# Structure of the Pseudodecagonal Al-Co-Ni Approximant PD4 

Peter Oleynikov, Lesya Demchenko, Jeppe Christensen, Sven Hovmöller, Tadahiro Yokosawa, Markus Döblinger, Benjamin Grushko, Xiaodong Zou

## - To cite this version:

Peter Oleynikov, Lesya Demchenko, Jeppe Christensen, Sven Hovmöller, Tadahiro Yokosawa, et al.. Structure of the Pseudodecagonal Al-Co-Ni Approximant PD4. Philosophical Magazine, 2005, 86 (03-05), pp.457-462. 10.1080/14786430500270343 . hal-00513592

HAL Id: hal-00513592

## https://hal.science/hal-00513592

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.


## Structure of the Pseudodecagonal Al-Co-Ni Approximant PD4

| Journal: | Philosophical Magazine \& Philosophical Magazine Letters |
| :---: | :---: |
| Manuscript ID: | TPHM-05-May-0253.R1 |
| Journal Selection: | Philosophical Magazine |
| Date Submitted by the Author: | 30-Jun-2005 |
| Complete List of Authors: | Oleynikov, Peter; Structural Chemistry, Stockholm University Demchenko, Lesya; Structural Chemistry, Stockholm University Christensen, Jeppe; Structural Chemistry, Stockholm University Hovmöller, Sven; Structural Chemistry, Stockholm University Yokosawa, Tadahiro; Structural Chemistry, Stockholm University Döblinger, Markus; Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München <br> Grushko, Benjamin; IFF, Forschungszentrum <br> Zou, Xiaodong; Structural Chemistry, Stockholm University |
| Keywords: | electron microscopy, crystal structure |
| Keywords (user supplied): | pseudodecagonal, approximant, 2-nm clusters |

## Structure of the Pseudodecagonal AI-Co-Ni Approximant PD4

P. OLEYNIKOV ${ }^{1}$, L. DEMCHENKO ${ }^{1}$, J. CHRISTENSEN ${ }^{1}$, S. HOVMÖLLER ${ }^{1}$, T. YOKOSAWA ${ }^{1}$, M. DÖBLINGER ${ }_{2}^{2}$ B. GRUSHKO ${ }^{3}$ and X.D. Z̄U ${ }^{1}$<br>${ }^{1}$ Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden<br>${ }^{2}$ Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München $D_{-}$ 81377 München, Germany<br>${ }^{3}$ IFF, Forschungszentrum Jülich Gmb $\bar{W}, D_{1} 52425$ Jülich, Germany


#### Abstract

A model for the pseudodecagonal approximant PD4 in the Al-Co-Ni system was deduced from single crystal X-ray diffraction data. The space group is $B \bar{b} m m$ with $a=$ $101.3 \AA, b=32.1 \AA, c=4.1 \AA$. Atomic positions of 133 unique atoms in the unit cell with a reasonable geometry were found by Direct Methods and the difference Fourier syntheses. The obtained structure model is in good agreement with high resolution electron microscopy images of PD4. Diffuse scattering observed along the $a^{*}$ direction in the $h \mathrm{kl}$ layers with $l=1 / 2,3 / 2$ etc. indicates a superstructure with a doubling of the periodicity along the $c$-axis and a lamellar disorder along the a axis. If


 this diffuse scattering is taken into account, $c \equiv 8.2 \AA$.Key words: pseudodecagonal; Al-Co-Ni alloys; approximant; 2-nm clusters;

| Deleted: P. OLEYNIKOV ${ }^{1}$, |
| :---: |
| Deleted: |
| Formatted |
| Formatted |
| Formatted |
| Deleted: $u$ |
| Deleted: Butenandtstr. 5-13 (E) |
| Formatted |
| Formatted |
| Deleted: University of Mü |
| Formatted |
| Deleted: nich |
| Formatted |
| Deleted: $E$ |
| Deleted: Department of Materials, University of Oxford, Oxford OX1 3PH, UK |
| Formatted |
| Deleted: , |
| Deleted: $E$ |
| Deleted: with chemical composition |
| Deleted: 72.5 |
| Deleted: ${ }_{18}$ |
| Deleted: ${ }_{9.5}$ |
| Formatted |
| Deleted: between |
| Deleted: ( |
| Deleted: ) |
| Deleted: perpendicular to $\boldsymbol{c}$ |
| Formatted |
| Formatted |
| Formatted |
| Deleted: substantial |
| Deleted: (lamellar stacking faults) |
| Formatted |
| Deleted: the |
| Deleted: axis is |

## §1. Introduction

Since the discovery of quasicrystals (QCs) in 1984 [1] the structure determination has been one of the most important issues in both their experimental and theoretical study. Quasicrystals display long-range atomic order, while lacking the periodicity of crystals. Many theoretical investigations of QC structures approximate the quasiperiodic structure by a sequence of periodic structures with growing unit cells [2-4]. For a number of QCs, there exist crystalline phases that resemble the quasicrystal, so-called approximant phases [2]. Approximants are classical crystals with a periodic structure, built up by the same clusters as in QCs, with diffraction patterns closely related to those of QCs. A whole hierarchy of approximant phases with growing unit cells should be expected.

Quasicrystals and their approximant phases have very similar chemical compositions, densities, and electron diffraction patterns, and reversible transformations between the two occur [5, 6, 7]. This indicates that they have similar local structures. In the embedding picture, where the quasiperiodic tiling is embedded in a higher-dimensional periodic lattice, approximants can be systematically constructed [8]. In practice, only the very first members of this hierarchy have been observed experimentally and, apart from a possibly tiny existence region, it might be hard to distinguish larger approximants from "true" quasicrystals.

Thus, one approach to build the structures of quasicrystals is to understand the differences and relationships between quasicrystals and their approximant phases. So, crystalline approximants hold the key to determining the structures of quasicrystals.

In $\mathrm{Al}-\mathrm{Co}-\mathrm{Ni}$ and several other alloy systems, the periodic phases, approximants, are observed under certain conditions at the same compositions as corresponding QCs [9-11]. The term pseudodecagonal (PD) structure is used for decagonal QC approximants [12]. They are named PD1, PD2 etc. and exhibit diffraction patterns with almost perfect tenfold symmetry and quasiperiodic reflection arrangements of the strongest reflections [12-14].

As is well known, decagonal quasicrystals can be described by a quasiperiodic arrangement of clusters [15-18]. For example, all decagonal quasicrystals and high order approximants in the $\mathrm{Al}-\mathrm{Ni}-\mathrm{Co}$ system comprise distinct $2-\mathrm{nm}$ clusters [19-23]. The atomic arrangement within the clusters is imposing restrictions on the arrangement of the clusters themselves, as for example on overlapping of clusters [24-28]. A detailed determination of the atomic arrangements within the 2-nm clusters is important for understanding the structure of quasicrystal. Thus, we have undertaken this investigation.

## §2. Experimental methods

PD4 was obtained from an alloy of nominal composition $\mathrm{Al}_{72.5} \mathrm{Co}_{18} \mathrm{Ni}_{9.5}$ annealed at $900^{\circ} \mathrm{C}$ for | 2150 h [12]. Single crystal X-ray diffraction (XRD) data was collected from a PD4 crystal on an Oxford Xcalibur ${ }^{\mathrm{TM}} 3$ diffractometer with monochromatized $\mathrm{MoK}_{\alpha}$ radiation.

The samples were also studied by electron diffraction and high-resolution electron microscopy (HREM) on a JEOL 3010 electron microscope operated at an accelerating voltage of

Deleted: packing of
Deleted: atomic
Deleted: the

Deleted: All Al-Ni-Co decagonal quasicrystals and many of the previously proposed models for the $2-\mathrm{nm}$ clusters have been reported to contain a $10_{5}$ screw axis through their centers

Deleted: 5-fold quasicrystals were also reported, especially for the compounds with chemical composition identical to PD4 [29, 30].
Deleted: quasicrystals

Deleted: transmission
$\mid 300 \mathrm{kV}$. Crystallographic image processing was performed using CRISP [29]. The local chemical composition was determined by energy dispersive spectroscopy (EDS) on a JEOL $200 \bar{O} \bar{X}$ electron microscope. HREM images and selected area electron diffraction (SAED) patterns were collected on powdered PD4 spread on Cu grids covered by holey carbon films.

## §3. Results and discussion

## Single-crystal X-ray and electron diffraction

Reciprocal space reconstruction of the X-ray diffraction data performed by means of the CrysAlis RED program (Oxford Diffraction 2002) indicates that PD4 is orthorhombic with a very large unit cell parameter along $a ; a=101.3 \AA, b=32.1 \AA, c=4.1 \AA$ (Fig. 1). There are strong and sharp diffraction spots related to the tenfold symmetry of decagonal QC. Weak and diffuse diffraction spots are observed at $l=1 / 2,3 / 2$, etc. This indicates that superstructure along the $c$ axis resulting in a doubling of the periodicity along the $c$-axis $(c=8.2 \AA$ ). The diffuse streaking along the $\boldsymbol{a}^{*}$ direction (see reconstructed $h 0 l$ reciprocal lattice layer in Fig. 1 indicates a damellar disorder along the $\boldsymbol{a}$ axis, which is observed frequently in the Al-Co-Ni system $\lceil\overline{3} \overline{0}]$. The selected area electron diffraction (SAED) patterns (Fig. 2) have some similarities to the X-ray diffraction patterns (Fig. 1). The same diffuse lines also clearly show up in the hol SAED patterns (Fig. 2). Since these diffuse layers only contribute less then $10 \%$ of the total scattered intensity, we decided to solve first the main average structure using $c=4.1 \AA$,
$T$ The intensities from single crystal XRD data were integrated and merged with the CrysAlis program. Lorentz and polarization corrections were applied and absorption effects were corrected. $h k l$ indices and intensities of reflections were extracted and the unit cell parameters | were calculated.

## Solving the structure and deducing an atomic model

According to systematic absences ( $h k l: h+l=2 \mathrm{n} ; h k 0: h=2 \mathrm{n} ; h 0 l: h+l=2 \mathrm{n} ; 0 k l: k=2 \mathrm{n}, l=2 \mathrm{n}$; $h 00: h=2 \mathrm{n} ; 0 \mathrm{kO}: k=2 \mathrm{n} ; 00 l: l=2 \mathrm{n}$ ), the space group for PD4 was found to be Bbmm (no. 63). The average chemical composition of PD4 determined by EDS was virtually identical to the nominal composition.

35599 reflections of which 5941 were unique were collected. The PD4 initial structure model was deduced , by Direct Methods in , SIR2002 [3,1] using the 10000 strongest reflections (1818 unique). The program found 102 unique atoms. Successive difference Fourier syntheses using SHELXL97 [32] yielded 133 unique atomic positions in the unit cell with a reasonable geometry, Transition metal ( $\mathrm{Co} / \mathrm{Ni}$ ) and aluminum positions were assigned according to the peak heights in the electron density map. The R-factor calculated by SHELXL97 for this model was 0.279. Further determination of Co and Ni distribution in the unit cell is difficult due to the similarity of their X-ray scattering factors of these transition metals.
The strong reflections approach [33, 34] was also used to deduce a structure model, quite similar to that obtained by Direct Methods. The structure model of PD is shown in Fig. 3. The structure refinement is in progress.


## HREM

HREM was applied in order to confirm the obtained model and to identify the clusters in our model. Fig. 4 shows an experimental HREM image of PD4 taken along the $\boldsymbol{c}$-axis after crystallographic image processing was applied. The ( $h k$ ) projection symmetry was determined
| from HREM images using CRISP [29]. The plane group for PD4 was found to be pmg with the mirror plane $m$ perpendicular to the $\boldsymbol{b}$-axis. Most of the projected unit cell is covered by circular clusters, 2 nm in diameter (indicated in Fig. 4). The structure model obtained by X-rays agrees well with the HREM images as seen in Fig. 5. Dark spots belonging to Co and Ni atoms appear around the perimeters of each of the $2-\mathrm{nm}$ cluster columns and in two more circular arrangements, with diameters of $13.3 \AA$ and $6.5 \AA$, respectively. Five aluminum atoms were reassigned to be transition metal atoms and 3 transition metal atoms were reassigned to be aluminum, The 2-nm cluster columns have approximate 5-fold rotational symmetry.

## §4. Conclusion

A structure model of PD4 has been obtained from single crystal X-ray diffraction and electron microscopy. The atomic arrangement corresponding to the $2-\mathrm{nm}$ cluster column with 5 -fold rotational symmetry for PD4 was found.

## Acknowledgements

This project is supported by the Swedish Research Council. X.D. Zou is a research fellow of the Royal Swedish Academy of Sciences supported by a grant from the Knut and Alice Wallenberg Foundation. L. Demchenko is supported by a grant from the Royal Swedish Academy of Sciences.

## References

[1] D. Shechtman, I. Blech, D. Gratias, et al., Phys. Rev. Lett. 531951 (1984)
[2] Goldman A.I., Kelton K.F., Rev. Mod. Phys. 65213 (1993)
[3] Cahn J.W., Gratias D., Shechtman D., Nature 319102 (1986)
[4] Duneau M., Mosseri R., Oguey C., J., Phys. A: Math. Gen. 224549 (1989)
[5] P. A. Bancel, Phys. Rev. Lett. 632741 (1989)
[6] E. R. Abe, A.P. Tsai, Phys. Rev. Lett. 83753 (1999)
[7] X.D. Zou, K.K. Fung and K.H. Kuo, Phys. Rev. B 354526 (1987).
[8] Baake M., Joseph D., Kramer, P. J. Phys. A: Math. Gen. 24 L961 (1991)
[9] J. Grin, U. Burkhardt, M. Ellner, et al., J. Alloys Comp. 206243 (1994)
[10] C. Freiburg, B. Grushko, R. Wittenberg, et al., Mater. Sci. Forum 228-231 583 (1996)
[11] X. L. Ma and K. H. Kuo. Metall. Trans. 23A 1121 (1992)
[12] B. Grushko, D. Holland-Moritz, R. Wittmann, et al., J. Alloy. Comp. 280215 (1998)
[13] B. Grushko, D. Holland-Moritz, K. Bickmann, J. Alloy. Comp. 236243 (1996)
| [14] B. Grushko, M. Döblinger, R. Wittmann, et al., J. Alloy. Comp. 34230 (2002)
[15] P. Guyot, M. Audier, Philos. Mag. B 52 L15 (1985)
[16] V. Elserand, C. L. Henley, Phys. Rev. Lett. 552883 (1985)
[17] W. Steurer, Acta Crystallogr., Sect. B: Struct. Sci. B45 534 (1989)4
[18] H.-C. Jeong, S. J. Steinhardt, Phys. Rev. Lett. 731943 (1994)
[19] K. Hiraga, F. J. Lincoln, W. Sun, Mater. Trans., JIM 32308 (1991)
[20] K. Saitoh, K. Tsuda, M. Tanaka, et al., Philos. Mag. A 73387 (1996)
[21] K. Saitoh, K. Tsuda,M. Tanaka, et al., Jpn. J. Appl. Phys., Part 236 L1400 (1998)

Deleted: Some
Deleted: al
Deleted: vice versa ( 5 aluminum and
Deleted: al
Deleted: )
Deleted: rotation

Deleted: rotation

[^0][22] K. Tsuda, Y. Nishida, K. Saitoh, et al., Philos. Mag. A 74697 (1996)
[23] S. Ritsch, C. Beeli, H.-U. Nissen, et al., Philos. Mag. Lett. 7499 (1996)
[24] W. Steurer, K. H. Kuo, Acta Crystallogr., Sect. B: Struct. Sci. B46 703 (1990)
[25] S. E. Burkov, Phys. Rev. Lett. 67614 (1991)
[26] A. Yamamoto, Sci. Rep. Res. Inst. Tohoku Univ. A 42207 (1996)
[27] K. Saitoh, K. Tsuda, M. Tanaka, Philos. Mag. A 76135 (1997)
[28] E. Cockayne and M. Widom, Phys. Rev. Lett. 81598 (1998)
[29] S. Hovmöller, Ultramicroscopy 41 121 (1992)
[30] Frey F., in: Fundamental Materials Science Series, M.F.Thorpe \& S.J. Billinge eds., New
York: Plenum Press, pp. 295-321 (1998)
[31] M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori and R. Spagna, J. Appl. Cryst. 361103 (2003).
[32] G. M. Sheldrick, SHELX-97 - Program for Crystal Structure determination. University of Göttingen, Germany (1994).
[33] J. Christensen, P. Oleynikov, S. Hovmöller, X.D. Zou, Ferroelectrics 305273 (2004) $\sqrt{341}$ H. Zhang, X. D. Z̄ou, P. Oleynikov, S. Hovmöller, Philos. Mag. B, submitted (2005) 56

## Figure captions

Fig. 1. The (a) $h k 0$, (b) $h 0 l$ and (c) $0 k l$ layers of reciprocal space of PD4 from single crystal X-ray diffraction. Note the pseudo-tenfold symmetry of the $h k 0$ pattern, and the diffuse rows ( $l=1 / 2$; $3 / 2$ etc.) in the $\boldsymbol{a}^{*}$ direction in the $h 0 l$ pattern

Fig. 2. SAED patterns from PD4 taken along the $\boldsymbol{c}, \boldsymbol{b}$ and $\boldsymbol{a}$ axes. The magnification of these SAED patterns is twice that of the diffraction patterns in Fig. 1. Note the pseudo-tenfold symmetry of the $h k 0$ pattern and the diffuse rows ( $l=1 / 2 ; 3 / 2$ etc.) in the $a^{*} \overline{\text { direction in the } h 0 l}$ pattern.

Fig. 3. Structure model of PD4 projected along the c-axis. The circles indicate four of the eight 2 nm cluster columns in the unit cell. These clusters have pseudo-fivefold symmetry.

Fig. 4. HREM image of PD4 taken along the pseudo-tenfold $\boldsymbol{c}$-axis. The circles indicate the $2-\mathrm{nm}$ cluster columns with pseudo-fivefold rotational symmetry.

Fig. 5. The atomic structure obtained by X-rays overlapped on a HREM image projected along the short $\boldsymbol{c}$-axis. Due to the $B$-centering, the projected unit cell is halved along the $\boldsymbol{a}$ axis (becoming $50.6 \AA$ ). $\mathrm{Ni} / \mathrm{Co}$ atoms are in dark, and Al atoms are in grey. Large dots are atoms at the $z=0$ layer, small ones are at $z=0.5$. 1.

| Deleted: |
| :---: |
| Deleted: S. Ritsch, C. Beeli, H.-U. Nissen, Philos. Mag. Lett. 74, 103 (1996). |
| Formatted |
| Formatted |
| Deleted: S. Ritsch, C. Beeli, R ... [18] |
| Deleted: fl |
| Deleted: 29 |
| Deleted: http://www.calidris- ... [19] |
| Formatted |
| Formatted |
| Deleted: [32] Frey F., in: Fund ... [20] |
| Deleted: 30 |
| Deleted: 34] ... [21] |
| Deleted: 5 |
| Deleted: 2 |
| Deleted: 31 |
| Deleted: et al. |
| Deleted: [32] |
| Deleted: 6 |
| Deleted: 3 |
| Deleted: X. D. Zou |
| Deleted: , H. Zhang and K. H. Kuo |
| Formatted |
| Deleted: |
| Deleted: in manuscript (to be s ... [22] |
| Deleted: The $h k 0$ (right), $h 0 l$ ( ... [23] |
| Formatted |
| Deleted: the radial streaking of ... [24] |
| Deleted: in $h 0 l$ layer. |
| Formatted |
| Deleted: diffuse odd layers in $\ldots .$. [25] |
| Formatted |
| Formatted |
| Formatted |
| Formatted |
| Deleted: nearly perfect 5-fold rotation |
| Formatted |
| Deleted: 5- |
| Deleted: rotation |
| Deleted: purple |
| Deleted: Co are green |
| Deleted: $\mathbb{I}$ I $\ldots$ [26] |



Fig.1. The (a) $h k 0_{\mathrm{e}}$ (b) $h 0 l$ and (c) $0 k l$ layers of reciprocal space of PD4 from single crystal X-ray diffraction. Note the pseudo-tenfold symmetry of the $h k 0$ pattern, and the diffuse rows ( $l=1 / 2$; $3 / 2$ etc.) in the $a^{*}$ direction in the $h 0 l$ pattern,

| Deleted: (right) |
| :--- |
| Deleted: (centre) |
| Deleted: (left) |
| Deleted: the radial streaking of the <br> strongest reflections and the diffuse odd |
| Deleted: layer |
| Deleted: s in $h O l$ |



Fig. 2. SAED patterns from PD4 taken along the (a) $\boldsymbol{c}_{\boldsymbol{*}}$ (b) $\boldsymbol{b}$ and (c) $\boldsymbol{a}$ axes. The magnification of these SAED patterns is twice that of the diffraction patterns in Fig. 1. Note the pseudo-tenfold symmetry of the $h k 0$ pattern and the diffuse rows ( $l=1 / 2 ; 3 / 2$ etc.) in the $a^{*}$ direction in the $h 0 l$ pattern.


Fig. 3. Structure model of PD4 projected along the $c$-axis. The circles indicate four of the eight 2nm cluster columns in the unit cell. These clusters have pseudo-fivefold symmetry.

| Formatted |
| :--- |
| Deleted: nearly perfect |
| Deleted: 5- |
| Deleted: rotation |



Fig. 4. HREM image of PD4 taken along the pseudo-tenfold $\boldsymbol{c}$-axis. The circles indicate the 2 -nm cluster columns with pseudo-fivefold symmetry.

Deleted: 5-
Deleted: rotation


Fig. 5. The atomic structure obtained by X-rays over apped on a HREM image projected along

## Deleted: $\mathbb{I}$

Deleted: $\mathbb{}$ II the short $\boldsymbol{c}$-axis. Due to the B-centering, the projected unit cell is halved along the $\boldsymbol{a}$ axis (becoming $50.6 \AA$ ). Transition metal ( Ni and Co ) atoms are in purple, and Al atoms are in grey. Large dots are atoms at the $z=0$ layer, small ones are at $z=0.5$.

Deleted:
Deleted: Co are green

| Page 3: [1] Formatted | sven | $\mathbf{6 / 3 0 / 2 0 0 5} \mathbf{7 : 2 2 : 0 0 ~ A M ~}$ |
| :--- | :--- | :--- |
| Formatted |  |  |
| Page 3: $[2]$ Formatted | sven | $\mathbf{6 / 3 0 / 2 0 0 5} \mathbf{7 : 2 8 : 0 0 ~ A M ~}$ |
| Formatted |  | $\mathbf{6 / 3 0 / 2 0 0 5} \mathbf{6 : 1 0 : 0 0 ~ A M ~}$ |

The strongest diffraction maxima are streaked radially. These diffuse streaks indicate lamellar type disorder as it is observed frequently in this system [32,33]. The reflections of odd ( $h k$ ) layers perpendicular to the $\boldsymbol{c}$ axis ( $h k 1, h k 3$ etc) are

| Page 3: [4] Formatted | sven | 6/30/2005 6:13:00 AM |
| :---: | :---: | :---: |
| Formatted |  |  |
| Page 3: [4] Formatted | sven | 6/30/2005 6:13:00 AM |
| Formatted |  |  |
| Page 3: [5] Deleted | sven | 6/30/2005 7:23:00 AM |
| much weaker than those of even layers (hk0, hk2, hk4 etc). The odd |  |  |
| Page 3: [6] Formatted | sven | 6/30/2005 6:13:00 AM |
| Formatted |  |  |
| Page 3: [7] Deleted | Zou | 6/30/2005 3:39:00 PM |
| that |  |  |
| Page 3: [7] Deleted | Zou | 6/30/2005 3:39:00 PM |
| S |  |  |
| Page 3: [8] Formatted | sven | 6/30/2005 7:34:00 AM |
| Formatted |  |  |
| Page 3: [9] Deleted | sven | 6/30/2005 7:36:00 AM |
| The observed character of diffuse reflections |  |  |
| Page 3: [9] Deleted | sven | 6/30/2005 7:36:00 AM |
| es |  |  |
| Page 3: [10] Deleted | Zou | 6/30/2005 3:40:00 PM |
| ing |  |  |
| Page 3: [10] Deleted | Zou | 6/30/2005 3:41:00 PM |
| that |  |  |
| Page 3: [11] Deleted | Zou | 6/30/2005 3:41:00 PM |
| Page 3: [11] Deleted | Zou | 6/30/2005 3:41:00 PM |
| is of a |  |  |
| Page 3: [12] Deleted | sven | 6/30/2005 7:40:00 AM |
| on |  |  |
| Page 3: [12] Deleted | sven | 6/30/2005 7:41:00 AM |
| projection of |  |  |
| Page 3: [12] Deleted | sven | 6/30/2005 7:26:00 AM |
| odd |  |  |
| Page 3: [13] Deleted | sven | 6/30/2005 6:25:00 AM |
| 35599 reflection | e uniq |  |


| Page 3: [13] Deleted | sven | 6/30/2005 6:17:00 AM |
| :---: | :---: | :---: |
| PD4 is orthorhombic with a very large unit cell parameter along $\boldsymbol{a} ; a=101.3 \mathrm{~A}, b=$$32.1 \AA, c=4.1 \AA$ |  |  |
| Page 3: [14] Deleted | peter | 6/29/2005 3:18:00 PM |
| e |  |  |
| Page 3: [14] Deleted | peter | 6/29/2005 3:00:00 PM |
| solved |  |  |
| Page 3: [14] Deleted | peter | 6/29/2005 3:00:00 PM |
| using |  |  |
| Page 3: [14] Deleted | peter | 6/29/2005 4:25:00 PM |
| 30 |  |  |
| Page 3: [15] Deleted | peter | 6/29/2005 3:09:00 PM |
| Atomic positions of |  |  |
| Page 3: [15] Deleted | peter | 6/29/2005 3:20:00 PM |
| S |  |  |
| Page 3: [15] Deleted | peter | 6/29/2005 3:09:00 PM |
| were found |  |  |
| Page 3: [16] Deleted | Zou | 6/30/2005 3:37:00 PM |
| he $t$ |  |  |
| Page 3: [16] Deleted | Zou | 6/30/2005 3:38:00 PM |
| quite |  |  |
| Page 3: [16] Deleted | Zou | 6/29/2005 5:39:00 PM |
| al |  |  |
| Page 3: [17] Deleted | peter | 6/29/2005 4:26:00 PM |
| 32 |  |  |
| Page 3: [17] Deleted | peter | 6/29/2005 3:02:00 PM |
| 35599 reflec | vere un |  |

Page 5: [18] Deleted sven 6/30/2005 7:45:00 AM
S. Ritsch, C. Beeli, R. Lu"ck, K. Hiraga, Philos. Mag. Lett. 79, 225 (1999).

| Page 5: [19] Deleted <br> http://www.calidris-em.com/index.html | sven | 6/30/2005 7:44:00 AM |
| :--- | :--- | :--- |

Page 5: [20] Deleted sven 6/30/2005 7:49:00 AM [32] Frey F., in: Fundamental Materials Science Series, M.F.Thorpe \& S.J.L. Billinge eds., New York: Plenum Press, pp. 295-321 (1998)
[33] Frey F., Lecture Notes in Physics, Vol. 610, Springer Verlag, ISDN 3-540-44386X (2002) [

| Page 5: [21] Deleted | sven |
| :--- | :--- |
| $34]$ http://www.sir.com.au/download/index.stm | 6/30/2005 7:49:00 AM |
| Page 5: [22] Deleted | sven |

in manuscript (to be submitted to Acta Cryst. A).
Page 5: [23] Deleted Zou 6/30/2005 1:57:00 PM

The $h k 0$ (right), $h 0 l$ (centre) and $0 k l$ (left) layers of reciprocal space of PD4 from single crystal X-ray diffraction. Note the pseudo-tenfold symmetry of the $h k 0$ pattern, and the diffuse rows ( $l=1 / 2 ; 3 / 2$ etc.) in the $\boldsymbol{a}^{*}$ direction

| Page 5: [24] Deleted | sven | 6/30/2005 6:42:00 AM |
| :---: | :---: | :---: |
| the radial streaking of the strongest reflections and the diffuse odd layers |  |  |
| Page 5: [25] Deleted | sven | 6/30/2005 6:45:00 AM |
| diffuse odd layers in $h 0 l$, but no radial streaking of the strong spots. |  |  |
| Page 5: [26] Deleted | sven | 6/30/2005 6:44:00 AM |


[^0]:    Deleted: Doblinger

