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Discrete quasiperiodic sets with predefined covering

cluster

N. COTFAS

Faculty of Physics, University of Bucharest, E-mail: ncotfas@yahoo.com

Some of the most remarkable tilings and discrete quasiperiodic sets used in
quasicrystal physics can be obtained by using strip projection method in a
superspace of dimension four, five or six, and the projection of a unit hypercube
as a window of selection. We present some mathematical results which allow one
to use this very elegant method in superspaces of dimension much higher, and
to generate discrete quasiperiodic sets with a more complicated local structure
by starting from the corresponding covering cluster. Hundreds of points of these
sets can be obtained in only a few minutes by using our computer programs.

Keywords: Strip projection method; quasiperiodic point set; covering cluster.

1. Introduction

Quasicrystals are materials with perfect long-range order, but with no three-
dimensional translational periodicity. The discovery of these solids in the early
1980’s and the challenge to describe their structure led to a great interest in
discrete quasiperiodic sets and their coverings ([9] and references therein).

The diffraction image of a quasicrystal often contains a set of sharp Bragg
peaks invariant under a finite non-crystallographic group of symmetriesG, called
the symmetry group of quasicrystal (in reciprocal space). In the case of qua-
sicrystals with no translational periodicity this group is the icosahedral group
Y and in the case of quasicrystals periodic along one direction (two-dimensional
quasicrystals) G is one of the dihedral groups D8 (octagonal quasicrystals),
D10 (decagonal quasicrystals) and D12 (dodecagonal quasicrystals). Real struc-
ture information obtained by high resolution transmission electron microscopy
suggests us that a quasicrystal with symmetry group G can be regarded as a
quasiperiodic packing of copies of a well-defined G-invariant cluster C.

In the literature on quasicrystals the term ‘cluster’ has several meanings [9].
In the present paper, by G-cluster we mean a finite union of orbits of a finite
group G in a fixed representation. A mathematical algorithm for generating
quasiperiodic point sets by starting from G-clusters was proposed by author in
collaboration with Jean-Louis Verger-Gaugry several years ago [2]. It is based on
strip projection method ([9] and references therein) and is a direct generalization
of the algorithm used by Katz and Duneau in [8]. The model obtained in [8]
for the icosahedral quasicrystals starts from the one-shell Y -cluster C formed by
the vertices of a regular icosahedron. The physical space is embedded into the
superspace R6 such that the orthogonal projections on the physical space of the
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points

(±1, 0, 0, 0, 0, 0), (0,±1, 0, 0, 0, 0), ..., (0, 0, 0, 0,±1, 0), (0, 0, 0, 0, 0,±1)

are the vertices of a regular icosahedron.
In our direct generalization, we consider only G-clusters invariant under

inversion. If our starting G-cluster C has 2k points then we embed the physical
space into the superspace Rk in such a way that C is the orthogonal projection
on the physical space of the subset

{(±1, 0, 0, ..., 0), (0,±1, 0, 0, ..., 0), ..., (0, 0, ..., 0,±1, 0), (0, 0, ..., 0,±1)}
of Rk containing 2k points. One can remark that, in the case of a two-shell or
three-shell cluster, the dimension of the involved superspace is rather high.

Our aim is to present some mathematical results which allow one to use
our algorithm in the case of multi-shell clusters. We show that in the case of
a two-dimensional (resp. three-dimensional) cluster we have to compute only
determinants of order three (resp. four), independently of the dimension of the
superspace we use. This remark and a simple description of the window (which,
generally, is a polyhedron with hundreds or thousands faces) have allowed us to
obtain some very efficient computer programs for our algorithm [7].

In the case of a three-shell Y -cluster formed by the vertices of a regular
icosahedron, a regular dodecahedron and an icosidodecahedron we use a 31-
dimensional superspace, the window is a polyhedron lying in a 28-dimensional
subspace bounded by 31465 pairs of parallel faces, but we obtain 400-500 points
in less than 10 minutes [6]. In the case of a two-shell D10-cluster we use a 10-
dimensional superspace, the window is bounded by 120 pairs of parallel faces,
and we obtain 700-800 points in only one minute [5].

2. G-clusters

Consider a finite group G and a fixed R-irreducible representation of G in Rn.
In the case of dihedral groups D2m=〈a, b | a2m=b2 =(ab)2 =e〉 we can use the
two-dimensional representation defined by a, b : R2 −→ R2

a(α, β) =
(
α cos π

m − β sin π
m , α sin π

m + β cos π
m

)

b(α, β) = (α,−β)
(1)

and in the case of the icosahedral group Y = 〈a, b | a5 = b2 = (ab)3 = e〉 the
three-dimensional representation generated by the rotations a, b : R3 −→ R3

a(α, β, γ) =
(
τ−1

2 α− τ
2β + 1

2γ,
τ
2α+ 1

2β + τ−1
2 γ, − 1

2α+ τ−1
2 β + τ

2γ
)

b(α, β, γ) = (−α,−β, γ).
(2)

where τ = (1 +
√

5)/2. The set G(α1, α2, ..., αn) = { g(α1, α2, ..., αn) | g ∈ G }
is called the orbit of G generated by (α1, α2, ..., αn). If α ∈ (0,∞) then the orbit

Y (α, ατ, 0) is formed by the vertices of a regular icosahedron,
Y (α, α, α) is formed by the vertices of a regular dodecahedron,
Y (α, 0, 0) is formed by the vertices of an icosidodecahedron.
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For each (α, β) 6= (0, 0), the orbit D2m(α, β) is formed by the vertices of a
regular polygon with 2m sides. A G-cluster is a finite union of orbits of G. For
example, C = D2m(α1, β1) ∪D2m(α2, β2) is two-shell D2m-cluster, and

C = Y (α, ατ, 0) ∪ Y (β, β, β) ∪ Y (γ, 0, 0)}

is a three-shell icosahedral cluster.

3. Discrete quasiperiodic sets defined by G-clusters

Let C = {v1, v2, ..., vk, −v1, −v2, ..., −vk}, where vj = (v1j , v2j , ..., vnj), be a
fixed G-cluster symmetric with respect to the origin. One can prove [2, 3] that
the vectors w1, w2, ..., wn, where wi=(vi1, vi2, ..., vik), are orthogonal and have
the same norm (which we denote by κ)

〈wi, wj〉 = vi1 vj1 + vi2vj2 + ...+ vikvjk =

{
κ2 if i = j
0 if i 6= j.

(3)

We identify the space Rn containing C (‘physical space’) with the subspace

E = { α1w1 + α2w2 + ...+ αnwn | α1, α2, ..., αn ∈ R }. (4)

of the superspace Rk, and consider the orthogonal complement of E

E⊥ = { x ∈ Rk | 〈x, y〉 = 0 for all y ∈ E }. (5)

The orthogonal projectors corresponding to E and E⊥ are

π : Rk −→ E π x =
〈
x, w1

κ

〉
w1

κ +
〈
x, w2

κ

〉
w2

κ + ...+
〈
x, wnκ

〉
wn
κ

π⊥ : Rk −→ E⊥ π⊥x = x− π x. (6)

If we describe E by using the orthogonal basis {κ−2w1, κ
−2w2, ..., κ

−2wn} then
the orthogonal projector corresponding to E becomes

P : Rk −→ Rn Px = (〈x,w1〉, 〈x,w2〉, ..., 〈x,wn〉). (7)

The projection W = π⊥(Ω) of the unit hypercube

Ω =

[
−1

2
,

1

2

]k
=

{
(x1, x2, ..., xk)

∣∣∣∣ −
1

2
≤ xi ≤

1

2
for all i ∈ {1, 2, ..., k}

}

is a polyhedron (called a window) in the (k−n)-subspace E⊥. Each (k−n−1)-
dimensional face of W is the projection of a (k−n−1)-face of the unit hypercube
Ω. Each (k − n − 1)-face of Ω is parallel to k − n − 1 vectors of the canonical
basis {e1, e2, ..., ek} of Rk, and orthogonal to n + 1 of them. For each n + 1
distinct vectors ei1 , ei2 , ..., ein+1 the number of (k−n−1)-faces of Ω orthogonal
to them is 2n+1, and the set

{
x = (x1, x2, ..., xk)

∣∣∣∣
xi ∈ {−1/2, 1/2} if i ∈ {i1, i2, ..., in+1}
xi = 0 if i 6∈ {i1, i2, ..., in+1}

}
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Figure 1: Left: The strip S and the window W in the case of a 1D physical space
E embedded into a 3D superspace. Centre: A one-shell D8-cluster C. Right: A
fragment of the set Q defined by C. The nearest neighbours of any point q of Q
belong to q+ C, which is a copy of C with the center at point q. Therefore, C is
a covering cluster for Q.

contains one and only one point from each of them.
There are k!/[(n+1)! (k−n−1)!] sets of 2n+1 parallel (k−n−1)-faces of Ω.

In the case n = 2 these sets can be labelled by using the elements of

I = {(i1, i2, i3) ∈ Z3 | 1 ≤ i1 ≤ k − 2, i1 + 1 ≤ i2 ≤ k − 1, i2 + 1 ≤ i3 ≤ k }

and in the case n = 3 the elements of

I =

{
(i1, i2, i3, i4) ∈ Z4

∣∣∣∣
1 ≤ i1 ≤ k − 3, i1 + 1 ≤ i2 ≤ k − 2,

i2 + 1 ≤ i3 ≤ k − 1, i3 + 1 ≤ i4 ≤ k

}
.

In the case n = 2, the vector defined by the formal determinant

y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4 e5 ... ek
0 0 0 1 0 ... 0
0 0 0 0 1 ... 0
... ... ... ... ... ...
0 0 0 0 0 ... 1
v11 v12 v13 v14 v15 ... v1k

v21 v22 v23 v24 v25 ... v2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

e1 e2 e3

v11 v12 v13

v21 v22 v23

∣∣∣∣∣∣
(8)

is a vector orthogonal to the vectors e4, e5, ..., ek, w1, w2, and

〈x, y〉 =

∣∣∣∣∣∣

x1 x2 x3

v11 v12 v13

v21 v22 v23

∣∣∣∣∣∣
(9)

for any x ∈ Rk. The vector y belongs to E⊥, and since ei−π⊥ei is a linear com-
bination of w1 and w2, it is also orthogonal to π⊥e4, π⊥e5, ..., π⊥ek. Therefore,
y is orthogonal to the (k − 3)-faces of W labelled by (1, 2, 3). Similar results
can be obtained for any (i1, i2, i3) ∈ I.
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Figure 2: Left: A one-shell D12-cluster and a fragment of the corresponding
quasiperiodic set. Right: A fragment of the quasiperiodic set defined by a two-
shellD10-cluster, obtained by using strip projection method in a ten-dimensional
superspace. The starting cluster is a covering cluster, but for most of the points
the occupation is extremely low.

Consider the strip S corresponding to the window W (see figure 1)

S = {x ∈ Rk | π⊥x ∈W } (10)

and define for each (i1, i2, ..., in+1) ∈ I the number

di1i2...in+1 = max
αj∈{−1/2, 1/2}

∣∣∣∣∣∣∣∣∣∣

α1 α2 ... αn+1

v1i1 v1i2 ... v1in+1

v2i1 v2i2 ... v2in+1

... ... ... ...
vni1 vni2 ... vnin+1

∣∣∣∣∣∣∣∣∣∣

. (11)

A point x = (x1, x2, ..., xk) ∈ Rk belongs to the strip S if and only if

−di1i2...in+1 ≤

∣∣∣∣∣∣∣∣∣∣

xi1 xi2 ... xin+1

v1i1 v1i2 ... v1in+1

v2i1 v2i2 ... v2in+1

... ... ... ...
vni1 vni2 ... vnin+1

∣∣∣∣∣∣∣∣∣∣

≤ di1i2...in+1 (12)

for any (i1, i2, ..., in+1) ∈ I.
The set defined in terms of the strip projection method

Q = P(S ∩ Zk) = {Px | x ∈ S ∩ Zk } (13)

by using the strip S defined above and the hyper-lattice Zk is a discrete set. If G
is one of the groups occurring in quasicrystal physics then Q is a quasiperiodic
set, and has all the properties of the sets obtained by projection [8, 9]. We have

Pei = (〈ei, w1〉, 〈ei, w2〉, ..., 〈ei, wn〉) = (v1i, v2i, ..., vni) = vi (14)

5
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for any i ∈ {1, 2, ..., k}, whence

P({x± e1, x± e2, ..., x± ek} ∩ S)

⊆ {Px± v1, Px± v2 ..., Px± vk} = Px+ C (15)

that is, the ‘arithmetical’ neighbours [8] of any point Px ∈ Q belong to the
translated copy Px+ C of C. Therefore, the starting cluster C can be regarded
as a covering cluster ([9], page 16) of the point set Q. Some examples are shown
in figure 1 and figure 2. A presentation of our algorithm in the particular case
of a two-shell D10-cluster can be found in [5].

4. Concluding remarks

It is known that, generally, the discrete sets Q considered in the previous section
can also be defined as multi-component model sets [1, 4] by using superspaces of
smaller dimension and root lattices, but generally we have to use a large number
of very complicated windows [4].

The starting cluster C is a covering cluster for the set Q, but unfortunately,
for most of the points of Q the occupation is extremely low. Therefore, our
discrete quasiperiodic sets can not be used directly in the description of atomic
positions in quasicrystals.

Acknowledgment. This work was supported by CERES project 4-129.
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Some of the most remarkable tilings and discrete quasiperiodic sets used in
quasicrystal physics can be obtained by using strip projection method in a
superspace of dimension four, five or six, and the projection of a unit hypercube
as a window of selection. We present some mathematical results which allow one
to use this very elegant method in superspaces of dimension much higher, and
to generate discrete quasiperiodic sets with a more complicated local structure
by starting from the corresponding covering cluster. Hundreds of points of these
sets can be obtained in only a few minutes by using our computer programs.

Keywords: Strip projection method; quasiperiodic point set; covering cluster.

1. Introduction

Quasicrystals are materials with perfect long-range order, but with no three-
dimensional translational periodicity. The discovery of these solids in the early
1980’s and the challenge to describe their structure led to a great interest in
discrete quasiperiodic sets and their coverings ([9] and references therein).

The diffraction image of a quasicrystal often contains a set of sharp Bragg
peaks invariant under a finite non-crystallographic group of symmetries G, called
the symmetry group of quasicrystal (in reciprocal space). In the case of qua-
sicrystals with no translational periodicity this group is the icosahedral group
Y and in the case of quasicrystals periodic along one direction (two-dimensional
quasicrystals) G is one of the dihedral groups D8 (octagonal quasicrystals),
D10 (decagonal quasicrystals) and D12 (dodecagonal quasicrystals). Real struc-
ture information obtained by high resolution transmission electron microscopy
suggests us that a quasicrystal with symmetry group G can be regarded as a
quasiperiodic packing of copies of a well-defined G-invariant cluster C.

In the literature on quasicrystals the term ‘cluster’ has several meanings [9].
In the present paper, by G-cluster we mean a finite union of orbits of a finite
group G in a fixed representation. A mathematical algorithm for generating
quasiperiodic point sets by starting from G-clusters was proposed by author in
collaboration with Jean-Louis Verger-Gaugry several years ago [2]. It is based on
strip projection method ([9] and references therein) and is a direct generalization
of the algorithm used by Katz and Duneau in [8]. The model obtained in [8]
for the icosahedral quasicrystals starts from the one-shell Y -cluster C formed by
the vertices of a regular icosahedron. The physical space is embedded into the
superspace R6 such that the orthogonal projections on the physical space of the

1
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points

(±1, 0, 0, 0, 0, 0), (0,±1, 0, 0, 0, 0), ..., (0, 0, 0, 0,±1, 0), (0, 0, 0, 0, 0,±1)

are the vertices of a regular icosahedron.
In our direct generalization, we consider only G-clusters invariant under

inversion. If our starting G-cluster C has 2k points then we embed the physical
space into the superspace Rk in such a way that C is the orthogonal projection
on the physical space of the subset

{(±1, 0, 0, ..., 0), (0,±1, 0, 0, ..., 0), ..., (0, 0, ..., 0,±1, 0), (0, 0, ..., 0,±1)}

of Rk containing 2k points. One can remark that, in the case of a two-shell or
three-shell cluster, the dimension of the involved superspace is rather high.

Our aim is to present some mathematical results which allow one to use
our algorithm in the case of multi-shell clusters. We show that in the case of
a two-dimensional (resp. three-dimensional) cluster we have to compute only
determinants of order three (resp. four), independently of the dimension of the
superspace we use. This remark and a simple description of the window (which,
generally, is a polyhedron with hundreds or thousands faces) have allowed us to
obtain some very efficient computer programs for our algorithm [7].

In the case of a three-shell Y -cluster formed by the vertices of a regular
icosahedron, a regular dodecahedron and an icosidodecahedron we use a 31-
dimensional superspace, the window is a polyhedron lying in a 28-dimensional
subspace bounded by 31465 pairs of parallel faces, but we obtain 400-500 points
in less than 10 minutes [6]. In the case of a two-shell D10-cluster we use a 10-
dimensional superspace, the window is bounded by 120 pairs of parallel faces,
and we obtain 700-800 points in only one minute [5].

2. G-clusters

Consider a finite group G and a fixed R-irreducible representation of G in Rn.
In the case of dihedral groups D2m =〈a, b | a2m =b2 =(ab)2 =e〉 we can use the
two-dimensional representation defined by a, b : R2 −→ R2

a(α, β) =
(
α cos π

m − β sin π
m , α sin π

m + β cos π
m

)
b(α, β) = (α,−β)

(1)

and in the case of the icosahedral group Y = 〈a, b | a5 = b2 = (ab)3 = e〉 the
three-dimensional representation generated by the rotations a, b : R3 −→ R3

a(α, β, γ) =
(

τ−1
2 α− τ

2β + 1
2γ, τ

2α + 1
2β + τ−1

2 γ, − 1
2α + τ−1

2 β + τ
2γ

)
b(α, β, γ) = (−α,−β, γ).

(2)

where τ = (1 +
√

5)/2. The set G(α1, α2, ..., αn) = { g(α1, α2, ..., αn) | g ∈ G }
is called the orbit of G generated by (α1, α2, ..., αn). If α ∈ (0,∞) then the orbit

Y (α, ατ, 0) is formed by the vertices of a regular icosahedron,
Y (α, α, α) is formed by the vertices of a regular dodecahedron,
Y (α, 0, 0) is formed by the vertices of an icosidodecahedron.

2
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For each (α, β) 6= (0, 0), the orbit D2m(α, β) is formed by the vertices of a
regular polygon with 2m sides. A G-cluster is a finite union of orbits of G. For
example, C = D2m(α1, β1) ∪D2m(α2, β2) is two-shell D2m-cluster, and

C = Y (α, ατ, 0) ∪ Y (β, β, β) ∪ Y (γ, 0, 0)}

is a three-shell icosahedral cluster.

3. Discrete quasiperiodic sets defined by G-clusters

Let C = {v1, v2, ..., vk, −v1, −v2, ..., −vk}, where vj = (v1j , v2j , ..., vnj), be a
fixed G-cluster symmetric with respect to the origin. One can prove [2, 3] that
the vectors w1, w2, ..., wn, where wi =(vi1, vi2, ..., vik), are orthogonal and have
the same norm (which we denote by κ)

〈wi, wj〉 = vi1 vj1 + vi2vj2 + ... + vikvjk =
{

κ2 if i = j
0 if i 6= j.

(3)

We identify the space Rn containing C (‘physical space’) with the subspace

E = { α1w1 + α2w2 + ... + αnwn | α1, α2, ..., αn ∈ R }. (4)

of the superspace Rk, and consider the orthogonal complement of E

E⊥ = { x ∈ Rk | 〈x, y〉 = 0 for all y ∈ E }. (5)

The orthogonal projectors corresponding to E and E⊥ are

π : Rk −→ E π x =
〈
x, w1

κ

〉
w1
κ +

〈
x, w2

κ

〉
w2
κ + ... +

〈
x, wn

κ

〉
wn

κ

π⊥ : Rk −→ E⊥ π⊥x = x− π x.
(6)

If we describe E by using the orthogonal basis {κ−2w1, κ−2w2, ..., κ−2wn} then
the orthogonal projector corresponding to E becomes

P : Rk −→ Rn Px = (〈x,w1〉, 〈x,w2〉, ..., 〈x,wn〉). (7)

The projection W = π⊥(Ω) of the unit hypercube

Ω =
[
−1

2
,

1
2

]k

=
{

(x1, x2, ..., xk)
∣∣∣∣ −1

2
≤ xi ≤

1
2

for all i ∈ {1, 2, ..., k}
}

is a polyhedron (called a window) in the (k−n)-subspace E⊥. Each (k−n−1)-
dimensional face of W is the projection of a (k−n−1)-face of the unit hypercube
Ω. Each (k − n − 1)-face of Ω is parallel to k − n − 1 vectors of the canonical
basis {e1, e2, ..., ek} of Rk, and orthogonal to n + 1 of them. For each n + 1
distinct vectors ei1 , ei2 , ..., ein+1 the number of (k−n−1)-faces of Ω orthogonal
to them is 2n+1, and the set{

x = (x1, x2, ..., xk)
∣∣∣∣ xi ∈ {−1/2, 1/2} if i ∈ {i1, i2, ..., in+1}

xi = 0 if i 6∈ {i1, i2, ..., in+1}

}

3
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Figure 1: Left: The strip S and the window W in the case of a 1D physical space
E embedded into a 3D superspace. Centre: A one-shell D8-cluster C. Right: A
fragment of the set Q defined by C. The nearest neighbours of any point q of Q
belong to q + C, which is a copy of C with the center at point q. Therefore, C is
a covering cluster for Q.

contains one and only one point from each of them.
There are k!/[(n+1)! (k−n−1)!] sets of 2n+1 parallel (k−n−1)-faces of Ω.

In the case n = 2 these sets can be labelled by using the elements of

I = {(i1, i2, i3) ∈ Z3 | 1 ≤ i1 ≤ k − 2, i1 + 1 ≤ i2 ≤ k − 1, i2 + 1 ≤ i3 ≤ k }

and in the case n = 3 the elements of

I =
{

(i1, i2, i3, i4) ∈ Z4

∣∣∣∣ 1 ≤ i1 ≤ k − 3, i1 + 1 ≤ i2 ≤ k − 2,
i2 + 1 ≤ i3 ≤ k − 1, i3 + 1 ≤ i4 ≤ k

}
.

In the case n = 2, the vector defined by the formal determinant

y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4 e5 ... ek

0 0 0 1 0 ... 0
0 0 0 0 1 ... 0
... ... ... ... ... ...
0 0 0 0 0 ... 1

v11 v12 v13 v14 v15 ... v1k

v21 v22 v23 v24 v25 ... v2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
e1 e2 e3

v11 v12 v13

v21 v22 v23

∣∣∣∣∣∣ (8)

is a vector orthogonal to the vectors e4, e5, ..., ek, w1, w2, and

〈x, y〉 =

∣∣∣∣∣∣
x1 x2 x3

v11 v12 v13

v21 v22 v23

∣∣∣∣∣∣ (9)

for any x ∈ Rk. The vector y belongs to E⊥, and since ei−π⊥ei is a linear com-
bination of w1 and w2, it is also orthogonal to π⊥e4, π⊥e5, ..., π⊥ek. Therefore,
y is orthogonal to the (k − 3)-faces of W labelled by (1, 2, 3). Similar results
can be obtained for any (i1, i2, i3) ∈ I.

4
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Figure 2: Left: A one-shell D12-cluster and a fragment of the corresponding
quasiperiodic set. Right: A fragment of the quasiperiodic set defined by a two-
shell D10-cluster, obtained by using strip projection method in a ten-dimensional
superspace. The starting cluster is a covering cluster, but for most of the points
the occupation is extremely low.

Consider the strip S corresponding to the window W (see figure 1)

S = {x ∈ Rk | π⊥x ∈ W } (10)

and define for each (i1, i2, ..., in+1) ∈ I the number

di1i2...in+1 = max
αj∈{−1/2, 1/2}

∣∣∣∣∣∣∣∣∣∣
α1 α2 ... αn+1

v1i1 v1i2 ... v1in+1

v2i1 v2i2 ... v2in+1

... ... ... ...
vni1 vni2 ... vnin+1

∣∣∣∣∣∣∣∣∣∣
. (11)

A point x = (x1, x2, ..., xk) ∈ Rk belongs to the strip S if and only if

−di1i2...in+1 ≤

∣∣∣∣∣∣∣∣∣∣
xi1 xi2 ... xin+1

v1i1 v1i2 ... v1in+1

v2i1 v2i2 ... v2in+1

... ... ... ...
vni1 vni2 ... vnin+1

∣∣∣∣∣∣∣∣∣∣
≤ di1i2...in+1 (12)

for any (i1, i2, ..., in+1) ∈ I.
The set defined in terms of the strip projection method

Q = P(S ∩ Zk) = {Px | x ∈ S ∩ Zk } (13)

by using the strip S defined above and the hyper-lattice Zk is a discrete set. If G
is one of the groups occurring in quasicrystal physics then Q is a quasiperiodic
set, and has all the properties of the sets obtained by projection [8, 9]. We have

Pei = (〈ei, w1〉, 〈ei, w2〉, ..., 〈ei, wn〉) = (v1i, v2i, ..., vni) = vi (14)

5
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for any i ∈ {1, 2, ..., k}, whence

P({x± e1, x± e2, ..., x± ek} ∩ S)
⊆ {Px± v1, Px± v2 ..., Px± vk} = Px + C

(15)

that is, the ‘arithmetical’ neighbours [8] of any point Px ∈ Q belong to the
translated copy Px + C of C. Therefore, the starting cluster C can be regarded
as a covering cluster ([9], page 16) of the point set Q. Some examples are shown
in figure 1 and figure 2. A presentation of our algorithm in the particular case
of a two-shell D10-cluster can be found in [5].

4. Concluding remarks

It is known that, generally, the discrete sets Q considered in the previous section
can also be defined as multi-component model sets [1, 4] by using superspaces of
smaller dimension and root lattices, but generally we have to use a large number
of very complicated windows [4].

The starting cluster C is a covering cluster for the set Q, but unfortunately,
for most of the points of Q the occupation is extremely low. Therefore, our
discrete quasiperiodic sets can not be used directly in the description of atomic
positions in quasicrystals.
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