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Modelling of the influence of dihedral angle, volume fractions, particle size and coordination on the driving forces for sintering of dual phase systems

Introduction

The system analysed in this paper is sketched in Fig. 1a. It consists of an aggregate of solid particles immersed in a fluid phase, which may be either a gas or a liquid, that completely fills the pores between the particles. The equilibrium shape of the particles results from the minimisation of interface energy. Proper understanding of the thermodynamics of such a system is a condition for the modelling of the kinetics of microstructural evolution during sintering in the presence of a gaseous or liquid phase [1 -6]. A point of particular interest in this context is the phenomenon of shape accommodation during liquid phase sintering, which governs the redistribution of the liquid during sintering of materials with functionally designed composition gradients [7 -12].

(Figure 1)

We will denote V s the volume of the solid phase, V fl the volume of the fluid phase (meaning either a liquid or a gas) filling the pores, and V excess the volume of fluid surrounding the aggregate (Fig. 1). The volume fraction, u, of fluid phase inside the aggregate is thus

s fl fl V V V u + = (1) 
and the average volume of the solid particles, V p , is

p s p n V V = (2)
where n p is the number of particles in the aggregate. V is a measure of the average particle size. As illustrated in Fig. 2, it is convenient to consider that each particle in the aggregate is enclosed into a Voronoï cell, the faces of which are the planes bisecting the vectors connecting of the centre of gravity of the particle to the centres of gravity of all surrounding particles [e.g. 13] (in Fig. 2, the solid/solid interfaces are represented as located at the position of the cell faces). As the ensemble of Voronoï cells perfectly fills the space, the average cell

volume V VC is u V n V V V - = + = 1 p p s fl VC . ( 3 
)
The mode of packing of the particles is characterised by the shape of the Voronoï cell. The coordination number, n c , of each particle may be defined as the number of faces of the Voronoï cell. According to the works of Scott [14] and Mason [15], the average coordination number in a random packing would be close to 7.3 [13].

(Figure 2)

The excess free energies per unit area of solid/fluid and solid/solid interfaces will be denoted γ sfl and γ ss , respectively. As represented in Fig. 1b, if

γ sfl ≥ γ ss /2,       = 2 cos 2 sfl ss ψ γ γ (4)
where ψ is the dihedral angle. If γ sfl ≤ γ ss /2, ψ = 0, the boundary between two solid particles is wetted by a thin liquid or gaseous film [16 -19] and the excess free energy per unit area associated with this boundary is then equal to 2γ sfl . In this case, the volume of fluid associated with this film separating the particles will be supposed to be negligible in comparison to the total volume of fluid filling the pores. Although the analysis could be extended to more complex cases [START_REF] Delannay | [END_REF], the present work deals only with the case when γ sfl and γ ss are isotropic, i.e. independent of the interface orientation with respect to the crystal lattice. Hence, when the fluid volume fraction exceeds a critical value, the equilibrium shapes of the particles become simple spheres. In this work, the solid and fluid phases are supposed to be in overall chemical equilibrium, i.e. the chemical potentials of their constituents are supposed to be identical in the two phases. In addition, both phases are modelled as being incompressible. Obviously, this approximation is invalid when the fluid is a gas. Nevertheless, we believe that, although not accounting for the compressibility of the gas phase, the model allows gaining useful insight even into the process of sintering in solid-gas systems. The evolution of the system is thus considered to be driven by the mere decrease of the excess free energy F associated with solid/fluid and solid/solid interfaces, which writes

                    + = + = ss sfl sfl ss ss sfl sfl 2 cos 2 A A A A F ψ γ γ γ (5)
where A sfl and A ss are the total solid/fluid and solid/solid interface areas. As γ sfl acts as a simple scaling parameter, the only significant material parameter is the dihedral angle ψ. A decrease of F can be brought about by a change of the particle sizes The driving forces for the evolution of the system can thus be expressed as partial derivatives of F with respect to 3 / 1 p V , n c , and V fl (or u). The purpose of the present work is to make possible the computation of these driving forces by modelling the dependence of A sfl and A ss on 3 / 1 p V , n c , u and ψ at thermodynamic equilibrium.

Model

As represented in Fig. 2, owing to the wetting mechanisms, the liquid phase is situated at the cell apexes and, if u is high enough, along the length of the cell edges [20,21]. When u The Voronoï cell thus consists of an assembly of n c pyramidal prisms of which the apex is the particle centre of gravity and the basis is one of the cell faces, the liquid phase being segregated at the corners and along the edges of the pyramid basis. As illustrated in Fig. 3, the model developed in the present paper consists in substituting these pyramids by cones of revolution of which the axis is the vector connecting the centres of gravity of the particles in contact. The average Voronoï cell is thus modelled as equivalent to n c identical cones. The volume of this representative cone is

) 1 ( c p c VC cone u n V n V V - = = . ( 6 
)
The height of the cone is the average distance, H, between the particles centre of gravity and the Voronoï cell faces. By symmetry, the solid/liquid interface meets the lateral surface of the cone at 90°.

(Figure 3)

A limitation of the model is that the fluid is considered to keep the shape of a circular channel circumscribing the solid/solid interface boundary. It is well known that, due to the Raleigh instability, cylindrical channels can spontaneously fragment into a series of isolated spheres when the ratio of the length to the radius of the channel becomes larger than a critical value. When modelling sintering in solid-gas systems, this phenomenon is commonly considered to cause the transition between the second stage of sintering, during which the pores are assumed to form a fully interconnected network, and the third stage of sintering, during which the pores are assumed to be isolated from one another. Hence, the validity of The model is fully characterised by the average particle volume, V p , and the average particle coordination, n c , in the aggregate. Indeed, we can assume that, at the beginning of the sintering process, no solid/solid interface is yet created and the particles are then simple spheres in contact with one another. The sum of the surface areas developed by the spherical solid/fluid interfaces in the n c cones must then be equal to the surface area of a sphere. This

writes 2 2 c π 4 ) cos 1 ( π 2 H H n = - β (7)
where β is the half angle at the cone apex (Fig. 3). Hence, β derives from the average coordination number n c of the particles :

        - = c 2 1 arccos n β . ( 8 
)
Notice that the model does not require n c to be an integer. When the particles are simple spheres in contact with one another, u reaches a critical value u m which expresses as

) 1 ( 4 3 tan 4 1 tan 3 π 3 π 4 tan 3 π c c c 2 c 2 3 c 3 2 3 m - - = - = - = n n n n H n H H u β β β . ( 9 
)
It can easily be verified that the u m values expressed by ( 9) agree fairly well with the u m values for regular packings of spheres : primitive cubic (n c = 6, u m = 0.4764), body centred cubic (n c = 8, u m = 0.3198), and closed-packed (n c = 12, u m = 0.2424) [START_REF] Delannay | [END_REF]. When u = 0, the sum of the volumes of the n c cones must be equal to V p , which yields and Y(X) into non-dimensional variables :

3 2 c c c 2 3 c VC p ) 2 ( ) 1 ( 3 4π tan 3 π H n n n H n V V - - = = = β . ( 10 
H X x = ; ( 11 
)
H X Y x y ) ( ) ( = . ( 12 
)
The ranges for x and y(x) are thus 0 ≤ x ≤ tanβ and 0 ≤ y(x) ≤ 1. We will denote y'(x) (= tanθ : see Fig. 4) and y"(x) the first and second derivatives of y(x). The boundary points of the curve at coordinates (x min , 0) and (x max , y max ) are thus such that

( ) β tan 1 max max y x - = , ( 13 
)
β tan ' max = = y y y , (14) and 2 tan 
' 0

ψ = = y y . ( 15 
)
The two principal radii of curvature of the solid/fluid interface are respectively parallel and perpendicular to plane (X, Y) and will be denoted R in plane and R out of plane . If s is the curvilinear coordinate along y(x), it is easy to derive

( ) 2 / 3 2 plane in ' 1 " y y ds d R H + = = θ . ( 16 
)
(see for example Eq. 3 in [22]). R in plane can thus be either positive (i.e. pointing towards the cone axis) or negative. On another hand, the solid/fluid interface being generated by the 

x x H R + = = θ . ( 17 
)
R out of plane is thus always positive.

(Figure 4) u, A sfl and A ss are univocally determined by the curve Y(X). Firstly, the volume of fluid in the representative cone is the volume created by the revolution of the surface S a + S b around the cone axis (Fig. 4). The revolution of S a and S b creates two volumes V a and V b , respectively, which express as

∫ = max min 3 a π 2 x x xydx H V (18) 
and

( ) β β β tan 2 tan 3 tan π 2 2 max max max 3 b x x x H V -       - + = . ( 19 
)
The fluid volume fraction is thus

( )       -       - + + = = ∫ max min tan 2 tan 3 tan tan 6 2 max max max 2 VC l x x x x x ydx x nV V u β β β β (20)
where use has been made of relation [START_REF] Colin | Proceedings Colloque 'Les traitements des poudres et leurs conséquences[END_REF]. Secondly, the solid/fluid interface area is created 

Finally, as Hx min is the radius of the circle circumscribing the solid/solid interface, the total solid/solid interface area is simply

2 min 2 c ss π 2 x H n n A = . ( 23 
)
Relations ( 20), (22), and ( 23) provide all the ingredients needed for expressing, according to (5), the variation of the free energy F of the system as a function of the parameters 3 / 1 p V , n c , u, and ψ.

Results and discussion

Exact solution

At thermodynamic equilibrium, for any value of u, y(x) is the curve that both complies with the boundary conditions (13 -15) and brings about a minimum of the interface energy (5). This amounts to the solution of a variational problem [21,23]. Alternatively, the curve y(x) can be derived on the basis of the fact that, when the interface area has reached its minimum, the curvature of the solid/fluid interface is constant everywhere :

H r R R R av av plane of out plane in 1 1 1 1 = = + ( 24 
)
where r av is the constant average curvature which depends on the parameters u, β, and ψ/2.

Hence, using ( 16) and (17), y(x) is a solution of the differential equation in which the value of r av derives from the three boundary conditions ( 13) to (15). A convenient procedure for solving equation (25) numerically is to make use of the two conditions ( 13) and ( 14) and to adjust iteratively the value of the parameter r av for finding the solution that complies with the third condition (15).

( ) ( ) 0 ' 1 1 1 ' 1 ' " 2 / 3 2 av 2 = + - + + y r x y y y . (25) 
Instead of computing y(x) by solving equation ( 25) numerically, use can be made of existing analytical solutions of the problem. Indeed, the family of axisymmetrical surfaces with constant average curvature has been described in 1841 by the mathematician Delaunay [24]. Delaunay showed that this family can be generated by the revolution of the family of 2D curves that are the locus of one the foci of an ellipse, parabole, or hyperbole as it rolls without slipping along the revolution axis. These 2D curves are commonly called elliptic, parabolic, or hyperbolic Delaunay's roulettes, respectively and the constant average curvature of the revolution surfaces that are generated by them is positive, zero, or negative, respectively [25,26]. The Delaunay's roulettes can be expressed analytically in various ways [23,26]. We have made use the parametric formulations proposed by Ferréol and Mandonnet [26] , the mathematics of which is summarised in the Appendix of the present paper.

Fig. 5 aims at illustrating the shape of a few y(x) curves belonging to the family of Delaunay's roulettes and obtained using values for ψ/2 and n c that are likely to be representative of practical sintering systems : ψ/2 = 0 (Fig. 5a), π/9 (Fig. 5b) or 2π/9 (Fig. 5c) ; n c = 6.83 (full curves) or 10.47 (dotted curves) (corresponding, from (8), to β = π/4 or π/5, respectively). The graphs on the left hand side of Fig. 5 present a few y(x) curves representative of u values ranging from somewhat below the maximum (x min close to 0, i.e. a very small solid/solid contact area) to less than 0.15 (the actual u values for the different curves does not matter for the following discussion). For each of these curves, the graphs at the right hand side present the variation of the in-plane curvature H/R in plane as a function of x. For all curves, the H/R in plane varies quite widely along x. For the curves with small x min , this variation becomes particularly abrupt close to x min . For ψ/2 = 0 (Fig. 5a), the curvature decreases with increasing x and remains always positive. In contrast, for ψ/2 = 2π/9 (Fig. 5c), the curvature increases with increasing x and can remain negative all the way (in particular when ψ/2 > β). For the intermediate case ψ/2 = π/9 (Fig. 5b), both of these two behaviours can be observed depending on the values of β and u.

(Figure 5)

When ψ/2 ≠ 0 (Fig. 5b andc), the curves exhibit an inflexion point (curvature crossing zero) when x min becomes small enough. In such cases, it was found that u reaches a maximum for a certain x min value and starts to decrease when x min further decreases. The interface energy F also presents a minimum when x min varies in the same range. This indicates that, when ψ/2 ≠ 0, the formation of the first solid/solid necks between contacting particles at the very early stage of sintering occurs via a transition between two distinct thermodynamic states with different energies. This phenomenon will be further analysed in the future.

Constant R in plane approximation

It is tempting to compare the value of the interface energy F (5) derived from the exact solution of the problem to the value of F derived by approximating Y(X) by the equation of an arc of circle. This approximation is represented in Fig. 6. If R = rH is the radius of the arc of circle, the boundary conditions (13 -15) imply that the coordinates (x 0 , y 0 ) of the centre of the circle are Relations ( 20), (22), and ( 23) then yield the following analytical expressions : 

      - = 2 cos 1 tan 0 ψ β r x ( 26 
                                  - +       -       - +       - + + -       - -       - +       - = 2 cos tan
ψ β β β ψ β β ψ β ψ β ψ ψ β ψ β β ψ β ψ β ψ ψ β β r r r u , (31) 
            - -       -       - = 2 cos cos 2 cos 1 tan 2 π 2 2 2 c sl ψ β ψ β ψ β r r H n n A , ( 32 
) and 2 2 2 c ss 2 sin 2 cos 1 tan π 2       +       - = ψ ψ β r r H n n A . ( 33 
)
These expressions are valid whatever the value of r, positive or negative. They offer the advantage that, if the constant R in plane approximation is sufficiently accurate, the partial derivatives of F with respect to The r values that provide the same u values as for the cases dealt with in Fig. 5 have been computed by numerical solution of equation (31). For each curve 1/r in plane (x) presented on the right hand side of Fig. 5, the computed value of 1/r is represented by a vertical arrow pointing on the corresponding point on the curve. Notice that some of the curves drawn for the case ψ/2 = 2π/9 yield negative r values. As a visual illustration of the difference between the exact and approximate approaches, Fig. 7 shows, for the cases ψ/2 = 0, β = π/4, and u = 0.408 or u = 0.065, the comparison of the exact curves y(x) (full lines) with the corresponding arcs of circles approximations (dotted lines). Quite strikingly, the difference is so small that it cannot be seen unless the graph scales are very widely enlarged. For the arc of circle approximation, x min is slightly lower whereas x max is (very) slightly larger (these two effects compensate for one another in such a way as to yield the same u value).

(Figure 7)

The relative difference ∆F/F between the two approaches was computed from relation (5) using ( 22), ( 23), (32), and (33) for a large number of plausible combinations of parameters (among which all the cases corresponding to the curves in Fig. 5). The difference was most generally below 5×10 -4 , which we actually consider to be the level of precision of the numerical computation procedure that was used. The largest differences were found for the largest u values, when the (exact) y(x) curves begins at small x min (as illustrated in Fig. 5, the curvature variation becomes then particularly abrupt close to x min . At very small x min , the arc of circle approximation breaks down when the u value for the exact solution is so large that the arc of circle providing the same u would have to start at a negative x min : the difference between the two approaches can then not be computed. An example of this case is the lowest curve for β = π/4, ψ/2 = 2π/9 in Fig. 5c. For the 16 other curves presented in Fig. 5, ∆F/F did not exceed 0.1 % except in two cases : the lowest curve drawn for β = π/5, ψ/2 = 2π/9 in Fig. 5c (∆F/F= 0.24%) and 4.3 % for the lowest curve drawn for β = π/4, ψ/2 = 0 in Fig. 5a (∆F/F= 4.3%). Hence, it can be concluded that, for all practical purposes, equations (31) to (33) derived using the arc of circle approximation involve no significant lack of precision (a similar conclusion was established by Heady and Cahn [22] for the case of the shape of a liquid meniscus between two solid spheres).

Conclusion

The model developed in this work allows the use of continuous variables for expressing the dependence of the solid/liquid and solid/solid interface areas on the dihedral angle ψ/2, liquid volume fraction u and particle coordination n c . Although an exact solution is mathematically accessible (through numerical solution of a differential equation or using the Delaunay's surfaces), the approximation of the profiles by arcs of circle yields analytical expressions which, for most practical purposes, involve no significant loss of precision. An example of application of the model is the prediction of the influence of u and n c , on the distribution of liquid in gradient materials processed by liquid phase sintering [START_REF] Delannay | [END_REF]. 

Elliptic roulette

The formulations are much simplified by denoting

2 1 f e - = . (35) 
The parametric equations for x and y are then 

) 37 
The t variable is related to the first derivative y'(x) (= tanθ on Fig. 4) as ) ( '

1 sin x y e f t - = . ( 38 
)
Hence, t min and t max straightforwardly derive from conditions ( 14) and (15). However, two possible t min (and t max ) values are solutions of (36) and, depending on the value of the shape parameter f, the right pair of t min and t max needs to be chosen in order to have the slope of the curve to evolve monotonously from tanψ/2 at t min to tan β at t max . 

Hyperbolic roulette

The t variable is related to y'(x) as ) ( '

1 tan x y e f t - = . ( 42 
)
Again, using conditions ( 14) and ( 15), the right couple of t min and t max needs to be chosen in order to have the slope of the curve to evolve monotonously from tanψ/2 to tan β. 

V

  and/or by a change of particle shapes. A change of shape without change of size may result from a change of the coordination n c and/or from the addition or subtraction of some fluid volume dV fl in the pores.

  solid/solid interface contracts on the central part of the face of the cell until it becomes restricted to a point. Beyond this stage, the particles assume the shape of spheres.

  will be questionable at low fluid volume fraction when extensive fragmentation of the fluid channels can have developed.

  As represented in Fig.4, let us consider an orthogonal system of axes of which the origin is at the centre of the cone basis, with coordinate axis X parallel to the basis, and Y pointing to the cone apex. Plane (X, Y) intersects the solid/fluid interface along a curve Y(X), which depends on the parameters u, β, and ψ/2 (for the needs of what follows, the surface occupied by the fluid is, in Fig.4, divided in two parts S a and S b ). It is convenient to convert X

  of the y(x) curve around the cone axis, reference to Fig.4indicates that R out of plane is related to y'(x)

  by a revolution of the curve Y(X) around the cone axis. Denoting Hds an increment of length along the curve Y(X), A sfl writes

V

  , n c , and u (i.e. the driving forces for sintering) can also be expressed analytically.

  a and b are the half-axes of the ellipse or hyperbole from which the roulette is generated (there is no need to deal with the intermediate case of the parabolic roulette). The x and y values along the curve y(x) are expressed in terms of a common parametric variable denoted t. The boundary points of the curve y(x) at coordinates (x min , 0) and (x max , y max ) are thus determined by the two boundary values t min and t max .
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 2 Figure 2 : Shape of a particle embedded inside its associated Voronoï cell. The solid/solid interfaces are represented as located at the position of the cell faces.
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 4 Figure 4 : The curve Y(X) is the intersection of the solid/fluid interface with a plane (X, Y) through the cone axis. The surface occupied by the fluid is divided in two parts S a and S b .
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 5 Figure 5 : Left hand side : y(x) curves belonging to the family of Delaunay's roulettes ; right hand side : corresponding variation of the in-plane curvature H/R in plane as a function of x. (a)ψ/2 = 0 ; (b)ψ/2 = π/9 ; (c)ψ/2 = 2π/9. The full curves are for n c = 6,83 (β = π/4) and the dotted curves for n c = 10,47 (β = π/5).
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 6 Figure 6 : Approximation of the curve Y(X) by an arc of circle.
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 7234 Figure 7 :Comparison of the exact solutions (full lines) for the cases x max = 0.710 andx max = 0.900 with arcs of circle of radius r = 0.989 and 0.341 (dotted lines), which correspond to the same u values.
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 567 Figure 5 : Left hand side : y(x) curves belonging to the family of Delaunay's roulettes ; right hand side : corresponding variation of the in-plane curvature H/R in plane as a function of x. (a)ψ/2 = 0 ; (b)ψ/2 = π/9 ; (c)ψ/2 = 2π/9. The full curves are for n c = 6,83 (β = π/4) and the dotted curves for n c = 10,47 (β = π/5).
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Appendix : Analytical formulation for the Delaunay's roulettes

Use was made of the parametric equations proposed by Ferréol and Mandonnet [26] of which the mathematics can be summarised as follows (normalising by the cone height H is done everywhere). The shape of a particular elliptic or hyperbolic roulette is determined by the parameter