 〈nα

i nv
jγijνα exp[−β(

∑
β,k 6=i,j

V αβ
(s)k −Hα

i −Hv
j + Hαv

ij )]〉(0)

= 〈nv
i n

v
j exp[β(µα −Hα

i + Hv
i )]γijνα exp[−β(

∑
β,k 6=i,j

V αβ
(s)k −Hα

i −Hv
j + Hαv

ij )]〉(0)

= γijνα exp(−βµα)〈exp[−β(
∑

β,k 6=i,j

V αβ
(s)k − 2Hv

j + Hαv
ij )]〉(0)〈nv

i n
v
j 〉(0)

= γijωα
cα

cv

〈nv
i n

v
j 〉(0), (62)

If the interactions at substitutional and saddle point positions are restricted to nn sites, respectively

VAB and V
(s)
AB the final expression for the mean exchange frequency ωα states :

ωα = να exp

[
−
∑

A(z′V
(s)
αA − zVαA − zVvA)cA

kT
.

]
(63)

Note that within a point approximation the number of substitutional atomic interactions to break

during one jump is equal to z, whereas before the average procedure the jumping atom has z − 1
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atoms and one vacancy as nearest neighbours.

Appendix B: n-point moments out of equilibrium

The effective interactions represent the correlation effect contribution to the transport coefficients,

but they are also involved in the calculation of the non-equilirbium n-point moments of a system

under a gradient of chemical potential. In particular, the decoupling relations between pair and

triplet effective interactions which were postulated in section 3.3 can also be taken as a closure

relationship beween 3-point and 2-point moments. Indeed, although equation (40) has proven to

be very accurate, no simple physical meaning has been attached to it so far in its original context

(Moleko et al. [18] formalism). We now examine the same relationship in terms of the n-point

moments. Instead of calulating the time derivative of the n-point moments, which leads to the

transport coefficients, we now focus on the value of those moments. The superscript 〈〉(0) stands for

an equilibrium thermodynamic average (we will also note cA = 〈nA
i 〉(0)) : when it is not present, the

average is processed out of equilibrium.

Using equation (21), it is straightforward to establish the expression of the first n-point moments,

to first order in the effective interactions :

〈nA
i 〉 = 〈nA

i 〉(0)(1− δµA
i − hA

i ), (64)

〈nA
i nB

j 〉 = 〈nA
i 〉〈nB

j 〉(1 + hA
ij + hB

ji − hAB
ij −

∑
σ,σ′

hσσ′

ij cσcσ′), (65)

〈nA
i nB

j nC
k 〉 = 〈nA

i 〉〈nB
j 〉〈nC

k 〉(1 + hA
ij + hB

ji − hAB
ij −

∑
σ,σ′

hσσ′

ij cσcσ′

+hA
ik + hC

ki − hAC
ik −

∑
σ,σ′

hσσ′

ik cσcσ′

+hC
kj + hB

jk − hCB
kj −

∑
σ,σ′

hσσ′

kj cσcσ′

+hAB
ijk + hAC

ikj + hBC
jki −

∑
σ,σ′,σ′′

hσσ′σ′′

ijk cσcσ′cσ′′). (66)

Remembering that the effective interactions involving vacancies are set to zero, we make appear
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equation (40) when defining the following sum SAB of 3-point moments :

SAB = (〈nA
i nB

j nV
k 〉 − 〈nA

i nV
j nB

k 〉)− (〈nA
j nB

i nV
k 〉 − 〈nA

j nV
i nB

k 〉) + (〈nA
k nB

i nV
j 〉 − 〈nA

k nV
i nB

j 〉)

= 〈nA
i 〉(〈nB

j 〉〈nV
k 〉 − 〈nB

k 〉〈nV
j 〉)− 〈nA

j 〉(〈nB
i 〉〈nV

k 〉 − 〈nB
k 〉〈nV

i 〉) + 〈nA
k 〉(〈nB

i 〉〈nV
j 〉 − 〈nB

j 〉〈nV
i 〉)

+cAcBcV [(hAB
ijk − hAB

ikj )− (hAB
jik − hAB

jki ) + (hAB
kij − hAB

kji )], (67)

where the last terms can be transformed using the decoupling relation (40) : for example, one can

change hAB
ijk − hAB

jik into
∑

σ(δBσ − f
(B)
Bσ )(hσA

jk − hσA
ik ). Eventually, the sum of SAB over all chemical

species A gives rise to the following relation :

∆KBV
ij + ∆KBV

jk −∆KBV
ik =

∑
σ

(δBσ − f
(B)
Bσ )(∆KσV

ij + ∆KσV
jk −∆KσV

ik ), (68)

where we have introduced the correlator

∆KBV
ij =

〈(nB
i − 〈nB

i 〉)nV
j 〉 − 〈(nB

j − 〈nB
j 〉)nV

i 〉
cBcV

. (69)

For a multicomponent alloy with N species, this set of relations forms a linear system of equations

between the quantities K̃σ
ijk = ∆KσV

ij + ∆KσV
jk −∆KσV

ik , namely :

f .K̃ = 0, (70)

where f is the matrix of the correlation coefficients and K̃ is a column matrix. The determinant of

the f matrix is non-zero in every case where we have analytical or numerical results in the SCMF

DTEIPA formalism. Thus, we arrive at the simple conclusion :

∆KσV
ij + ∆KσV

jk −∆KσV
ik = 0 (71)

for all species σ. This result seems to be due to the use of the Moleko et al. decoupling scheme which

gives rise to a simplified relationship between the correlators ∆K. As equation (71) is also true in the

PEIPA approximation but not in the STEIPA formalism, we can infer that the decoupling scheme

is a mean to insure this relation.
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Figure 1 : Correlation factor fBB as a function of composition in a bcc solid solution AB for two

different mean exchange frequency ratios wB/wA = 10 or 100. Solid lines refer to a truncation

to pair effective interactions, dashed lines to a truncation to the first shell 3-body effective

interactions (compact triangles) in the STEIPA approximation, dotted lines to the second step

of the Iterative Method (IM) and bold lines to the converged DTEIPA formalism. The results

of the DTEIPA and of the MAA formalisms [18] are strictly equal.

Figure 2 : Correlation factor fBB as a function of composition in a bcc solid solution AB for a

mean exchange frequency ratio wB/wA = 105. Solid line refers to a truncation to pair effective

interactions, dashed line to a truncation to the first shell 3-body effective interactions (compact

triangles) in the STEIPA approximation, dotted lines to the steps 2, 3, 5 and 20 (from top to

bottom) of the Iterative Method and bold line to the converged DTEIPA formalism.

Figure 3 : Tracer correlation factor fA and fB in a bcc alloy A0.5B0.5 with ordering tendency as a

function of the ordering energy V normalized by kT . The antisymmetric term U is equal to

−0.6 (a and c) or to −1.2 (b and d). Bold solid lines refer to the Monte Carlo simulations by

Stolwijk [23], which coincide with his theory, bold dashed lines to the model of Kikuchi and

Sato [20]. The SCMF results correspond to the thin solid lines (DTEIPA) and dotted lines

(PEIPA). The upper curves show the ratio ωB/ωA as calculated by the SCMF theory in the

point approximation (equation (55)).

Figure 4 : Collective correlation factors fAA and f
(A)
AB in a simple cubic binary alloy with ordering

tendency as a function of the concentration C(A) for an ordering energy V/kT = 0.63. The

antisymmetric term is equal to zero (a and c) or 0.5 (b and d). Square symbols refer to the

Monte Carlo calculations by Zhang et al. [34] and Qin and Murch [6], dotted lines to the model

of Qin et al. [24] and solid lines to the SCMF theory in the DTEIPA approximation. The upper
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curves show the ratio ωB/ωA as calculated by the SCMF theory in the point approximation

(equation (55)).

Figure 5 : Collective correlation factors calculated by the SCMF theory in a bcc alloy A0.5B0.5 with

ordering tendency as a function of the ordering energy V normalized by kT . The antisymmetric

term U is equal to −1.2. Dotted lines refer to the PEIPA approximation, solid lines to the

DPEIPA.
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