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The µ 3 , µ 5 and µ 7 approximants in Mg-Zn-RE were related in real and reciprocal space. The structure factors of µ 3 , µ 5 and µ 7 have quite similar intensity distributions and identical phases for the strongest corresponding reflections. Structure models of any of µ 3 , µ 5 and µ 7 can be obtained from any of the others using the strong reflections approach.

The µ 3 , µ 5 and µ 7 in the Mg-Zn-RE alloy systems all have the P6 3 /mmc space group (µ 3 : a=14.6 Å, c=8.6 Å; µ 5 : a=23.5 Å, c=8.6 Å; µ 7 : a=33.6 Å, c=8.9 Å). In spite of these different unit cell sizes, their diffraction patterns are strikingly similar (see Fig. 1 in [4]). Thus, for example reflection (3 3 0) in µ 3 corresponds to (5 5 0) in µ 5 and (7 7 0) in µ 7 ; (6 0 0) in µ 3 corresponds to (10 0 0) in µ 5 and (14 0 0) in µ 7 .

The orientation relationships among µ 3 , µ 5 and µ 7 are (3 3 0) µ3 // (5 5 0) µ5 // (7 7 0) µ7 (6 0 0) µ3 // (10 0 0) µ5 // (14 0 0) µ7 (0 0 1) µ3 // (0 0 1) µ5 // (0 0 1) µ7 The reciprocal lattices of µ 3 and µ 7 are related by a matrix A through The pairs of strong reflections between µ 3 and µ 7 are selected and their indices are used to determine the matrix A, using the curve fitting program LAB Fit [START_REF] Silva | LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program)[END_REF]. The matrix A is

(h k l) µ3 = (h k l) µ7 •A (1) 
A =           1 0 0 0 437 . 0 0 0 0 437 . 0 (2)
In a similar way, the reciprocal lattices of µ 5 and µ 7 are related by a matrix B through The structure factors of µ 3 , µ 5 and µ 7 were calculated to 1.2 Å resolution with the program LAZY [START_REF] Yvon | [END_REF] from the atomic coordinates in the literature [1][2]4]. In total there are 215, 515 and 1049 unique reflections within 1.2 Å resolution for µ 3 , µ 5 and µ 7 , respectively. In order to compare the structure factors, the indices of the corresponding reflections in µ 3 and µ 5 were calculated from reflections in µ 7 using Equations (1-4). The calculated (h k l) indices for µ 3 and µ 5 were rounded to nearest integer numbers. The deviations between unrounded and rounded indices are one of the differences of µ 7 to µ 3 and µ 7 to µ 5 in reciprocal space. The 30 strongest reflections among the 1049 unique reflections in µ 7 are listed in Table 1, together with the corresponding reflections in µ 3 and µ 5 . Also the deviations from the exact reciprocal lattice points of µ 3 and µ 5 are listed. The structure factor amplitudes are scaled to a maximum of 1000 for each compound. All those strong reflections in Table 1 are at almost the predicted positions in reciprocal space. The related reflections are quite strong in all these three phases. However, the most interesting thing is that these reflections from three different structures have exactly the same crystallographic structure factor phases!

(h k l) µ5 = (h k l) µ7 •B (3) with B =           1 
[Insert Table 1 about here, on a whole page] § 4. Reconstructing structures of µ µ µ µ 3 , µ µ µ µ 5 and µ µ µ µ 7 with limited reflections

Having noted that it is possible to deduce the amplitudes and phases of the strongest reflections of any of the µ-phases from another, we now proceed to see if it is also possible to obtain a good structure model with these data. In µ 7 , 279 strongest unique reflections sum up to 75% of the total amplitudes of all 1049 unique reflections. From 75% of the total amplitudes, we expect it should be possible to obtain an accurate structure model. Using only these 279 reflections, a density map was calculated by 3D inverse Fourier transformation using eMap [START_REF] Oleynikov | eMap, a program for generating 3D Fourier map and determining peak positions[END_REF]. The 3D map was sampled with 0.1 Å per pixel along the three main axes. The z = 1/4 layer of the calculated map is shown in Fig. 1c. The density map is clear and has well resolved peaks. It is quite similar with the X-ray model. The atomic positions determined from this density map and those from X-ray diffraction are virtually identical. We found all the atom positions in the density map. The atom positions deviated 0.11 Å on average from the atomic positions in [1]; the maximum deviation was 0.26 Å. From the 279 strongest reflections of µ 7 , we calculated the corresponding reflections in µ 5 and µ 3 as shown for the 30 strongest reflections in Table 1. µ 7 has the smallest reciprocal lattice spacing. It is possible that more than one reflection in µ 5 and µ 7 correspond to one reflection in µ 3 . This is evident from the hk0 reciprocal layers of calculated structure factors of µ 3 , µ 5 and µ 7 seen in Fig. 2. The two unique reflections (20 0 0) and (21 0 0) in µ 7 correspond to (14 0 0) and (15 0 0) in µ 5 but to a single reflection (9 0 0) in µ 3 (indicated by small circles in Fig. 2); (11 7 0) and (12 7 0) in µ 7 correspond to (8 5 0) and (9 5 0) in µ 5 and only (5 3 0) in µ 3 .

[Insert Figure 2 about here]

From the 279 strongest reflections in µ 7 , we derived 279 corresponding reflections in µ 3 . These all had non-integer indices, and were rounded to the nearest integer indices. 140 reflections deviate less than 2.78×10 -2 Å -1 (around 35% of the a µ3 * reciprocal axis) from their integer indices in reciprocal space. 108 out of those 140 reflections are unique since often two or more reflections in µ 7 correspond to one in µ 3, as mentioned above. They all had exactly the same phases as in µ 7 . The 108 unique reflections are the common reflections between µ 3 and µ 7 with the same distributions of amplitudes and phases. We calculated a density map as described above with the 108 unique reflections. The z = 1/4 layer of the map is shown in Fig. 1a. All the atomic positions were found in the density map. The positions deviated 0.07 Å on average from atomic positions in the X-ray structure [4]; the maximum deviation was 0.20 Å.

The same procedure was performed to reconstruct µ 5 from µ 7 . 279 corresponding reflections indices in µ 5 were derived from the 279 strongest reflections in µ 7 . 273 reflections deviate less than 2.78×10 -2 Å -1 (57% of the a µ5 * reciprocal axis, approximately 35% of the a µ3 * reciprocal axis) from their integer indices. 268 out of those 273 reflections have the same phases as their corresponding reflections in µ 7 . Then these 268 reflections were merged to 224 unique µ 5 reflections. A density map was calculated from these 224 reflections. The layer with z = 1/4 of the map is shown in Fig. 1b. Also here, all the atoms were found in the density map. Their positions deviated 0.12 Å on average from the atomic positions in reference [2]; the two largest deviations were 0.57 and 0.21 Å. From the above reconstructions of µ 3 , µ 5 and µ 7 structure models, we see that good structure models of a series of approximants can be constructed, once one member in the series is known. § 5.

Conclusion

Based on the close similarities in reciprocal space of the approximants µ 3 and µ 5 with µ 7 , structure models of µ 3 and µ 5 were obtained. This is a general method for solving approximant structures from closely related known structures. 1 Amplitudes and phases of the 30 strongest unique reflections in µ 7 , and the corresponding reflections in µ 3 and µ 5 . Dev is the geometric deviations between related reflections in µ 3 to µ 7 and µ 5 to µ 7 . 
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 2 Fig.2 The hk0 reciprocal layers of calculated structure factors of (a) µ 3 , (b) µ 5 and (c) µ 7 . Small circles indicate corresponding reflections in the three structures. Red reflections have phase 0 o , while blue ones have phase 180 o . The large blue and green circles indicate 2.0 and 1.5 Å resolution.
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	Structure factors of µ 7	Structure factors of µ 5	Dev	Structure factors of µ 3	Dev
	No. h k l	|Fhkl| Phase	h k l	|Fhkl|	Phase (×10 2 Å -1 )	h k l	|Fhkl|	Phase (×10 2 Å -1 )
	1 7 7 0	1000	0	5 5 0	1000	0	0.26	3 3 0	762	0	0.93
	2 0 0 4	936	0	0 0 4	904	0	0.00	0 0 4	1000	0	0.00
	3 0 0 6	830	180	0 0 6	889	180	0.00	0 0 6	832	180	0.00
	4 14 14 0	801	0	10 10 0	795	0	0.53	6 6 0	639	0	1.87
	5 7 0 3	761	0	5 0 3	791	0	0.15	3 0 3	741	0	0.54
	6 21 0 0	697	0	15 0 0	666	0	0.46	9 0 0	445	0	1.62
	7 11 0 3	582	0	8 0 3	560	0	0.57	5 0 3	571	0	1.76
	8 14 7 3	521	0	10 5 3	494	0	0.40	6 3 3	417	0	1.43
	9 11 0 1	433	180	8 0 1	490	180	0.57	5 0 1	509	180	1.76
	10 11 0 5	409	180	8 0 5	464	180	0.57	5 0 5	464	180	1.76
	11 14 0 6	391	0	10 0 6	404	0	0.31	6 0 6	446	0	1.08
	12 0 0 2	389	180	0 0 2	551	180	0.00	0 0 2	395	180	0.00
	13 11 0 2	386	0	8 0 2	402	0	0.57	5 0 2	536	0	1.76
	14 11 7 0	350	0	8 5 0	324	0	0.51	5 3 0	380	0	1.56
	15 18 0 2	347	0	13 0 2	376	0	0.42	8 0 2	395	0	1.22
	16 14 0 2	334	0	10 0 2	426	0	0.31	6 0 2	445	0	1.08
	17 7 4 2	325	0	5 3 2	390	0	0.66	3 2 2	365	0	2.08
	18 10 0 3	322	180	7 0 3	428	180	1.03	4 0 3	401	180	3.38
	19 7 4 6	318	0	5 3 6	315	0	0.66	3 2 6	315	0	2.08
	20 11 0 6	317	0	8 0 6	331	0	0.57	5 0 6	373	0	1.76
	21 7 7 6	302	180	5 5 6	256	180	0.26	3 3 6	127	180	0.93
	22 14 4 3	281	180	10 3 3	279	180	0.63	6 2 3	170	180	1.99
	23 11 7 4	277	0	8 5 4	275	0	0.51	5 3 4	438	0	1.56
	24 10 7 0	266	180	7 5 0	330	180	1.11	4 3 0	333	180	3.68
	25 7 4 0	264	180	5 3 0	254	180	0.66	3 2 0	195	180	2.08
	26 7 0 6	261	0	5 0 6	258	0	0.15	3 0 6	290	0	0.54
	27 15 7 3	258	180	11 5 3	237	180	1.22	7 3 3	246	180	3.82
	28 7 0 4	254	0	5 0 4	361	0	0.15	3 0 4	250	0	0.54
	29 7 7 2	250	0	5 5 2	211	0	0.26	3 3 2	454	0	0.93
	30 14 0 1	244	180	10 0 1	301	180	0.31	6 0 1	407	180	1.08
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