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Abstract

A method for solving the Poisson equation is presented for systems with three- or two-dimensional

translational lattice symmetry, the latter applying to surfaces, interfaces, or slabs. Special atten-

tion is given to the so-called near field correction (NFC), namely to a correction to the electrostatic

potential arising from neighboring (or near) cells, that is inherent, e.g., to the full-potential KKR

method. The results of numerical tests presented serve to illustrate the effect of the NFC. Fur-

thermore, the question of the convergence of “internal” angular momentum sums is addressed and

discussed in detail.
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I. INTRODUCTION

The Screened Korringa-Kohn-Rostoker method (SKKR) which has been developed about

ten years ago [1] has been successfully applied in the past to a large number of problems.

This method is especially suitable for systems with a two-dimensional lattice translational

symmetry such as surfaces or interfaces but can also be used to calculate bulk properties. In

order to extend the SKKR method to a full potential description, by partitioning the config-

uration space into non-overlapping but space-filling cells to which the individual potentials

and the charge densities are confined, an appropriate method for solving Poisson’s equation

needs to be developed.

Within multiple scattering theory [2] the charge density is evaluated in terms of the

Green’s function of the system and the electrostatic part of the potential subsequently by

solving Poisson’s equation. According to the requirements of density functional theory this

procedure has to be repeated until convergence of the potential is reached. Since it is

an underlying feature of multiple scattering methods to expand quantities like the charge

density and the potential at cell centers located at positions R into a series of (complex)

spherical harmonics, a solution of Poisson’s equation consequently has also to be based on

a corresponding expansion of the 1/|R + r − R′ − r′|-like terms, which, however, do not

converge for neighboring sites R and R′ at certain points inside a given cell.

This so-called “near cell” problem has already been subject of several publications. Gonis

et al. [3] developed a method (later applied by Vitos et al. [4]) based on shifting (and back-

shifting) the neighboring cells with a displacement vector b. Although, in principle, this

method should work it suffers from the fact that it results in a conditionally convergent

double angular momentum sum from which the convergence of the internal sum seems to

be rather slow.

Another method was presented by Zhang et al. [5] in which the internal angular mo-

mentum summations are replaced by surface integrals, which, however, may turn out to be

quite tedious to calculate for more complex geometries. Furthermore, there are still open

questions concerning the fact that the system of linear equations is degenerate (reflecting

that an arbitrary constant can be added to the electrostatic potential). The recipe provided

2
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in Ref. 5, therefore, turns out not to work for certain combinations of multiatom unit cells

and cell shapes. A further method to solve the electrostatic problem was recently proposed

in Ref. 6. It is conceptually easy and computationally very effective, however, it might

contain numerical convergence problems if used with the characteristic shape functions of a

cell. A more detailed comparison of this method and the one proposed in this paper will be

presented later on.

The method presented in this paper is based on the idea that the electrostatic potential

in one specified cell is the sum of an intracell potential, which is the contribution from the

charge density within the chosen cell and an intercell potential which results from the charge

distributions in all other cells of the system:

V el
R (r) = V Inter

R (r) + V Intra
R (r) , r ∈ ΩR , (1)

where ΩR denotes the Wigner-Seitz cell around lattice site R. While the intracell potential

can be obtained straightforwardly, a calculation of the intercell part is more complicated.

In the following for systems with three-dimensional periodic boundary conditions Ewald’s

method is applied, while in the case of only two-dimensional translational symmetry we

followed a derivation similar to that explored by Kambe [7] for the calculation of the struc-

ture constants used in LEED theory. In both cases a summation with respect to real and

reciprocal lattice vectors is used which leads to rapidly converging series. If the potential is

calculated in this way one assumes that the following geometric conditions

r < |r′ − R + R′| and r′ < |R− R′| (2)

apply, which of course are not fulfilled by the so-called near cells. Therefore, incorrect

contributions arise from neighboring cells that have to be corrected for. This precisely can

be achieved by noting that the intercell potential of a given cell R is the sum of intracell

potentials, centered at their respective origins, over all other cells R′,

V Inter
R (r) =

∑

R′ 6=R

V Intra
R′ (R − R′ + r) . (3)

By summing up only the contributions of the near cells, while at the same time subtracting

the incorrect ones calculated by the combined real and reciprocal space methods (Ewald or

Kambe), the true intercell potential can be obtained. These corrected contributions to the

intercell potential will be referred to as near field corrections throughout this work.

3
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The paper is structured in the following way: section II deals in a very condensed manner

with the general solution of Poisson’s equation for systems with two- or three-dimensional

translational symmetry neglecting the near field corrections (a more detailed derivation can

be found in Refs. 2 and 8). In section III a method for the calculation of the near field

corrections is discussed while section IV is concerned with numerical tests of the method

presented here.

II. THE POISSON EQUATION AND THE GENERALIZED MADELUNG PROB-

LEM FOR TWO- AND THREE-DIMENSIONAL TRANSLATIONALLY INVARI-

ANT SYSTEMS

Using atomic Rydberg units, in particular, e2 = 2, the Poisson equation is given by

∆V (r) = −8πρ(r) , (4)

and the corresponding Green’s function by

G0(r, r
′) =

1

|r − r′| , ∆G0(r, r
′) = −4πδ(r − r′) , (5)

such that

V (r) = 2

∫
dr′G(r, r′)ρ(r′) =2

∫
dr′

ρ(r′)

|r − r′| . (6)

At a particular lattice site R the intercell contribution to the electrostatic potential is then

given by

V Inter
R (r) = 2

∑

R′

(R′ 6=R)

∫

Ω
R′

dr′G0(r + R, r′ + R′)ρR′(r′) ; r ∈ ΩR , (7)

and the intracell contribution to the electrostatic potential by

V Intra
R (r) = 2

∫

ΩR

dr′G0(r, r
′)ρR(r′) ; r ∈ ΩR . (8)

A. Intracell contribution

Let ρ̄(r) be the (shape truncated) charge density in the cell of a chosen origin R0 in an

arbitrary ensemble of scatterers,

ρ̄(r) = ρ(r)σΩ0
(r) =

∑

L

ρ̄L(r)Y ∗
L (r̂) , (9)

4
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where the index Ω0 = ΩR0
refers to the domain around R0, L is a combined orbital angular

momentum index (`, m), and the YL(r̂) are (complex) spherical harmonics[9]. The function

σΩ0
(r) is called the characteristic or shape function of cell ΩR0

, the calculation of the ex-

pansion coefficients σL(r) of which is extensively documented in the literature [10–12]. By

using the well-known angular momentum expansion for 1/|r − r′|, the potential due to the

charge distribution inside a particular cell,

V Intra(r) = 2

∫

Ω0

1

|r − r′| ρ̄(r′)dr′ , (10)

can be written as

V Intra(r) =
∑

L

8π

2` + 1


r`

rBS∫

r

ρ̄L(r′)

(r′)`−1
dr′ +

1

r`+1

r∫

0

(r′)`+2ρ̄L(r′)dr′


Y ∗

L (r̂) . (11)

The coefficients of the shape truncated charge density ρ̄L(r) are given explicitely by

ρ̄L(r) =
∑

L′L′′

CL′

L′′LρL′(r)σL′′(r) , (12)

where the CL′

L′′L are the well-known Gaunt coefficients. The expansion coefficients of the

intracell potential can therefore be written as

V Intra
L (r) =

8π

2` + 1


r`

rBS∫

r

1

(r′)`−1


∑

L′L′′

CL′

L′′LρL′(r′)σL′′(r′)


dr′

+
1

r`+1

r∫

0

(r′)`+2


∑

L′L′′

CL′

L′′LρL′(r′)σL′′(r′)


 dr′




∗

. (13)

B. Multipole expansion in real-space

Clearly enough the total charge density is the sum over all local densities ρ̄R(r) centered

at positions R,

ρ(r) =
∑

R

ρ̄R(r − R) , ρ̄R(r − R) = ρ(r)σ
ΩR

(r − R) , (14)

which in turn can be expanded as

ρ̄R(r) =
∑

L

ρ̄R,L(r)Y ∗
L (r̂) . (15)

5
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The corresponding spherical multipole moments are then defined by

QL
R =

√
4π

2` + 1

∫

ΩR

r`ρ̄R(r)YL(r̂)dr , (16)

or, expressed in terms of the expansion coefficients of the untruncated charge density, ρR,L(r),

by

QL
R =

√
4π

2` + 1

∑

L′L′′

CL′

L′′L

rBS∫

0

r`+2ρR,L′(r)σR,L′′(r)dr . (17)

C. Green’s functions and Madelung constants

For

r < |r′ − R + R′| and r′ < |R − R′| , (18)

the Green’s function,

G0(r + R, r′ + R′) =
1

|r + R − r′ − R′| , (19)

can be reformulated by using angular momentum expansions for 1/|r− r′| as

G0(r + R, r′ + R′) =
∑

LL′

√
4π

2` + 1
r`Y ∗

L (r̂) ALL′

RR′

√
4π

2`′ + 1
(r′)`′YL′(r̂′) , (20)

where the matrix elements ALL′

RR′ ,

ALL′

RR′ = (−1)` 4π[2(` + `′) − 1]!!

(2` − 1)!!(2`′ − 1)!!
C`′m′

`m,(`+`′)(m′−m)

Y ∗
(`+`′)(m′−m)(R̂− R′)

|R − R′|`+`′+1
, (21)

are usually called the real-space Madelung constants for two centers. The assumption (18)

implies that the bounding spheres of the cells at R and R′ must not overlap. By neglecting

near-field corrections, to which section III is devoted, the intercell potential in (7) can then

be expressed as

V Inter
R (r) = 2

∑

R′(6=R)

∑

LL′

√
4π

2` + 1
r`Y ∗

L (r̂) ALL′

RR′ QL′

R′

=
∑

L

V Inter
R,L (r)∗Y ∗

L (r̂) =
∑

L

V Inter
R,L (r)YL(r̂) , (22)

where

V Inter
R,L (r) =

4
√

π

2` + 1


 ∑

R′(6=R)

∑

L′

ALL′

RR′ QL′

R′




∗

r` . (23)

6
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Evidently Eq. (21) can be reformulated as [13]

ALL′

RR′ = (−1)`′ [2(` + `′) + 1]!!

(2` − 1)!!(2`′ − 1)!!
C`′m′

`m,(`+`′)(m′−m)G
(`+`′)(m′−m)

RR′

= 2
√

π(−1)`′ Γ(` + `′ + 3
2
)

Γ(` + 1
2
)Γ(`′ + 1

2
)
C`′m′

`m,(`+`′)(m′−m)G
(`+`′)(m′−m)

RR′ , (24)

with

GL
RR′ =

4π

2` + 1

Y ∗
L (R̂′−R)

|R − R′|`+1
=

4π (−1)`

2` + 1

Y ∗
L (R̂ − R′)

|R− R′|`+1
. (25)

In principle the coefficients V Inter
R,L (r) can be evaluated by means of the direct space summa-

tion in (23), which (if at all) leads to a slowly converging series. In the following therefore

use of the underlying two- or three-dimensional translational invariance is made. Because

of the relationship in Eq. (24) in the following all expressions will be formulated in terms of

reduced Madelung constants GL
RR′.

D. Three-dimensional complex lattices

Let Rnµ denote the positions in a (in general) complex three-dimensional lattice (L(3))

Rnµ = tn + aµ , (26)

where the tn ∈ L(3) are lattice translations, the aµ refer to inequivalent atomic positions

and L(3) denotes the 3d translational lattice. The total electrostatic potential then obviously

depends only on the “sublattice” index µ, i.e., is independent of n,

V (Rnµ+r) = V (aµ + r) = Vµ(r)

= 2
∑

n,ν

∫

Ων

dr′G0(aµ+r, aν + tn+r′)ρν(r
′) , r ∈ Ωµ , (27)

where

ρµ(r) = ρRnµ
(r) . (28)

In this case Ω picks up the meaning of a periodically repeated cell in sublattice µ.

In order to separate those parts in (27) that are independent of the charge density, one

first performs a summation over all n, i.e., over all tn ∈ L(3),

Gµν(r, r
′) =

∑

tn

(µ=ν,tn 6=0)

G0(r + aµ, r
′ + tn + aν) , (29)

7
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and only then sums over all sublattices

V Inter
µ (r) = 2

∑

ν

∫

Ων

dr′Gµν(r, r
′)ρν(r

′) , r ∈ Ωµ . (30)

Applying the Ewald technique by combining real and reciprocal summations leads to an

absolute convergent series (with aµν = aµ − aν):

Gµν(r) =
4π

V

∑

gj 6=0

exp(igjr) exp(igjaµν)
exp(−g2

jσ
2)

g2
j

+ (31)

+
∑

tn

(µ=ν tn 6=0)

1

|r+aµν−tn|
erfc(|r + aµν−tn| /2σ) − δµν

erf(|r| /2σ)

|r| − 4πσ2

V
, (32)

where σ is the Ewald parameter and the coefficients of the expansion,

Gµν(r) =
∑

L

GL
µν|r|`YL(r̂) , (33)

are given by

GL
µν(r) =

(4π)2 √πi`

V 2`+1Γ(` + 3
2
)

∑

gj 6=0

Y ∗
L (ĝj) exp(igjaµν) |gj|`−2 exp(−g2

jσ
2)+ (34)

+
2π(−1)`

Γ(` + 3
2
)

∑

tn

(µ=ν tn 6=0)

Y ∗
L (âµν−tn)

Γ(` + 1
2
, |aµν−tn|2 /4σ2)

|aµν−tn|`+1
− δL,(0,0)

(
(4π)3/2σ2

V
+ δµν

2

σ

)
.

(35)

In terms of these quantities the potential can now be written as

V Inter
µ (r) =

∑

L

V Inter
µ,L (r)YL(r̂) , (36)

with coefficients V Inter
µ,L (r) = V Inter

µ,`m (r),

V Inter
µ,`m (r) =

4π

Γ(` + 3
2
)

(
∑

L′

(−1)`′Γ(` + `′ + 3
2
)

Γ(`′ + 1
2
)

C`′m′

`m,(`+`′)(m′−m)

×
∑

ν

G`+`′,m′−m
µν QL′

ν

)∗

r` . (37)

It should be recalled that one only needs to evaluate V Inter
µ,`m (r) for m ≥ 0, since the intercell

potential V Inter
µ (r) is real.

8

Page 9 of 46

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

E. Complex two-dimensional lattices

In the case of two-dimensional translational invariance (L(2)) all atomic positions can be

written as

Rnp = tn + cp , (38)

where tn ∈ L(2) is a lattice translation and the cp are inequivalent atomic positions, also

called layer position vectors. As before the charge density is independent of lattice transla-

tions,

ρRnp
(r) = ρp(r) , ∀tn ∈ L(2) , (39)

and, therefore, the potential depends again only on the layer index p,

Vp(r) = V (cp+r) = 2
∑

q

∫

Ωq

dr′Gpq(r, r
′)ρq(r

′) , r ∈ Ωp (40)

Gpq(r, r
′) = Gpq(r − r′) =

∑

tn

(p=q,tn 6=0)

G0(r + cp, r
′ + tn + cq) . (41)

A method similar to the one of Kambe for the LEED structure constants [7] leads to an

expression for Gpq(r − r′) and the expansion,

Gpq(r) =
∑

L

GL
pq|r|`YL(r̂) , (42)

yields the reduced Madelung structure constants GL
pq for a 2D lattice [8]. They are given by

the following expressions

GL
pq =

∑

i=0,1,2a,2b,3

DL
i,pq = DL

0,pq + DL
1,pq + DL

2a,pq + DL
2b,pq + DL

3,pq, (43)

for the various contributions DL
i,pq:

DL
0,pq = −

(
1 − δcpq⊥,0

)
δm0

4π

A

(
δ`0

√
π |cpq⊥| + δ`1

√
3π

3
sign(cpq⊥)

)
, (44)

where A is the area of the 2D unit cell and cpq = cp − cq.

With reciprocal lattice vectors gj = (gj cos(φj), gj sin(φj)) the reciprocal sum contribution

9
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can be written as

DL
1,pq =

π
3

2 i−m

22`−1A

√
(2` + 1) Γ (` + |m| + 1) Γ (` − |m| + 1)

Γ
(
` + 3

2

)

×
∑

gj

(gj 6=0)



 exp(−imφj) exp

(
igj · cpq‖

)

×
`−|m|

2∑

k=0

`−|m|−2k∑

n= `−|m|
2

−k

In

(
gjσ,

|cpq⊥| gj

2

)

×
(−1)n c

2n−`+|m|+2k
pq⊥

Γ (2n − ` + |m| + 2k + 1)Γ (` − |m| − n − 2k + 1)

×
g

2n+|m|+2k−1

j

Γ (k + 1)Γ (|m| + k + 1)



 , (45)

where the occurring integral

In

(
gjσ,

|cpq⊥| gj

2

)
=

∞∫

g2
j σ2

dx x− 1

2
−n exp

(
−

c2
pq⊥g2

j

4x
− x

)
, (46)

can be evaluated recursively in terms of error functions.

The expression for the direct sum terms DL
2a,pq is given by

DL
2a,pq =

2π(−1)`

Γ(` + 3
2
)

∑

tn

(tn−cpq 6=0)

Y ∗
L (ĉpq−tn)

Γ(` + 1
2
, |cpq−tn|2 /4σ2)

|cpq−tn|`+1
. (47)

For DL
2b,pq and cpq⊥ 6= 0 one obtains

DL
2b,pq = − δm0 sign (cpq⊥)

π

A

√
π (2` + 1)

4`c`−1
pq⊥

Γ(` + 1)

Γ(` + 3
2
)

×
∑

`
2
≤n≤`

(−1)n 4n

Γ (` − n + 1)Γ (2n − ` + 1)
Γ

(
n − 1

2
, c2

pq⊥/4σ2

)
, (48)

while for cpq⊥ = 0 DL
2b,pq is given by

DL
2b,pq =





δm0 (2π/A)
[
(−1)n √4n + 1/ (4nσ2n−1)

]

× Γ(n − 1
2
)/Γ(2n + 3

2
) , ` = 2n, even

0 , ` odd

. (49)
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Finally for DL
3,pq the expression

DL
3,pq = −δpqδL,(0,0)

2

σ

is found. The potential can eventually be written in the following compact form as

V Inter
p (r) =

∑

L

V Inter
p,L (r)YL(r̂) =

∑

L

V
Inter

p,`m(r)YL(r̂)+A
√

4π

3
rY10(r̂)+(Acp⊥ + B)

√
4πY00(r̂) ,

(50)

where for matters of similarity with the three-dimensional translationally invariant case the

expansion coefficients V
Inter

p,`m(r) are regrouped such that

V
Inter

p,`m(r) =
4π

Γ(` + 3
2
)

(
∑

L′

(−1)`′Γ(` + `′ + 3
2
)

Γ(`′ + 1
2
)

C`′m′

`m,(`+`′)(m′−m)

×
∑

q

G`+`′,m′−m
pq QL′

q

)∗

r` , (51)

and the constants A and B are fixed by the boundary conditions appropriate to the system

investigated, namely on whether a surface or an interface is considered [8].

III. “NEAR FIELD” CORRECTIONS

The problem of “near field” corrections arises from the fact that by solving the Poisson

equation in terms of an expansion in terms of multipole moments [16] only, this expansion

a priori is no longer valid for near cells. By definition a cell centered at position R′ is called

a near cell of a cell centered at R if

|R− R′| < rBS + r′BS , (52)

where rBS denotes the radius of the bounding sphere (BS).

A real-space method which yields the exact intercell potential of neighboring or near cells

consists of: (1) an evaluation of the contributions to the intercell potential arising from near

cells via a coordinate transformation of their respective intracell potentials, and (2) a sum

over all near cells, the expansion coefficients of which in an angular momentum series being

evaluated by means of a numerical angular integration.

The intracell potential of a particular charge distribution inside a cell with respect to

the coordinate system centered in the same cell is given by Eq.(11) where the expansion
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coefficients of the shape truncated charge density are defined in Eq. (12). For r lying outside

the bounding sphere this potential can be written in terms of multipole moments QL
R,

V Intra
R (r) =

∑

L

4
√

π

r`+1

(
QL

R

)∗
YL(r̂) , r > rBS . (53)

The intracell potential of a cell Ω′ centered at position R′ contributes then to the intercell

potential of a cell Ω centered at R as follows

V nf
RR′(r) = V Intra

R′ (R − R′ + r) (54)

=
∑

L

V nf
RR′,L(r)YL(r̂) (55)

=
∑

L

8π

2` + 1

(
|R− R′ + r|`

rBS∫

|R−R′+r|

dr′ (r′)
−`+1

ρ̄R′L(r′)

+ |R− R′ + r|−`−1

|R−R′+r|∫

0

dr′ (r′)
`+2

ρ̄R′L(r′)

)∗

YL( ̂R − R′ + r) (56)

=
∑

L

V Intra
R′,L (|R− R′ + r|)YL( ̂R − R′ + r) , (57)

where the expansion coefficients can be obtained in terms of the following angular integral

V nf
RR′,L(r) =

∫

Ω

dr̂V nf
RR′(r) Y ∗

L (r̂) (58)

=

∫

Ω

dr̂
∑

L′

V Intra
R′L′ (|R− R′ + r|)YL′( ̂R− R′ + r) Y ∗

L (r̂) . (59)

By applying a rotation of the coordinate system such that the z axis points in the direction

of the respective near cell the above two-dimensional angular integral can be reduced to a

one-dimensional integral [9],

V nf
RR′,L(r) =

2πC`m

r |R− R′|

|R−R′|+r∫

|R−R′|−r

du

[
uP

|m|
`

(
r2 + |R − R′|2 − u2

2r |R − R′|

)

×
`′max∑

`′=|m|

C`′mP
|m|
`′

(
r2 − |R − R′|2 − u2

2u |R − R′|

)
V Intra

R′,`′m (u)

]
, (60)

where u =
(
|R − R′|2 + r2 − 2r |R − R′| s

)1/2

> 0, s = cos θ ∈ [−1, 1]. Clearly enough in a

practical application the summation over `′ can only be performed up to a certain `′max.
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Then by summing up the contributions from all near cells an expression for the near field

corrections is found,

V nf
R,L(r) =

∑

R′∈nc

V nf
RR′′,L(r) . (61)

In Fig. 1 the geometrical arrangement for this procedure is illustrated: one can see that the

corrections arise only outside a sphere of radius rcor = |R−R′| − r′BS. For a less symmetric

neighborhood, however, one has to define

rcor = min
R′

(|R − R′| − r′BS) . (62)

Consequently, the quantities V nf
L (r) have to be calculated only for points r > rcor (and inside

a sphere of radius rBS).

A. Corrections to the intercell potential

The correct intercell potential Ṽ Inter finally results from adding the near field correction

term V nf and subtracting the (incorrect) contributions from the near cells V nc, implicitly

contained in the previously derived Madelung potential V Inter,

Ṽ Inter
R (r) = V Inter

R (r) +
(
V nf

R (r) − V nc
R (r)

)
, (63)

where the differences V nf
R (r) − V nc

R (r) are the actual near field corrections to the intercell

potential. In order to calculate V nc
R (r) the following real-space sum has to be evaluated

V nc
R (r) = 2

∑

R′∈nc(R)

∑

L

√
4π

2` + 1

(
∑

L′

ALL′

RR′QL′

R′

)∗

r`YL (r̂) , (64)

where the real space summation includes all near cells and the ALL′

RRnc
are the corresponding

real space Madelung constants (21). Fig. 2 illustrates the angular momentum components

of the potential arising from the near field corrections defined in Eq. (60) and the near cell

potential in Eq. (64) for the case of fcc bulk Ag. In particular, the bottom of this figure

demonstrates that the corrections indeed vanish for r < rcor and that all angular momentum

components are rather small up to the muffin-tin radius. Beyond the muffin-tin region the

spherical symmetric component picks up the character of the intracell potential of a near

cell. This feature is also reflected in Fig. 3 where the near field corrected intercell potential

(c.f. Eq. (63)) and the near field corrections are plotted along two directions in the Wigner-

Seitz cell. Along the nearest neighbor direction the corrections are small up to the muffin-tin
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radius and then diverge in the same manner as the intracell potential of the neighboring

cell. Applying shape functions this behavior is suppressed as they force the potential to

jump to zero at the cell boundary. Along the direction of the farthest corner of the cell the

corrections are small as compared with the intercell potential up to the bounding sphere

radius.

IV. NUMERICAL TESTS

In order to test the accuracy of the method described above we have calculated the

electrostatic potential and the electrostatic energy of two different charge distributions the

analytical and the numerical solutions of which can directly be compared.

As a first test case we considered a homogeneous electron density in a background of a

positively charged point lattice, i.e., a system, which is also known as jellium or “Slater-de

Cicco” test [5].

In our second test a slowly varying, periodic charge density (without point charge singu-

larities) reflecting the predominant character of the charge distributions in the interstitial

regions was used. Such a density has first been discussed by Morgan [17] and is indeed

very useful to test the accuracy of the non-spherical contributions to the potential. Based

on these two well-defined models we want to illustrate the actual effect of the NFC and to

estimate the convergence with respect to the angular momentum summations. We compare

our results to the ones of the recently proposed removed sphere method (RSM) [6], which

provides an alternative to the present approach.

A. Slater-de Cicco (jellium) test

In this case the distribution of positive point charges is given by

ρ+(r) = Z
∑

n

δ(r− tn) , (65)

where Z is the core charge and the tn are real space lattice vectors. The electron density is

constant,

ρ−(r) = −ρ0 , ρ0 =
Z

V
, (66)
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V being the volume of the unit cell. Consequently, the angular momentum components of

the truncated charge density are given by

ρ̄L(r) =





ρ0σ(0,0)(r) − δ(r) Z/r2 , L = (0, 0)

ρ0σL(r) , L 6= (0, 0)
. (67)

For our test we used a lattice constant of 1 a.u. and a net cell charge of Z = 1.

The analytic solution of Poisson’s equation (4) can be obtained by means of Ewald’s

method and is given by:

V (r) = 2Z



∑

tn

1

|r − tn|
erfc

( |r − tn|
2σ

)
+

4π

V

∑

gj

(gj 6=0)

exp
(
−σ2g2

j

)

g2
j

exp (igj · r)


− 8πρ0σ

2 + V0 ,

(68)

where σ is the Ewald parameter and V0 is an arbitrary constant, which is unimportant since

only differences of potentials and energies will be considered.

In Fig. 4 the difference between the potential in Eq. (68) and the numerically calculated

electrostatic potential is plotted along different directions inside a fcc Wigner-Seitz cell. We

used `max = 2, 3, and 4 in the multiple scattering expansions, implying that the charge

density and the potential were expanded up to `max = 4, 6, and 8. This is the case for the

“outer” angular momentum summation, however, there have to be also “inner” summations

performed, as can be seen from Eqs. (13) and (23) for the intra- and intercell potential, and

in Eq. (17) for the multipole moments. In principle, by evaluating an angular momentum

expansion of the Green’s function up to `max, these inner sums can be extended up to 2`max.

However, it is also possible to take better account of the shape of the truncated charge

density by just including higher components of the shape functions, and this in fact also

leads to a convergence of the potential as will be discussed in section IVB. Investigating

Eq. (17) one finds that if L′ is extended to 2`max and L′′ to 8`max, then one gets multipole

moments up to 6`max. We find this procedure quite reasonable since the untruncated charge

density converges more rapidly than the truncated charge density. In the latter the essential

contributions are due to the shape of the cell and hence it is quite desirable to include more

components of the shape functions. Similarly, the intracell potential can be evaluated for

higher moments and can (together with the multipoles) be used in the calculation of the near

field corrections in Eq. (60). Furthermore, the multipole moments can be used to improve
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the accuracy of Eq. (23), where, in addition, only higher terms of the Madelung constants

need to be calculated.

The electrostatic (Coulomb) energy follows from the expression,

U =
1

2

∫

Ω

dr ρ(r)V (r) =
1

2

∫

Ω

dr (ρ+(r) + ρ−(r)) V (r) . (69)

Inserting the charge densities in Eqs. (65) and (66) and the potential in Eq. (68) one gets,

U = −
(

Z2

rASA

)
rASA

a




4πσ2

V
+

1√
πσ

− 1

2σ

∑

tn

(tn 6=0)

2σ

|tn|
erfc

( |tn|
2σ

)
− 4πσ2

V

∑

gj

(gj 6=0)

exp
(
−σ2g2

j

)

σ2g2
j


 ,

(70)

with rASA = (3V/4π)1/3, i.e. , an expression that can be calculated as reference value for

different crystal structures.

For fcc and bcc lattices, Fig. 5 shows the convergence of the numerically calculated

Coulomb energy as a function of `max as compared to the exact value given by Eq. (70).

If the NFCs are neglected and the inner sums are carried out only up to 2`max the energy

tends to a value which differs by about 10−3 (fcc) and 0.5 · 10−3 (bcc) from the exact one.

By simply extending the inner angular momentum sums to 6`max (but still not including

NFCs) the energies now match up to about 10−5. The reason for this good correlation will be

considered in the next section by discussing the other type of test case. Clearly by including

NFCs the converged values are in even better agreement (about 10−6 for both fcc and bcc)

with the exact ones.

B. Morgan test

Consider the following charge density,

ρ(r) = B
∑

gj∈NNr(0)

eigj ·r , (71)

with B being an arbitrary constant. Since the summation runs over the first reciprocal

lattice vector shell NNr(0), this charge distribution has the full symmetry of the lattice under

consideration. By making use of Bauer’s formula [16] one can find an analytic expression

for the expansion coefficients of the charge density,

ρL(r) = 4πBi`j`(|g|r)
∑

gj∈NNr(0)

YL(ĝj) . (72)
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The total potential due to such a charge distribution is given by

V (r) =
8πρ(r)

g2
+ V0 , (73)

and its angular momentum components as

VL(r) = 32π2Bi`
j`(|g|r)

g2

∑

gj∈NNr(0)

Y ∗
L (ĝj) +

√
4πV0δL,00 . (74)

For our tests we chose B = 1 and the lattice constant a = 1 bohr.

Fig. 6 illustrates the difference of the calculated electrostatic and the exact Morgan

potential. As in the case of the jellium model (note, however, the different scales) the

quality of agreement between the curves depends on the direction inside the Wigner-Seitz

cell and on `max.

In Fig. 7 the convergence of the potential in terms of the internal angular momentum

summation is illustrated. The potential in this case was calculated up to `max = 6 and the

internal angular momentum summation varied up to `max = 18. For this value a reason-

able convergence of the potential was achieved. Neglecting near field corrections and only

extending the interior angular momentum summation of the intra- and intercell potential

leads to an improved agreement of the potentials over a wider range of radial mesh points

but is still substantially wrong for large radii.

The electrostatic energy is given by

U =
4π

g2
B2V

∑

gj∈NNr(0)

1 , (75)

and its convergence with respect to `max is shown in Fig. 8. For a fcc cell the exact value is

2a5/3π and for a bcc cell 3a5/π if a is the lattice constant which has been set to unity in our

test. If the NFCs are not included in the calculation the energy does not converge to the

correct values as is evident from Fig. 8. The deviation is of the order of 10 mRy. Inclusion

of the NFCs then results in a quite rapid convergence: for `max = 3 the exact energy is

obtained within 2 mRy. As in the Slater-de Cicco test, without NFCs but by converging

the internal angular momentum sums a good convergence of the energy is observed. Even

though there is a considerable aberration from the exact potential, the electrostatic energy

yields almost the exact value. This is due to the fact that the difference V (r) − VMorgan(r)

tends to oscillate around zero for a given radius as a function of the angles, resulting thus
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in contributions which mostly cancel in the necessary integration over the Wigner-Seitz cell

when calculating the energy. We have illustrated this in Fig. 9 where the differences to the

exact Morgan potential are plotted for a plane through the cell center. One can see not only

the oscillations around zero but also that with increasing angular momentum the aberrations

are pushed further outwards and become smaller in size giving thus smaller contributions to

the integrals.

C. Comparison with RSM method

The recently proposed so-called removed sphere method (RSM)[6] is conceptually simple

and numerically very efficient. It is based on the fact that the electrostatic potential can

also be written in the form

V (r) =
∑

L

(
V e

L(r) + aLr`
)
YL(r̂), r < rBS (76)

where V e
L(r) is obtained from Eq.(11) but with the untruncated instead of the truncated

charge density. The coefficients aL are unknown and need to be calculated. Since for

small r < rcor the potential is also given by the sum of intracell and uncorrected intercell

contribution

V (r) =
∑

L

(
V Intra

L (r) + V Inter
L (r)

)
YL(r̂), r < rcor , (77)

the coefficients aL can be calculated by setting (76) equal to (77) for small r. This leads

to potentials which are essentially equal compared to the ones obtained with the method

presented here up to ` ≤ 10 (c.f. Fig. 10). If one uses up to even higher `max (and the

characteristic shape functions of the cells), however, numerical convergence problems can

arise. Due to the shape functions there are non-vanishing high-L′ multipole moments present

(even for constant charge densities) which lead for near cells and high L to slowly converging

L′ sums of the form
∑

L′ ALL′

RR′QL′

R′ .

In our method this problem does not arise, because the multipole contributions from

near cells in (23) and (64) cancel exactly. This problem might not occur if smoother but

overlapping shape functions are used[18]. However, this type of shape functions does not fit

to the concept of of non-overlapping potentials in multiple scattering theory[2].
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V. CONCLUSIONS

We presented an effective tool for calculating the electrostatic potential from a given

charge density which is especially suitable for multiple scattering methods and systems with

two or three dimensional translational symmetry. In order to treat the contributions from

near cells (the NFCs) correctly we have developed a physically intuitive method which relies

on the idea that the intercell potential of one cell is the sum of the intracell potentials of all

other cells.

Numerical tests show that the method is applicable and yields the correct results for two

systems for which exact results can be obtained analytically. Our tests indicate that for

methods which are based on angular momentum expansions it is very important to converge

the “inner” sums (or at least carry them further than the “outer” ones). In particular it

was shown that in order to calculate the potential it turns out to be essential to include

near field corrections, whereas for the calculation of the total energy it is more important

to converge the interior summations. The proposed method is in particular meant for semi-

infinite systems and the numerical results shown for bulk systems serve as illustrations with

respect to well-known, analytically solvable test problems.
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FIG. 1: Illustration of two near cells with overlapping bounding spheres. Dashed circles denote

bounding spheres of other near cells. Also indicated is the radius rcor outside which the near field

corrections have to be calculated.

FIG. 2: Top: The first three non-vanishing angular momentum components of the near field po-

tential V nf
`m(r) and the near cell potential V nc

`m(r) for fcc bulk Ag. The dashed vertical lines indicate

the muffin-tin radius rMT and rcor, respectively. Note the different behavior of the spherically

symmetric components between rMT and rBS: inside the muffin tin the differences are quite small,

inside a sphere of radius rcor the components are identical.

Bottom: Angular momentum components of the near field corrections V nf
`m(r) − V nc

`m(r) for fcc

bulk Ag. For r < rcor the corrections are zero.

FIG. 3: Intercell potential including the near field corrections plotted along two different directions

of a fcc Wigner-Seitz cell for the case of bulk Ag. The solid line illustrates the potential in direction

of the farthest corner (Corner) and the dashed line in direction of a nearest neighbor (NN). Also

shown are the near field corrections V nf(r) − V nc(r) along the same directions.
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FIG. 4: Difference between the numerically and analytically calculated potentials in the “Slater-

de Cicco” test as plotted along the major directions inside a fcc cell. The labeling of points are

as follows: “P” is a near, “H” a far corner, “N” the center of a plane, and “Γ” the cell center.

Different line styles refer to different numbers of angular moments used for the potential and the

charge density: dash-dotted line: `max = 4, dashed line: `max = 6, solid line: `max = 8.

FIG. 5: Angular momentum convergence of the electrostatic energy derived from a constant elec-

tron charge density for a fcc (top) and bcc (bottom) lattice. Circles and crosses depict results with

and without near field corrections (NFC), respectively. Dashed lines indicate that the inner sums

are extended up to 2`max (not converged), solid lines refer to inner sums up to 6`max (converged).

FIG. 6: Difference between the numerically calculated and the exact potentials of the Morgan test

along the major directions inside a fcc Wigner-Seitz cell. The labeling of points is as follows: “P”

is a near, “H” a far corner, “N” the center of a plane, and “Γ” the cell center. Different line

styles refer to different numbers of angular moments used for the potential and the charge density:

dash-doted: `max = 4, dashed line: `max = 6, solid line: `max = 8.

FIG. 7: Convergence of the numerically calculated potential of the Morgan test in terms of the

internal angular momentum summation (V el = V Inter +V Intra). For the calculations of the Green’s

function `max = 3 has been used. Shown are the differences between the analytical potential and

the numerically calculated electrostatic potential in the direction from the cell center to a far

corner (ΓH) in a fcc Wigner-Seitz cell, where the best possible match is displayed by the solid line.

This curve is obtained when the expansion coefficients of the Morgan potential are calculated by

means of Eq. (74) and then summed up to 2`max = 6. All other curves refer to the numerically

calculated potential where the “outer” summation also extends to 2`max = 6, but the “inner”

angular momentum summation is varied between 2`max = 6 and 6`max = 18. Also shown are

curves where the NFC have not been included in the calculation. One can see that simply by

extending the inner summation up to 6`max the results are considerably improved.

FIG. 8: Angular momentum convergence of the electrostatic energy for a fcc (top) and bcc (bottom)

lattice in the Morgan test. Circles depict calculations including NFCs and crosses those without

NFCs.
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FIG. 9: Difference of the numerical and exact Morgan potentials (in Rydberg) for `max = 2 (top)

and `max = 3 (bottom) where the internal sums have been extended up to 6`max and the NFC were

not included in the calculation. The plots show the values inside a Wigner-Seitz cell for a (100)

plane through the cell center where x and y are in units of bohr.

FIG. 10: Difference of the calculated and the exact potential due to the Morgan charge density (71)

as a function of `max at the farthest corner of a (a) fcc, and (b) bcc Wigner-Seitz cell. A comparison

between the values obtained with the method described in this work and that of Nicholson et al.

[6] is displayed.
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