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The microstructure of a material determines the mechanism for deformation and the mechanical properties of the material [START_REF] Kelly | Strong Solids[END_REF]. Further understanding of the relationship between the microstructure and mechanism of deformation will open up possibilities to create better materials that are designed specifically for an application. Only by studying the fundamental origins of mechanical deformation, can we further understand the functionality of the microstructure. However, most structural materials have intricate microstructures that complicate, the understanding of the physical origin of the mechanical properties. In order to improve understanding, it is essential to study model systems with controlled and simple microstructure.

Nanostructured materials are currently at the forefront of research because of their extraordinary mechanical properties. These have been demonstrated in materials that have naturally occurring nanoscale microstructure such as Inconel and Nimonics [START_REF] Cahn | [END_REF] as well as artificially designed nano-sized multilayers of metal nitride systems [3]. The small dimension of nanoscale structure enables the incorporation, naturally or artificially, of significant amounts of coherency strain. The extent to which coherency strain is desirable or even necessary for the development of the remarkable mechanical properties has long been discussed [START_REF] Cahn | [END_REF]. However, studying the effect of coherency strains in natural systems is difficult because the complicated or random nature of the microstructure leaves open too many variables. Semiconductors provide a model system in which the one single effect, coherency strain in nanostructures, can be studied in isolation [4]. On a single crystal substrate of very high crystalline perfection, epitaxial structures with very low dislocation density can be grown in which the only significant variable is the lattice constant, and hence the coherency strain. Molecular beam epitaxy (MBE) is a high-precision growth technique that can grow epitaxial layers of a semiconductor alloy with crystallinity as good as the substrate. MBE ensures that the layers are flat on the atomic scale and it easily controls the thickness and coherency strain of each layer. Because these semiconductor structures are relatively unfamiliar systems in the context of mechanical properties, we will introduce important aspects in some detail.

Previous work [4] showed qualitatively that coherently strained superlattices are surprisingly strong at 900°C, but they could not quantify the strength. In contrast, nanoindentation showed that at 300K the yield strength of coherency strained superlattice is reduced [5]. In this paper, we show that the coherently strained superlattice structures display massively enhanced strength at high temperature by performing micro-flexure experiments at 500 o C.

Coherency Strain

Epitaxy is the growth of single crystal by deposition of more material onto a singlecrystal substrate. In heteroepitaxy a layer of different material is grown, but retaining the crystal structure and orientation of the substrate. When the atomic spacing of the heterogeneous material is different from the substrate, there is a misfit. In thin layers, it is thermodynamically favourable to accommodate the misfit by the creation of strain, so that the in-plane lattice constant of the layer becomes coherent with the substrate. This is coherency strain, and a layer with full coherency strain (i.e. zero relaxation) equal to the misfit is described as pseudomorphic to the substrate. The misfit, and hence the coherency strain between an alloy layer and the substrate, is controlled by varying the composition of the epilayer. The lattice constant may be taken to vary linearly with alloy composition according to Vegard's law [4]. For a review of strained layer epitaxy, see Dunstan [6].

Critical Thickness

In thick pseudomorphic layers, above a critical thickness, thermodynamic stability is lost and it is energetically favourable to create misfit dislocations to relax the coherency strain. As the thickness of a coherently strained layer is increased, the strain energy increases linearly from zero. The energy of the misfit dislocations has a weaker (logarithmic) dependence on thickness. So coherency strain is energetically favourable at small thicknesses. Above critical thickness, once the strain energy is sufficient for a misfit dislocation to exist, thermodynamics permits misfit dislocations to reduce the total energy of the system by the nucleation and propagation of misfit dislocations that leads to the loss of coherency strains [7][8]. Taking kinetic effects and dislocation multiplication mechanisms into account, the limit for a single strained layer is roughly that the strainthickness product, εh, should be less than 0.8nm [6].

The volume of a layer with coherency strain is thus limited by the critical thickness, of only 80nm for a 1% strained layer. Such thin layers provide insufficient material for mechanical testing. Larger volumes of coherently strained structures that enable mechanical testing are achieved by alternating the strains of subsequent layers, thereby balancing the strain of a layer with another layer of the opposite strain. For example, a tensile layer is grown on a compressive layer. This creates a bilayer, within which each layer must still be thinner than its own critical thickness, but the bilayer is now stable.

Producing repeats of this stable bilayer yields an indefinitely thick structure, called a superlattice. In this way, epitaxial growth of many pseudomorphic bi-layers forms a large volume of coherently strained superlattice structure that is sufficient for mechanical testing. Brenchley et al. [4] and Jayaweera et al. [5] grew and studied such superlattices consisting of 2.5µm thickness of InGaAs bilayers grown on (001)-oriented InP substrates.

The InGaAs / InP System

In the ternary-binary system InGaAs/InP the relevant lattice constants are a GaAs = 0.56533 nm, a InAs = 0.60584 nm, and a InP = 0.58688 nm. Consequently, using Vegard's Law, In x Ga 1-x As is lattice-matched to InP at x = 0.53. Both compressive and tensile layers can be grown on InP substrates by varying x a little above and below this value, and the misfit is ε 0 = 0.07(x -0.53). Since the melting temperature, T m , of InAs is 943 o C, GaAs is 1238 o C and InP is 1062 o C, the softening temperature of InGaAs at 0.3T m is estimated to be around 300-400 o C [START_REF] Grant | Chemistry of Aluminium, Gallium, Indium and Thallium[END_REF]. So, at 500 o C bulk InGaAs will be soft and will have similar strength regardless of composition. Bulk InGaAs and InP also have very similar values of dislocation Burgers vectors, coefficients of thermal expansion, elastic constants, Poisson's ratio, yield strength and other mechanical properties. In effect, interfaces are absent between the superlattice and the substrate and within the superlattice itself because nothing except the coherency strain changes significantly across any of the compositional or metallurgical interfaces. So, the InP substrate and the InGaAs superlattice amount to a perfect single crystal distinguished only by the presence of a built-in strain field consisting of the coherency strains. If a mechanical property such as the yield strength can be changed by large amounts in such a structure, then this becomes an ideal model in which to study, in isolation, the effects of coherency strains on the mechanical property.

F-Factor

In these structures, four parameters determine the design. Taking the convention that compressive strain is negative, these are the strains ε C and ε T and the thicknesses h C and h T of the compressive and tensile layers respectively. In a strain-balanced structure with no net stress in a bilayer, we have ε C h C = -ε T h T . If the thicknesses are symmetrical then h C = h T . However, strain-thickness balanced but asymmetric structures, (

ε C h C = -ε T h T , h C ≠ h T ), and strain-imbalanced symmetric structures (ε C h C ≠ -ε T h T , h C = h T )
can also be grown, and indeed are required if we are to distinguish the effects of compressive and tensile coherency strain. It turns out, however, that a single parameter constructed from these four parameters is convenient to characterise these superlattices, and indeed may have physical significance. Jayaweera et al. [5] used a thickness-weighted strain modulation expression, the F-factor, defined as

C T C C T T h h h h F + - = ε ε (1)
Jayaweera et al. [5] showed that in nanoindentation at room temperatures, the nanoindentation yield pressure decreased linearly with this F-factor, rather than with any parameter of the tensile or of the compressive layers alone. We find that this parameter, F, is again useful for characterising these superlattices in our bending experiments at high temperature. 

Experimental Methods

Specimen Growth and Characterisation

Superlattice structures were grown on 0.35 mm thick, 2 inch diameter sulphur-doped InP wafers using a VG V80 MBE system. The structures were checked for epitaxial quality by high resolution X-ray diffraction and cross sectional transmission electron microscopy; and the morphology by optical microscope and field emission scanning electron microscopy. Such structures often develop 'wavy-layer' growth, however, the morphology of our samples was flat. Some small oval defects were seen on the surface of some samples. They did not change the strain in the superlattices and nanoindentation on the defects did not show any change in yield pressure [5]. The compositions, strains and layer thicknesses of the superlattices are given in table 1. Growth and characterisation are described in more detail in previous papers [4][5].

[Insert table 1 about here]

The overall thickness of every superlattice structure used in this experiment was always 2.5µm. The thicknesses of the layers within the superlattices were chosen to vary the influence of coherency strain on dislocation motion while always being thinner than the critical thickness, so that the layers remain pseudomorphic. There were ten samples in series S (denoting symmetric thicknesses). The thickness of the tensile and compressive layers was kept constant at 50nm so that there are twenty-five bilayers. Half of these samples were designed to have zero net strain (strain balanced -S1, S6, S7, S9 and S10) and the others were designed to have 0.2% net compressive strain (unbalanced strain).

There were three similar samples in which the layer thicknesses were reduced to 17nm (series T denoting thin layers). There were more bilayers (74 repeats) in the series T structures so that the overall superlattice thickness was again 2.5µm. This sample group was designed to investigate the effect of thickness on the strength of the superlattice.

Finally, there were two samples in series A (denoting asymmetric thicknesses), in which each bilayer contains a thick layer with a small strain and a thin layer with a large strain.

They were designed so that the strain-thickness products of the compressive and tensile layers were equal and opposite. These two samples were mirror images of each other as regards tensile and compressive layers, and are crucial for determining which layers are responsible for changes in the mechanical properties.

High Temperature Three-Point Flexure Testing

The directions for cleavage of (001) oriented InP are the [110]. It was necessary to use small beams in order to get a sufficient number of specimens from each wafer.

Accordingly, cleavages 6 mm apart were first made along a [110] direction. Then beams about 1mm wide were made by cleaving along a perpendicular [110] direction.

Bending small beams is difficult. It is important that the beams are aligned to the loading axis so that only a pure bending force is applied on the beams. Frictional effects must also be minimised. We used rollers to contact the beam; these rollers themselves being articulated on another roller to enable dynamic in situ misalignment correction by allowing the specimen to tilt into the correct alignment during test (figure 3). High temperatures (in air) impose constraints on the materials used to construct the rig. We used stainless steel for all components.

Loads on bend specimens applied through rollers that are too small result in high pointload compressive stresses that can cause local deformation. A diameter of about three times the thickness of the specimen beams is considered suitable [START_REF]Testing of Plastics; Flexural Test[END_REF]. The diameter of the rollers used was therefore chosen to be 1mm. Design and handling of a rig for fourpoint flexure testing proved impractical, because the small sample does not provide the necessary space for four contact points to be achieved easily, so we use the three-point method.

[Insert figure 2 InP is brittle under rapid loading even at 500 o C so to measure significant plastic deformation, it was necessary to keep the rate of load application very slow. Load application is controlled by the cross-head speed. At cross-head speeds ~0.2mm/min, the specimens snap with insignificant plastic deformation at less than 0.5 degree bend. When the speed of the cross-head is decreased to 0.02mm/min, significant plastic deformation occurs.

The extent of plastic deformation also depends on the stress state of the superlattice.

When the superlattice is in tension, the beams failed after little plastic deformation of around 1 degree bend. However, lowering the cross-head speed below 0.02mm/min is not practical, e.g. at 0.01mm/min it would take more than an hour to complete an experiment.

The full stress-strain curve that we are interested in could be measured at 0.02mm/min when the superlattices were tested in compression. Under these conditions, specimens with a pronounced bend (over 20 degrees) can be recovered. Some of these specimens were analysed after bending by TEM [START_REF] Lloyd | [END_REF].

The maximum stress in a homogeneous beam bent in a classical three-point flexure is where P is the force applied, l is the span between the rollers, b is the width and h is the thickness of the specimen. We use this to define a normalised force, with units of stress, The initial deviation from linearity is not resolvable. The force goes to a high value before dropping back, as observed in compression testing of bulk specimens [12][13][14]. This is due to the low dislocation densities in semiconductor single crystals and the energy required for dislocation multiplication. Because of the low dislocation density in the material, it requires more dislocations to be nucleated from dislocation generation sites to accommodate plastic deformation. Many dislocation nucleation sites generating dislocations require large amounts of activation energy which might be the cause of the initial overloading. When enough dislocation generation sites are operating, then there are enough dislocations for the sample to accommodate plastic deformation and so the force drops to an equilibrium value. This is similar to the "pop-in" observed in indentation testing where again the stress is increased at yield or small plastic strains by a shortage of dislocations (see the article by Syed Asif and Pethica [15] for detailed explanation). This phenomenon is not our subject here. Instead, we are interested in the latter part of the curve where the force is sensibly constant or increases only slightly with deflection. With increasing deflection, there is a small increase in strength that is similar in all samples. This effect is independent of the superlattice structure and may be attributed to strain hardening of the substrate.

[Insert figure 4 would all have the same effect on the beam strength since they all have essentially the same elastic moduli. Since the effect is not constant, but is highly correlated with the superlattice parameters (here subsumed into the F-factor), it follows that the superlattices must be deforming plastically. This conclusion is in agreement with cross-sectional TEM images of bent specimens, which show evidence of the passages of many dislocations through the superlattices [START_REF] Lloyd | [END_REF]. In figure 5, we plot the normalised force for all samples against the variable to be investigated. The normalised force value at 0.18mm deflection is used because the effects both of low dislocation densities and of substrate strain-hardening are at a minimum at this point. We designed the symmetric samples with h layer = 50 nm (shown as solid circles in the figure) to be the benchmark series because the thicknesses of the bi-layers are all identical so the only variable in this sample is the amount of coherency strain in the superlattice. A linear regression is plotted for the symmetric samples only. In figures 5a and 5b, the normalised force is plotted against the compressive and tensile strains, and the S samples are seen to fit the regression line quite well. That is, the strength of the superlattices does increase proportionally to the strain grown (either tensile or compressive or both) in the superlattice. The other samples in series A and T where h layer ≠ 50nm test if these is an dependence on layer thickness as well. If the relationship between strength of the beam and the variable is true, then all the samples will lie close to the linear regression fit. Sample A1 has thin compressive layers, half the thickness of the layers in series S, with a large value for compressive strain. So, in figure 5a, the plot against compressive strain, the important datum is this sample (shown as a solid triangle). Compared with the regression line for the Series S data, it falls at about half the value of P norm corresponding to its value of compressive strain. It clearly shows that it is not the compressive strain alone that determines the strength of the beam. Similarly, in figure 5b, the important datum is A2 (shown as an inverted triangle). A2 is a mirror image of A1, with thin tensile layers, half the thickness compared to series S. Again it is at half the P norm corresponding to its value of tensile strain. It clearly shows that it is not the tensile strain alone that determines the strength of the beam. We also note that the symmetric sample T3 with layers three times thinner than series S only has ⅔ the P norm compared to the regression fit at its corresponding tensile strain value. The findings of figures 5a and 5b are that strains and thicknesses are relevant. Because the external stress field is essentially homogeneous through the superlattice, it is plausible that it is a strain times the volume fraction of material with that strain that determines the contibution of the superlattice to the strength of the beam.

Discussion

We define the compressive and tensile volume fractions, V C and V T , to be the ratio of the total thickness of the respective strained layers in the superlattice to the thickness of the whole superlattice. For figure 5c, in which the normalised force is plotted against the strain-thickness product ε C V C , the previous outlier A1 in figure 5a is now located much closer to the regression fit. In fact, all samples fit the regression line well so this indicates that the strength of the beam can be determined by ε C V C . Similarly, comparing figure 5d with figure 5b, there is an improvement, but the two outliers A2 and T3 are still outside the limits of scatter. It seems that ε T V T does not account so well as ε C V C for the strengthening of the structures.

Two samples do not fall on the regression fit for any of the variables. They are two samples in the symmetric series S1 and S7. Sample S7 passed its characterisation test in the past, but before the high temperature test was performed, the sample was seen to have some sort of contamination on it and efforts to remove the contaminants were These two anomalous samples are represented in all figures as × and were omitted from the regression analysis.

[Insert figure 6 about here] Recently, Jayaweera et al. [5] showed that the yield strength of coherently strained superlattices used in this study varied linearly with F under nanoindentation. So, to test if F is the parameter that determines the strength, we plot the normalised force values against F in figure 6. The F-factor (described in section 1.4) is ε T h T (similar to figure 5c) plus ε C h C (similar to figure 5d) over the thickness of a bilayer period. The plot of normalised strength against F in figure 6 gives us a relationship that is simply an average of figures 5c and 5d. We also distinguish in figure 6 between strain balanced symmetric samples (solid circles) and symmetric samples with a net strain (open circles). There appears to be no dependence on strain imbalance, and overall the quality of fit to the Ffactor appears to be less satisfactory than it is to ε C V C in figure 5c. This also implies that there is no dependence on the average composition of the superlattices as the net strain samples have more indium than samples that are strain balanced.

In being unable to decide experimentally if ε C V C or F is the factor determining the strength of the superlattices, we do not contradict Jayaweera et al. [5]. The discrepancy between Jayaweera's nanoindentation at room temperature and our beam bending at 500 o C is not unexpected because in that paper, the strain was very inhomogeneous, being the strain field under an indenter. The size of any minimum volume for plastic relaxation was crucial. Here the strain is essentially homogeneous. The size of the initial yield volume is therefore less relevant. That means that these experiments cannot tell the difference between ε C h C / h being the parameter of importance, or (ε C h C + ε T h T ) / (h T + h C ), unless the strain-imbalanced samples were to give an indication, and figure 6 shows that they do not. We are obliged to compare beam-bending at 500 o C with nanoindentation at 300K, because at 300K, the beams are brittle and show no plastic deformation before breaking. Due to the lack of working high temperature indentation equipment, we cannot obtain nanoindentation data at 500 o C. Were these experiments possible, we predict that the superlattic strength would be lowered with F at 300K, and that the nanoindentation yield stress would be increased with F at 500 o C.

Analysis of Strength of Superlattices

We approximate the problem by assuming 100% plastic deformation with no work hardening throughout the thickness of the beam. If the beam were homogeneous, the stress distribution would be symmetric with the neutral plane at the centre. Because the substrate is weaker than the superlattice, the stress distribution across the beam becomes asymmetric and the neutral axis must shift towards the superlattice to balance moments on both sides. Figure 7 shows the moment distribution of the beam. For simplicity, the force is represented by stress, i.e. force per unit area. To be consistent with units, the width of the beam, b is included in equation 7 but is not shown in figure 7 for clarity.

[Insert figure 7 where σ SL is the strength of the superlattice and h SL the thickness of the superlattice. We approximate this to a delta-function of area A situated at the surface of the beam, z = +½ h. The neutral plane is at z = z 0 , and force balance requires that

0 2 2 0 sub 0 sub =       + σ -       - σ + z h b z h b Ab ( 4 
)
where b is the width of the beam and σ Sub is the yield stress of the substrate. So

0 sub 2 z A σ = ( 5 
)
The moment is

( ) b A Ah h z h Ab dz z z b dz z z b M h z z h         σ - σ + σ = - + - σ + - σ - = ∫ ∫ + - sub 2 sub 2 sub 2 0 ½ 0 sub ½ 0 sub 4 2 ½ ) ( ) ( 0 0 (6)
In the absence of any superlattice strengthening, A becomes zero and the moment becomes, as expected, Equation 11 is plotted as a function of η in figure 8. In agreement with the qualitative argument given above, χ diverges to infinity as η approaches the value of 2. This theoretical limit to η means that the superlattice can at most double the strength of the beam. This is readily understood by noting that an infinitely strong thin surface layer requires the neutral axis to be at the surface of the beam.

[Insert figure 9 about here]

An exact analysis of the strength of the superlattices is impossible, because some of the specimens have strengths above the theoretical limit of two times the value of the substrate alone. However, we can calculate superlattice strengths for the samples that do not exceed the theoretical limit. The specimens with η < 2 (S2, S3, S4, T1, T2 and A1) are placed on the curve in figure 8 according to their values of η from figure 5 with error bars representing the error margin from its actual substrate strength. Reading χ off the abscissa, and taking the strength of the substrate from the intercept of the regression line in figure 5, we obtain the values of σ SL which are plotted in figure 9. All data points lie close to a straight line except the datum for T3. The moment ratio for T3 lies very close to 2 as shown in figure 8, so the value of σ SL for this specimen will have a large error. Results from η < 2 also shows that the superlattices have strengths up to 2GPa which is about 75 times the strength of the substrate. The strength of the substrate is about 27MPa with a standard deviation of around 2.2. This value is in the region of published values of yield stress of InP at 500 o C [13]. The small differences may be due to the effects of doping, crystalline quality and differences in strain rate [14].

Since we cannot quantify the superlattice strengths for samples with η > 2, it is also worth calculating a maximum limit to the measured yield strength in these experiments.

Let the superlattices be purely elastic, so that the stress is given by the relevant modulus times the strain. The modulus is obtained by rotating the c IJ tensor through 45° about the z-axis giving the IJ c′ appropriate for stress in the (110) direction. Then for beams which are wide compared with their thickness, the stress-strain equation to be solved is 

          ε ε           + + - + - + + + = ε ′ =           σ σ = σ ⊥ ⊥ 0 ½ ½ ½ ½ ½ ½ ½ ½
= σ = h H A z (17)
The strain in the superlattice is given by

F o r P e e r R e v i e w O n l y R z h 0 SL ½ - = ε ( 18 
)
where R is the radius of curvature to which the beam is bent. Using equation 17, and introducing the dimensionless parameter ρ = R / h, we obtain

ρ + γ χ′ = ε 2 1 SL (19) where sub 
/ σ = χ′ H . Thus ε SL cannot exceed ( ) 1 - γ χ′
. Putting in the values from interpolated c IJ values of InAs and GaAs [16] at 0.53 indium composition, we find the limit, ε max , is about 0.04, and for values of ρ of 5 to 10, typical of our experiments, ε SL is not more than about 0.03. Consequently, the yield strengths of the superlattices cannot

exceed σ max = H ε max ≈ 3GPa.
It scarcely needs emphasizing that our analyses yield only approximations of the true strengths of the superlattices. That half the specimens have beam strengths above the value of η = 2 must be attributed to experimental error. Most likely, this error arises through variations in the exact value of the baseline for each specimen, i.e. the strength of its substrate, which is vital in these analyses. To improve this uncertainty, it would be desirable in future work to etch each superlattice off its substrate and to measure the strength of the substrate for each specimen. Nevertheless, the results presented here are sufficient to show that the coherency strain in the thin superlattices is responsible for them being stronger than the substrate under plastic deformation at elevated temperature.

We do not have a clear-cut explanation for the high strength of the coherently strained superlattices. It is worth considering briefly a simple model which, we note, appears to be ruled out by the observations. Dislocations passing through a bi-layer will encounter the two different strain fields, compressive and tensile. Under compressive external deformation, any dislocations that relieve the external stress will very readily pass through layers already under built-in compressive stress. However, their passage will be resisted by tensile layers. The dislocations will be forced through the tensile layers only when the applied external compressive strain is great enough to reduce the tensile strain to zero. This removes the obstacle to dislocation motion by giving both layers the same sign of strain. This model would imply that the strength of the superlattice under compressive strength is determined by only the tensile layers. The model is refuted by the evidence of figures 5 and 6, according to which it is not the tensile stress which matters, but ε C V C or F. Nevertheless, this simple model may be correct if the superlattice is strengthening the neighbouring substrate material.

Alternatively, we note that W.D. Nix recently reported at the TMS 2004 conference the remarkable compressive yield strength of about 3GPa in sub-micron gold pillars. The similarity to our superlattice strengths is striking. Perhaps the same mechanism (Nix suggested dislocation starvation) may be in play. Clearly, further work is required to determine the reasons for these very high strengths in small volumes.

Conclusions

The results presented here show that, at elevated temperature, coherently strained nanostructure can develop yield strengths under plastic deformation orders of magnitude greater than the bulk material. This result has been obtained in a model system, 
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  sample S1, no anomalies were detected in any characterisation tests.

From figure 7 ,

 7 about here] the area A represents the force supported by the thin superlattice structure,

[

  Insert figure8about here]

  brackets in equation 16 is then the required modulus H. Putting Hε SL for σ SL in

Figure 1 .

 1 Figure 1. TEM cross section of a strained layer superlattice, 2.5 microns thick grown on a

Figure 2 .

 2 Figure 2. Schematic of a three-point bend test where P is the force applied, l is the span

Figure 3 .

 3 Figure 3. Schematic of the miniaturised three point flexure rig. All rollers were located in

Figure 4 .

 4 Figure 4. Typical force v deflection curves for beams cut from samples S2, S4, S5, S10,

Figure 5 .Figure 6 .

 56 Figure 5. Normalised force plotted against various strain factors to investigate the

Figure 7 .

 7 Figure 7. For clarity, the figure represents the moment distribution for a tensile

Figure 8 .

 8 Figure 8. The dimensionless superlattice strength χ is plotted against the dimensionless

Figure 9 .
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  /InP; yet it may be permitted to draw general conclusions about real high-temperature structural materials. There exist classes of high-temperature highperformance materials, such as the Nimonics, in which nanoscale precipitates often display coherency strain due to lattice mismatch with the matrix. The coherency strain could be considered to be accidental and even undesirable. Our conclusion, on the contrary, is that it may be central to the desirable properties of these materials. If that is so, design effort should be concentrated on maximising the persistence of the coherency strain in the presence of diffusion and creep, both of which tend to reduce or eliminate
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			Compressive	Tensile	
	Specimen	Identifier	Strain	Thickness	Strain	Thickness	F
			(%)	(nm)	(%)	(nm)	
	S1	M1113 *	0.06	47	0.06	47	0.06
	S2	M1315 +	0.3	50	0.1	50	0.2
	S3	M1316 +	0.42	50	0.01	50	0.215
	S4	M1317 +	0.5	50	0.1	50	0.3
	1 M1318 + M1110 * M1319 * M1213 + M1181 * F M1212 * M1780 + o M1781 + r M1786 * M1635 * P e 0.2 r 0.58 0.48 0.5 0.84 0.68 0.88 0.385 0.47 0.7 1.46 M1634 * 0.25 e Substrate S5 S6 S7 σSL / GPa S8 S9 S10 T1 T2 T3 A1 A2 InP	0.3 F 49 48 46 49 50 50 17 17 17 21 100 Simple InP (no InGaAs superlattice) 0.4 0.5 0.25 49 0.36 48 0.63 46 0.35 49 0.57 50 0.76 50 0.07 17 0 17 0.84 17 0.25 125 1.25 25	0.6 0.415 0.42 0.565 0.595 0.625 0.82 0.2275 0.235 0.77 0.424 0.45
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