Metadislocation arrangements in the complex metallic alloy $\xi^{\prime}-\mathrm{Al}-\mathrm{Pd}-\mathrm{Mn}$

Marc Heggen, M. Feuerbacher

- To cite this version:

Marc Heggen, M. Feuerbacher. Metadislocation arrangements in the complex metallic alloy ξ^{\prime}-Al-Pd-Mn. Philosophical Magazine, 2006, 86 (06-08), pp.985-990. 10.1080/14786430500259726 . hal00513579

HAL Id: hal-00513579

https://hal.science/hal-00513579

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Metadislocation arrangements in the complex metallic alloy $\xi^{\prime}-$ Al-Pd-Mn

Journal:	Philosophical Magazine \& Philosophical Magazine Letters		
Manuscript ID:	TPHM-05-May-0180.R1		
Journal Selection:	Philosophical Magazine		
Date Submitted by the	06-Jul-2005	(Tomplete List of Authors:	Heggen, Marc; Forschungszentrum Juelich GmbH, Institut fuer
:---			
Festkoerperforschung			
Feuerbacher, M.; Forschungszentrum Jülich, Institut für			
Festkörperforschung	$	$	

scholarone
Manuscript Central

Metadislocation arrangements in the complex metallic alloy ξ^{\prime}-AI-Pd-Mn

Marc Heggen, Michael Feuerbacher

Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany.

Abstract

In the present work different types of metadislocation arrangement are studied. It is shown that metadislocations can form dipoles or dissociate into partials, which leads to a decrease of the elastic line energy. Connected groups of metadislocations can assume large and complex network structures. Although the local elastic strain at the individual metadislocation cores remains small, they posses large total Burgers vectors and are highly effective means of plastic deformation. Furthermore, we present a characterization of phase boundaries built up by regular Metadislocation arrays and show that these metadislocations almost fully compensate the lattice mismatch.

Keywords: complex metallic alloy, metadislocations, metadislocation networks, ξ^{\prime}-Al-Pd-Mn

1. Introduction

Metadislocations (MDs) are novel structural defects firstly observed in the complex metallic alloys (CMAs) ξ^{\prime} - and ψ-Al-Pd-Mn [1]. They provide a physically useful principle of the plasticity of large-unit-cell materials. MDs comprise structural elements of both phases, $\xi^{\prime}-$ as well as $\psi-\mathrm{Al}-\mathrm{Pd}-\mathrm{Mn}$. Both phases are structurally closely related and possess the same a and b cell parameters. However, the cell parameters in the c-direction are related by a factor $(\tau+3)$ where $\tau \approx 1.618$ is the irrational number of the golden mean. The lattice parameters are $a=23.89 \AA, b=16.56 \AA, c_{\xi^{\prime}}=12.56 \AA$, and $c_{\psi}=(\tau+3) c_{\xi^{\prime}}=58.00 \AA$ [2].

The core of a MD is a line defect which ideally extends along the [0 $\left.\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction. It is associated to a certain number of planar defects, so-called phason planes, which are ideally (0 $01)$ oriented. The term phason plane refers to the analogy to phason defects in Quasicrystals, although ξ^{\prime} - and ψ-Al-Pd-Mn are crystalline phases processing translational symmetry.

Different types of MDs associated with $16,10,6$, and 4 phason planes have been observed [3]. Recently MDs associated with 2 phason half-planes were observed [4]. Different types of

MDs posses different Burgers vectors. They can be determined either by a Burgers circuit around the MD core [1], by a modified Volterra process [5], or by calculating the lattice mismatch at the interface between the ξ^{\prime} - and the ψ-phase $[6,7]$. The Burgers vectors and numbers of phason planes of different types of MDs are compiled in Table 1. The Burgers vector moduli and the numbers of phason half-planes follow opposite sequences: a MD with a high number of phason planes possesses a small Burgers vector and vice versa. The MD associated with two phason planes possesses the largest Burgers vector of 4.80 A. Hence, the Burgers vectors of all MDs are small fractions of the lattice parameters $c_{\xi^{\prime}}$ and c_{ψ} and their local elastic strain energy is small. Therefore, in these materials, Metadislocations are energetically more favourable than perfect dislocations.

To date, the investigation of defects in ξ^{\prime}-Al-Pd-Mn is limited to the structure and properties of single MDs and their associated phason planes [1,3,8,9]. However, frequently complex, network-like MD arrangements are observed. In this work the properties of MD arrangements are analyzed.

2. Experiments

A ξ^{\prime}-Al-Pd-Mn single crystal was grown by means of the Bridgman technique. A sample of approximately $5 \times 2 \times 2 \mathrm{~mm}^{3}$ in size was cut with the long axis inclined 45° to the [$\left.\begin{array}{lll}0 & 1 & 0\end{array}\right]$ axis. The sample was uniaxially deformed in compression to 0.5% strain. Like icosahedral Al-Pd-Mn the ξ^{\prime} phase is brittle at room temperature [10,11]. Therefore deformation experiments were performed at an elevated temperature of $700^{\circ} \mathrm{C}$.

After plastic deformation the sample was quenched on a cold metal plate and prepared for transmission electron microscopy (TEM) by standard techniques. The microstructural investigation was performed in a JEOL 4000EX electron microscope. MDs are imaged with the TEM sample oriented along the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$-direction under bright-field Laue conditions, i.e. applying a central aperture around a symmetric arrangement of spots.

3. Results and Discussion

Figure 1 shows two examples of interacting MDs. Arrows 1 and 2 point at two inversely oriented MDs sharing six phason planes. Their Burgers vectors are 1.83 and $-1.83 \AA$, respectively (cf. Table 1). Hence this defect can be interpreted as a MD dipole or as part of a prismatic loop. Arrows 3 and 4 indicate a dipole of MDs associated with ten phason planes.

Figure 2 a shows a MD associated with ten phason planes (arrow 1) which is connected to a MD with six phason planes (arrow 2). They are mutually connected by six phason planes. Four phason planes are remaining, three on the right hand side and one on the bottom part of the micrograph. This situation can be interpreted in terms of MD splitting. A MD with 4 phason planes has split into an equally oriented MD with ten phason planes and an inversely oriented MD with 6 phason planes. Using Table 1 it can be shown that the Burgers vector of a MD associated with four phason planes is exactly equal to the Burgers vectors of the MD arrangement in Figure 2 a, i.e. $1.13 \AA-(-1.83 \AA)=2.96 \AA$. During the process of MD splitting, the local elastic strains at the MD cores is reduced. On the other hand, the creation of six additional phason planes introduces additional fault plane energy. Hence the process of MD splitting has to be treated similarly as splitting of dislocations into partials in structurally simple materials. The total energy balance of all defects involved has to be considered.

MD splitting is a phenomenon which is often observed in plastically deformed ξ^{\prime}-Al-PdMn. Figures 2 b and c show two more examples. Figure 2 b shows a MD with six phason planes (1) which is connected to a MD with four phason planes (2). It can be interpreted as splitting of a MD associated with two phason planes. The Burgers vector yields - $1.83 \AA$ $2.96 \AA=-4.80 \AA$. Figure 2 c shows a MD with ten phason planes (1) connected with two MDs with each six phason planes (2 and 3). Two phason planes leave the MDs at the right hand side (4 and 5). Two additional phason planes (6 and 7) are not connected to the MD arrangement. The Burgers vector yields $-1.13 \AA-2 \times 1.83 \AA=-4.80 \AA$ which is again equal to the Burgers vector of a MD associated with two phason planes. Hence, Figure 2 c shows splitting of a MD associated with two phason planes into three MDs. Splitting of a MD into even more partials is possible. For example a MD associated with two phason planes may split into two MDs with 16 phason planes and three inversely oriented MDs with 10 phason planes, hence two phason planes are left. The Burgers vectors add up to $2 \times-0.70 \AA-3 \times$ $1.13 \AA=-4.80 \AA$

Figure 3 shows a complex MD network, formed by the mutual interconnection of MDs via their associated phason planes. The creation of networks is possible, because a single MD can connect to more than one MDs by separating its phason planes. For the sake of clarity, the location and orientation of MDs are indicated by triangles. Furthermore, the numbers and the arrows indicate the number of associated phason planes and the direction and length of the Burgers vector, respectively. Remarkably, the Burgers vectors of almost all MDs are oriented in the same direction and add up to a large amount of $27.61 \AA$. For MD networks can create objects with large total Burgers vectors, the movement of these objects through the structure
leads to strong straining of the sample. Therefore they are highly effective means of plastic deformation.

Figure 4 shows a phase boundary between the ξ^{\prime}-phase (upper left part of Figure 4) and the ψ-phase (lower right part of Figure 4), which appears darker than the ξ^{\prime}-phase. The presence of both phases was confirmed by selected area electron diffraction patterns. The micrograph shows five MDs associated with 10, and six MDs associated with 16 phason planes, respectively. The total lattice mismatch at the phase boundary is $(5 \times 1.13 \AA)+(6 \times-0.70 \AA)$ $=1.45 \AA$. The extension of the phase boundary in [0001$]$ direction is 450 nm , hence the mean residual elastic strain at the interface is 0.03%. This is a remarkably small value. Especially, since the lattice parameters in c direction are incommensurate - they are related by a factor of $(3+\tau)$.

MDs forming a phase boundary possess low local strain at the individual MD cores, especially when MDs with high numbers of phason planes are used. Mixing different kinds of MDs creates a phase boundary with a low mean elastic strain at the interface, while adding up MDs of the same type and hence the same Burgers vector, adds up lattice mismatch at the phase boundary. A phase boundary with a perfect mean lattice mismatch can be created if MDs with opposite Burgers vector direction are present in the right proportion. The Burgers vectors of MDs subsequent in the series of MD types (cf. Table 1), for example MDs with 10 and 16 phason planes, are related by a factor of $-\tau$. Hence a perfect mean lattice mismatch at the interface can be created, if these MDs are present in a proportion $1: \tau$.

4. Conclusion

In the present work it is shown that MDs can, like dislocations in structurally simple materials, form dipoles or dissociate into partials with smaller Burgers vectors. The formation of partials leads to a decrease of the local elastic line energy and an increase of the fault plane energy, which have to be balanced in order to find the energetically most favourable configuration and geometry. Splitting of a MD into more than two partials is possible.

MDs can create large and complex networks by the mutual interconnection of MDs via their associated phason planes. MD networks with large total Burgers vectors are high effective means of plastic deformation.

Furthermore, MDs can form phase boundaries between the ξ^{\prime} - and ψ-phase with low mean elastic strain at the interface. These two examples stress that simply by the combination and
arrangement of different types of MDs, structures with completely different properties are created.

References

[1] H. Klein, M. Feuerbacher, P. Schall and K. Urban, Phys. Rev. Lett. 82, (1999) 3468.
[2] H. Klein, M. Audier, M. Boudard, M. de Boissieu, L. Beraha, and M. Duneau, Philos. Mag. A. 73, (1996) 309.
[3] H. Klein and M. Feuerbacher, Philos. Mag. 83, (2003) 4103.
[4] M. Feuerbacher, unpublished (2003).
[5] M. Feuerbacher, Acta Mater., in press.
[6] M. Heggen, thesis, RWTH-Aachen (2003).
[7] M. Heggen, M. Feuerbacher, Mater. Sci. \& Eng. A., in press.
[8] M. Feuerbacher, H. Klein, M. Bartsch, U. Messerschmidt, and K. Urban, Mat. Sci. Eng. A 294-296, (2000) 736.
[9] H. Klein, M. Feuerbacher, and K. Urban, Mat. Sci. Eng. A 294-296, (2000) 769.
[10] M. Feuerbacher, H. Klein, and K. Urban, Phil. Mag. Lett. 81, (2001) 639.
[11] K. Urban, B. Baufeld, M. Bartsch, and U. Messerschmidt, Mat. Sci. Eng. A226-228, (1997) 943.

FIGURE CAPTIONS

Fig. 1: Metadislocation dipoles. Two MDs associated with six (arrow 1 and 2) and two MDs associated with ten phason planes (arrows 3 and 4) are indicated.

Fig. 2: Three examples of Metadislocation splitting. Arrows indicate a) a MD with ten (1) and a MD with six (2) phason planes, b) a MD with six (1) and a MD with four (2) phason planes, and c) a MD with ten (1) and two MDs with six (2 and 3) phason planes (additional numbers: see text).

Fig. 3: Metadislocation network. The orientation of MDs is indicated by triangles. Furthermore, the numbers and the arrows indicate the number of associated phason planes and the direction and length of the Burgers vector, respectively.

Fig. 4: Phase boundary between ξ^{\prime} - (upper left part) and ψ-Al-Pd-Mn (lower right part). The interface is created by a stack of metadislocations.

TABLE / TABLE CAPTION

Number of phason planes	Burgers vector
16	$-0.70 \AA$
10	$1.13 \AA$
6	$-1.83 \AA$
4	$2.96 \AA$
2	$-4.80 \AA$

Table 1: Number of phason planes and Burgers vectors of all experimentally observed MDs. The Burgers vector direction is related to MDs with phason planes oriented parallel to the $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ direction [7]. Analogously, MDs with phason planes oriented parallel to the [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ direction possess inverse Burgers vectors.

Figure 1
$182 \times 127 \mathrm{~mm}(150 \times 150$ DPI)

Figure 2
$237 \times 170 \mathrm{~mm}(150 \times 150$ DPI)

Figure 3
$230 \times 130 \mathrm{~mm}(150 \times 150$ DPI)

