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The metal-insulator transition, MIT, in icosahedral AlPdRe has been studied from measurements of magnetoresistance and conductivity. Results for the localization length ξ, the characteristic hopping temperature T o and their relations at the MIT are discussed. The results indicate important similarities between i-AlPdRe and doped semiconducors.

Problems

Although the occurrence of a metal-insulator transition, MIT, in icosahedral (i) AlPdRe has been supported by a number of different experiments, it has remained a somewhat elusive phenomenon due in particular to the unusual and hitherto unexplained electronic transport properties at temperatures below 1 K. One problem is the apparent finite zero temperature conductivity σ(0) also in insulators [1][2][3], which has been found to decrease exponentially into the insulating side [4]. Another problem is that the B 2 region in the magnetoresistance, MR, which is due to shrinking wave functions in variable range hopping (VRH) theories, is displaced with decreasing temperatures towards smaller magnetic fields. This contribution, and the negative component of the MR from interference between forward scattering events [START_REF] Shklovskii | Hopping Transport in Solids[END_REF] become unobservable at temperatures below 1 K. The MR in this temperature region is not understood. On the other hand, if one limits analyses to the temperature dependence of the conductivity one is faced with an expression of the form

σ(T ) = σ (0) + σ o exp(-[T o / T] ν ) (1).
T o is a characteristic temperature for the hopping process, and ν is 1/4 for Mott VRH and 1/2 for Efros-Shklovskii VRH. When any temperature dependence of σ o in the VRH-term is neglected, and the value of ν is unknown, Eq (1) has 4 free parameters. This is too flexible for a smooth function, and such results for T o have not turned out to be reliable.

A third problem is that the nature of a driving parameter for the MIT is not clarified. In samples of the same nominal composition of Al 70.5 Pd 21 Re 8.5 which are phase pure in standard X-ray diffraction, one can produce widely different electronic properties by different annealing conditions. E.g., the resistance ratio R=ρ(4.2 K)/ρ(295 K) can vary from 2 to 300 encompassing an MIT. It is not known which is the relevant effect on the electronic structure. Although R is an empirical parameter which is not accurately controlled in sample preparation, it has nevertheless been useful for characterizing quasicrystals, and since a decade for correlating transport properties [START_REF] Ahlgren | [END_REF]. Justification for such a procedure is strengthened by the observation that changes in R in a single AlPdRe sample can be monitored by neutron irradiation over a range of R-values which encompasses the MIT [7]. In this contribution we use a recently developed method [8] to circumvent some of the problerms mentioned. Results for T o , and the localization length ξ, and their relations to R and an estimated charge density as driving parameters are discusssed for a series of i-Al 70.5 Pd 21 Re 8.5 samples.

Method to extract information on T o and ξ ξ ξ ξ

To evaluate parameters at the MIT from electronic transport data for i-AlPdRe, one first determines the exponent ν of the VRH expression for σ(T), and estimates σ(0). This eliminates two parameters in Eq (1), and T o can be determined from σ(T) in a single parameter fit. ξ is then calculated from the MR.

The magnetoresistance in the B 2 region follows ∆ρ(B,T) / ρ(0,T) ≅ + B 2 / B o 2 . Here B o is the field for which one flux quantum, φ ο =e/h, passes through the interference area (r 3 ξ) 1/2 . r is the hopping distance, which for Mott VRH is given by r M ~ξ(T o ´/T) 

ρ(0,T) ] M ≈ c M (e / h) 2 ξ 4 T o ′ 3 / 4 B 2 T -3/ 4 (2a), [ ∆ρ(B,T ) ρ(0,T) ] ES ≈ c ES (e / h) 2 ξ 4 T o 3 / 2 B 2 T -3/ 2 (2b).
for Mott and ES VRH respectively. For ES VRH the constant was found to be c ES =0.0015 [START_REF] Shklovskii | Hopping Transport in Solids[END_REF]. We use this value to obtain an estimates of ξ. Numerical constants in VRH theories are often uncertain, which affects actual values of parameters. In the present case however, errors in ξ are much reduced due to the power of 4 in Eq (2). Furthermore, the main results in the paper are not affected, since they are obtained from slopes in double logarithmic diagrams.

Panel a) of Fig. 1, shows the T-dependence of ∆ρ(B,T)/ρ(0,T) at constant B in the B 2 region of an R=220 sample. ES-VRH in the B 2 region is obeyed over a temperature range which decreases with increasing B, since for large B the magnetic length l B = h / eB will violate the condition l B >ξ. This is accompanied by a gradual cross-over from a B 2 region into a B 2/3 behavior [START_REF] Shklovskii | Hopping Transport in Solids[END_REF],

observed at low temperatures and high fields [9]. Deviations are also seen in the left end of 

Results for T o and ξ ξ ξ ξ

A sample R=160 was previously excluded in analyses [8]. log[σ(T)-σ(0)] vs T -1/2 in this case is described by a straight line over a much reduced range of conductivity variations compared to other samples. However, using the constraints that such a fit should be limited to the range of the MR measurements, 1-10 K, and must not extend above a temperature T max well below T o , limited errors are nevertheless found. The full line in Fig. 1 b) illustrates a best fit to data with T o =24.8 K.

The dashed line gives T o =21.4 K. In both cases T max /T o is about 0.3 An error bar of ±15% has been marked for this datum in subsequent graphs.

Analyses of measurement results were made in regions where T< T o . In the relation r ES ~ξ(T o /T) 1/2 given above, one then finds r ES >ξ, in qualitative agreement with a basic condition for variable range hopping. It can be noted however, that with the more restrictive relation r ES =0.25 ξ(T o /T) 1/2 , this condition is not fulfilled in all cases, As mentioned, numerical coefficients in the ES model nay be uncertain. This problem merits further investigations. It is not unique for quasicrystals but has been frequently observed also in doped semiconductors [10].

T o as a function of R is shown in Fig. 2a). It is seen to increase slightly slowlier than linearly into the insulator. In this figure, no assumption has been made about a value R c of R at the MIT, nor has any quantitative information from the magnetoresistance been used. A linear extrapolation of data to T o = 0 K would suggest a lower limit of R c ≈10. From the magnetoresistance results, quoted in Ref. [8], a more plausible value is R c ≈ 20 K.

From T o and the slopes of the straight lines in Fig 1a, ξ can be calculated from Eq. (2b). In practise, accuracy is improved by evaluating instead the temperature dependence of the slope of ∆ρ/ρ vs B 2 . In all measurenents, the results for ξ and T o were evaluated at temperatures and magnetic fields where the forms of Eqs ( 1) and (2b) were obeyed. The magnetoresitance of the R=160 sample has been described previously [11].
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T o ( ξ) is shown in Fig 2b) on the form T o vs ξ -1
, in order to compare with the relation

T o = const N(ε F )ξ 3
(3).

[Insert Fig 2 about here]

Eq (3) is often used with a constant density of states N(ε F ). However, it is seen from Fig. 2 b) that T o increases more slowly than ξ -3 into the insulator, and rather as ξ -2.6 . Eq (3) and this result thus suggest that in addition to the decrease of ξ into the insulator, there is a contribution to the increase of T o from a slow decrease of N(ε F ). Independent evidence for such a decrease of N(ε F ) is obtained from the observation for quasicrystals that N(ε F ) from the specific heat decreases as the slowly decreasing 1/ ρ(295K) into the insulator [12,[START_REF] Rapp | Physical Properties of Quasicrystals[END_REF]. In the latter of these references this correlation included also i-AlPdRe.

It is also interesting to note that the exponent of ξ of -2.6 in Fig 2b is close to -8/3. When the second derivative, β, of the MR with respect to B 2 and T -3/2 is the same for all samples, one finds from Eq 2b that T o ~ξ -8/3 . This was found previously [8] with β within 10% of 0.0167 T -2 K 3/2 .

The R=160 sample again falls somewhat outside this behavior with a 20% smaller β. The general trend of the results is not affected by this discrepancy.

Comparison with doped semiconductors

To compare with doped semiconductors it is preferable to transform R to a driving parameter related to charge density n. Although there is no straightforward experimental control, as in semiconductors, of a charge density, we assume that the change of n can nevertheless be estimated in a similar way. With n c the value of n at the MIT, taken to occur at R c =20 [8], we then take In this equation any R dependence in the relaxation time, τ (295K), has been neglected, and this relation is therefore approximate. Nevertheless, this approach is related to methods often used for doped semiconductors, where e.g. R is used for calibration of the charge scale n [14,15].

n(R) n c (R = 20) = σ (R, 295K) σ(20,295K) (4). 
On ingot samples in the form of parallelepipeds cut from ingots, the dimensions were carefully determined under microscope, with corrections appplied for voids in the samples [16], likely reducing the experimental error in n to below 5%.

The critical behavior of T o and ξ as a function of 1-n/n c is shown in Fig 3 . T o follows a relation

T o ~[1-n/n c ] 1.
2 while for ξ we find ξ~[1-n/n c ] -0.46 . For T o the exponent is significantly smaller than 2.0 obtained with similar methods from σ(T) and MR of GaAs doped by neutron irradiation [17].

Our result for the exponent γ of ξ is close to -1/2. For GaAs, γ was found to be -0.6 [17].

[Insert Fig 3 about here]

In doped semiconductors, a common result for the exponent, µ, of the vanishing zero temperature conductivity on the metallic side is 1/2. In 3-D scaling one expects γ = -µ, since the conductivity then scales as the inverse of a characteristic length. Furthermore, critical exponents are expected to be the same on both sides of a phase transition. One can hence compare the localization length on the insulating side of i-AlPdRe with the conductivity of doped semiconductors on the metallic side.

The similararity between these exponents in i-AlPdRe and a large class of semiconductors suggests that the MIT of i-AlPdRe is of the same universality class as for doped semicoductors.

This confirms a disorder driven MIT in i-AlPdRe, long expected from transport results on the metallic side [18,19].

Theoretically disorder in quasicrystals has been studied in various different models. Burkov et al found that some general properties of quasicrystals could be described [20]. Olenev et al calculated electron spectra and wave functions in a tight binding approximation on a model structure -7correspoinding to a three dimensional analogue of the Penrose tiling [21]. It was found that disorder led to a tendency for electron localization. These models focussed on general quasicrystalline properties. Experimentally it is now known that a metal-insulator transition has not been observed in other quasicrystals besides i-AlPdRe. In a recent investigation, using local-density-functional techniques to calculalate ab-initio electronic structures for a series of quasicrystalline approximants to i-AlPdRe, it was suggested that substitutional disorder would create localized states in a semiconducting band gap [22]. Our finding that i-AlPdRe is semiconductor-like is consistent with these results. The failure to observe a gap in real i-AlPdRe would in this picture be due to disorder induced localized states filling the band gap.

Brief conclusions.

The scheme described for evaluating parameters at the MIT in i-AlPdRe from electrical transport results appears to be fairly robust with respect to deviations in properties which occur between different samples. Results for T o and ξ in the vicinity of the MIT have been illustrated. The divergence of ξ suggests that the MIT of i-AlPdRe is semiconductor like. 
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 1 ), where for increasing T, one approaches the region of the initial negative magnetoresistance.

  Similar observations have been made for all Al 70.5 Pd 21 Re 8.5 samples studied by us. By restricting measurements to the temperature range 1-10 K the problems with σ(T) and MR at -4lower temperatures are avoided. σ(0) was taken from measurements to below 15 mK [9]. [Insert Fig 1 about here]
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 12 Fig. 1. Analyses to determne T o and ξ. Panel a); magnetoresistance in the B 2 region as a function of temperature at two constant magnetic fields. The T -3/2 relation shows that VRH is of Efros Shklovskii type, Eq. (2b). Panel b) log[σ(T)-σ(0)] vs T -1/2 . T o is the only adjustable parameter.The range of σ(T) fitted is smaller by a factor of three than found[8] for other AlPdRe samples, and T o is more uncertain. The full line gives T o =24.8 K, the dashed line T o =21.2 K.
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 32 Fig. 3. T o (open circles, left hand scale) and ξ (closed circles, right hand scale), vs [1-n/n c ], measuring the distance to the MIT. The MIT is assumed to occur at R c =20. n and n c are estimated from Eq(4). The straight lines show T o ~[1-n/n c ] 1.2 and ξ~[1-n/n c ] -0.46 .
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