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Averaged coordination numbers of planar aperiodic tilings

Introduction

Many combinatorial questions from lattice theory are best extended to aperiodic system by using an additional averaging process. In particular, this is the case for the shelling problem, where one asks for the number of vertices on spherical (circular) shells. In this contribution, we consider an extension of the shelling problem to the setting of more general distances, and give examples for the coordination number case [START_REF] Baake | Coordination sequences for root lattices and related graphs[END_REF][START_REF] Baake | Coordination sequences and critical points[END_REF], which corresponds to the graph distance in a tiling.

To keep things simple, we explain our approach for cyclotomic model sets in the Euclidean plane R 2 C, with co-dimension 2 (referring to the so-called internal space). Here, following the algebraic setting of Pleasants [START_REF] Pleasants | Designer quasicrystals: Cut-and-project sets with pre-assigned properties[END_REF], one starts from a set of cyclotomic integers, L = Z[ξ n ] with ξ n = e 2πi/n and suitable n, which is the set of all integer linear combinations of the regular n-star of unit length. Note that one can choose a Z-basis of φ(n) elements, where φ is Euler's totient function [2].

This setting is equipped with a natural -map, defined by a suitable algebraic conjugation (such as ξ 5 → ξ 2 5 , ξ 8 → ξ 3 8 , and ξ 12 → ξ 5 12 in the examples discussed below, together with the canonical extension to all elements of L). The set L : or any translate of it, where the window Ω is a relatively compact subset of internal space with non-empty interior. A natural choice for Ω that preserves n-fold symmetry is a regular n-gon, which leads to regular model sets (i.e., the boundary ∂Ω has Lebesgue measure 0). More precisely, we focus on the generic case (∂Ω ∩ L = ∅), where Λ is repetitive and its LI-class (consisting of all locally indistinguishable patterns) defines a uniquely ergodic dynamical system [START_REF] Schlottmann | Generalized model sets and dynamical systems[END_REF]. This includes the examples of figure 1. Let d(x, y) denote any translation invariant distance between x and y. Due to unique ergodicity, combined with finite local complexity, we know [START_REF] Schlottmann | Generalized model sets and dynamical systems[END_REF][START_REF] Baake | A note on shelling[END_REF] that the averaged number s d (r) of vertices on a d-shell of radius r is determined by a sum over a finite number of patches, weighted by their frequencies, which exist uniformly. Since we work with model sets, this can be further reduced to a sum that involves only admissible pairs of vertices with the correct distance. The frequency of a pair (x, y) with x, y ∈ L is given by the scale-independent autocorrelation coefficient ν(x -y), where [START_REF] Baake | A note on shelling[END_REF] 

= {(x, x ) | x ∈ L} is then a lattice in R φ(n) , the so-called Minkowski embedding [9] of L. A model set Λ is now a set of the form Λ = {x ∈ L | x ∈ Ω}, (1) 
ν(z) = 1 vol(Ω) m 1 Ω (w) 1 Ω (w + z ) dw, (2) 
with 1 Ω denoting the characteristic function of the window. The normalisation is such that ν(0) = 1, i.e., we count per point of Λ rather than per unit volume. Clearly, ν(z) = ν(-z), and further identities may occur as a result of the symmetries of the window. In general, the averaged number reads

s d (r) = z∈Λ-Λ d(0,z)=r ν(z), (3) 
which can then be further simplified by means of a standard orbit analysis [START_REF] Baake | A note on shelling[END_REF].

In view of this derivation, it is reasonable to consider a d-shell to be the collection of all pairs (x, y) of a given distance d(x, y) together with their frequencies ν(x -y).

The coordination problem is now the extension of the shelling problem to a different distance concept, based on the graph distance in the tiling under consideration. The graph distance of two vertices is defined as the minimum number of edges in a path linking the two vertices. For simplicity, we restrict our discussion to examples with a single edge type (i.e., all edges have the same length), though various extensions are possible. There is an important connection between averaged coordination and shelling numbers, which stems from the relation between graph and Euclidean distances. On a given coordination shell, the vertices appear in symmetry orbits of the underlying tiling; these vertices are orbitwise distributed over finitely many Euclidean shells. Within one orbit, every vertex contributes the same amount to the averaged numbers. Conversely, the vertices on a Euclidean shell orbitwise belong to (possibly different) coordination shells. Here, the term orbit simply refers to the orbit of a point under the point symmetry group of the pattern under consideration.

Examples

In what follows, we concentrate on three particular examples, with 8-, 10-, and 12-fold symmetry. For n = 8, we consider the Ammann-Beenker tiling, obtained by the above construction with a regular octagon of edge length 1 as the window. The special role of √ 2 reflects the fact that

Z[ √ 2] = R ∩ Z[ξ 8 ]
, see [START_REF] Baake | A note on shelling[END_REF] for details. This reference also contains the known results on the circular shelling.

For this tiling, the connection between shelling and coordination numbers is rather advantageous, because coordination shells comprise only complete circular shells. This is a consequence of the fact that the four directions of the edges in the tiling form a Z-basis of the underlying module Z[ξ 8 ], which is possible because φ(n) = n/2 for n = 8. This means that for a given distance vector, the number of steps along each direction is uniquely determined. Moreover, there always exists at least one path along edges of the actual tiling that is admissible (in the sense that never has to 'backtrack' along the path). This is a higher-dimensional analogue of the corresponding (trivial) situation for the silver mean chain (when viewed as a cut and project set obtained from a rectangular lattice), which fails for other tilings.

The averaged coordination numbers can therefore be calculated by identifying the contributing circular shells, and summing the corresponding averaged shelling numbers, which can be obtained as described in [START_REF] Baake | A note on shelling[END_REF]. Following this approach, we calculated the first few hundred averaged coordination numbers for the Ammann-Beenker tiling, see table 1 and figure 2.

As for periodic planar lattices, the averaged coordination numbers s c (k) grow, on the average, linearly with the number of steps k. However, a closer inspection of the left part of figure 2 shows that the growth rate fluctuates, and that the data points do not lie on a single line, but inside a sector bounded by two lines of slightly different slopes. An even closer inspection reveals that the fluctuations of s c (k) follow a sophisticated pattern, as displayed in the right part of figure 2 which shows the differences ∆s c (k) = s c (k +1)-s c (k) of consecutive averaged shelling numbers. The resulting pattern appears to comprise a number of sinusoidally varying curves. This might be caused by the variations of overlap areas of the window with shifted copies of itself, which enters the computation of patch frequencies; a closer investigation of this phenomenon might lead to interesting results.

A construction of the rhombic Penrose tiling as a cyclotomic model set with four components is described in [START_REF] Baake | Multi-component model sets and invariant densities[END_REF]. Due to the necessity of four windows (which are also present in the non-minimal embedding via the lattice Z 5 ), the determination of averaged quantities is technically more involved. Table 2 recalls some results obtained earlier in [START_REF] Baake | Coordination sequences and critical points[END_REF]. In this case,

Z[ξ 5 ] ∩ R = Z[τ ], where τ = (1 + √ 5)
/2 is the golden ratio, which is the relevant algebraic integer here. As an example with 12-fold symmetry, we consider the so-called shield tiling [START_REF] Gähler | Matching rules for quasicrystals: The composition-decomposition method[END_REF] of figure 1. It is obtained from Z[ξ 12 ] choosing a regular dodecagon of edge length 1 as window, see [START_REF] Baake | Combinatorial problems of (quasi)crystallography, in Quasicrystals: Structure and Physical Properties[END_REF] for details. In this case,

Z[ξ 12 ] ∩ R = Z[ √ 3 
]; examples are listed in table 3. Note that a single circular shell can contribute to several coordination shells.

Frequency modules

It is remarkable that the averaged coordination numbers are special algebraic integers in all three examples. From the cut and project method, in conjunction with equations (2) and (3), it is clear that these numbers must be rational, i.e., elements of the corresponding cyclotomic field Q(ξ n ). This follows from the computability of the integrals in equation (2) within these number fields.

The further restriction to algebraic integers is due to a special structure of the frequency module of the tiling, i.e., the Z-span of the frequencies of all finite patches in the tiling. Since our averaged quantities are simple integer linear combinations of patch frequencies, a 'quantisation' of the latter to integers implies the result for the former. This phenomenon has been observed before several times, and for various related problems [START_REF] Baake | Coordination sequences and critical points[END_REF][START_REF] Rogers | Self-avoiding walks and polygons on quasiperiodic tilings[END_REF][START_REF] Baake | A note on shelling[END_REF][START_REF] Grimm | Shelling of homogeneous media[END_REF]. The proof relies on the topological structure of the compact LI-class, viewed as a dynamical system under the translation and/or inflation action [START_REF] Anderson | Topological invariants for substitution tilings and their associated C * -algebras[END_REF][START_REF] Bellissard | K-theory of quasicrystals, gap labelling: The octagonal lattice[END_REF][START_REF] Forrest | Topological Invariants for Projection Method Patterns[END_REF]. 

Figure 1 :

 1 Figure 1: Patches of the Ammann-Beenker tiling (left) and the shield tiling (right).
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 32 Figure 2: The first 400 coordination numbers for the Ammann-Beenker tiling (left) and the fluctuations in the differences of successive coordination numbers (right).

Table 1 :

 1 Averaged coordination numbers of the Ammann-Beenker tiling.

	k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 -3064 + 2224 s c (k) 4 32 -16 √ 2 -8 + 16 √ 2 24 -4 √ 2 40 -12 √ 2 40 -8 √ 2 -176 + 148 √ 2 444 -288 √ 2 240 -140 √ 2 -648 + 492 √ 2 232 -128 √ 2 508 -320 √ 2 -272 + 236 √ 2 -556 + 440 √ 2 1540 -1040 √ 2 980 -640 √ 2 √ 2 18 1424 -948 √ 2 19 812 -512 √ 2 20 740 -456 √ 2	num. value 4.000 9.373 14.627 18.343 23.029 28.686 33.304 36.706 42.010 47.793 50.981 55.452 61.754 66.254 69.218 74.903 81.211 83.326 87.923 95.119	k 21 22 23 24 25 26 27 28 29 30 31 -10216 + 7328 s c (k) -3284 + 2392 2172 -1464 4164 -2868 -8648 + 6196 6836 -4752 3164 -2152 -7972 + 5728 1500 -968 √ √ 2 √ 2 √ 2 √ 2 √ 2 √ 2 √ 2 2 4716 -3240 √ 2 792 -460 √ 2 √ 2 32 10500 -7320 √ 2 33 7236 -5008 √ 2 34 -18132 + 12936 √ 2 35 5356 -3672 √ 2 36 7328 -5064 √ 2 37 2800 -1856 √ 2 38 -19444 + 13876 √ 2 39 12416 -8652 √ 2 40 21932 -15376 √ 2	num. value 98.799 101.591 108.036 114.467 115.657 120.612 128.615 131.041 133.948 141.462 147.357 147.957 153.618 162.267 163.008 166.423 175.220 179.627 180.224 187.052

Table 2 :

 2 Averaged coordination numbers of the rhombic Penrose tiling.
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	k	s c (k)	num. value	k	s c (k)	num. value
	1 2 3 -128 + 88τ 4 58 -30τ 4 288 -166τ 5 -374 + 246τ	4.000 9.459 14.387 19.406 24.036	6 7 -1614 + 1018τ 980 -588τ 8 2688 -1638τ 9 -3840 + 2400τ 10 4246 -2594τ	28.596 33.159 37.660 43.282 48.820
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Table 3 :

 3 Averaged coordination numbers of the twelvefold symmetric shield tiling, split into the contributions from circular shells of radius r.

	k 1 2 3 4 -46 + 38 s c (k) 8 -2 √ 3 20 -6 √ 3 64 -28 √ 3 15.503 1 num. value 4.536 2 -r 2 9.608 4 -2 6 -3 1 5 -2 2 4 -√ 3 19.818 4 -8 -3 3 7 -2 2 + 4	contribution 8 -2 √ 3 2 4 -2 √ 3 14 -4 √ 3 -6 + 4 √ 3 10 -4 √ 3 48 -24 √ 3 12 -4 √ 3 -6 + 4 √ 3 3 -76 + 44 √ 3 √ 3 √ 3 √ 3 √ 3 √ 3 √ √ 3 -4 + 16 3 √ 3 √ 3 20 -32 3 √ 3 √ 3 12 -2 √ 3 8 -8 3 √ 3
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