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Tiling models for metadislocations in AIPdMn
approximants

M. Engel* and H.-R. Trebin
Institut fiir Theoretische und Angewandte Physik, Universitiat Stuttgart,

Pfaffenwaldring 57, D-70550 Stuttgart, Germany

June 21, 2005

Abstract

The AIPdMn quasicrystal approximants &, &', and &), of the 1.6 nm decagonal
phase and R, T', and T}, of the 1.2 nm decagonal phase can be viewed as arrange-
ments of cluster columns on two-dimensional tilings. We substitute the tiles by
Penrose thombs and show, that alternative tilings can be constructed by a simple
cut and projection formalism in three dimensional hyperspace. It follows that in the
approximants there is a phasonic degree of freedom, whose excitation results in the
reshuffling of the clusters. We apply the tiling model for metadislocations, which are
special textures of partial dislocations.

1 Introduction

A quasiperiodic structure can be described as a cut through a hyperlattice decorated with
atomic surfaces. As a consequence the atoms are arranged in a finite number of different
local environments frequently leading to a substructure of highly symmetric clusters. The
cluster positions can again be modelled by a simpler decoration consisting in the simplest
case of exactly one atomic surface (for the cluster centre) per hyperlattice unit cell. The
displacement of the cut space (phasonic displacement) is a discrete degree of freedom,
called phasonic degree of freedom. It can be excited locally, leading to a rearrangement
of the clusters by correlated atomic jumps. This view is supported by recent diffraction
data of coherent phason modes in i(cosahedral)-AlPdMn (Coddens et al. 1999, Francoual
et al. 2003) and by in situ observations of phason jumps via high-resolution transmission
electron microscopy (HRTEM) in d(ecagonal)-AlCuCo (Edagawa et al. 2002).

The cut formalism cannot be applied directly if there is a gradient in the phasonic
displacement. This is examplified by the extreme case of a cut space running inbetween

*Author for correspondence. Email: mengel@itap.physik.uni-stuttgart.de
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Figure 1: [Insert about here]

all atomic surfaces and not touching any of them. Hence we resort to another method:
We substitute the atomic surfaces by atomic hypervolumes (Engel and Trebin 2005) of the
same dimension as the hyperspace. For the construction two different spaces are needed:
Those atomic hypervolumes that are cut by the (possibly deformed) cut space Ecy; are
selected. The centre of each selected atomic hypervolume is projected onto the projection
space Epyyj. By shearing the cut space, i.e. by introducing a linear phasonic displacement,
periodic approximants are created. Phasonic degrees of freedom also can exist in these and
play a fundamental role for phase transitions (Edagawa et al. 2004).

Here we discuss linear defects, metadislocations, in the phasonic degree of freedom for
approximants of the AIPdMn system. This system is especially adequate for the exam-
ination of phasonic degrees of freedom since a stable i-phase, a stable 1.2 nm d-phase,
a metastable 1.6 nm d-phase (which is assumed to be a solid solution of Mn in d-AlPd
(Steurer 2004)), and a large variety of approximants have been observed in the phase
diagramm (Klein et al. 2000). All of them, as well as several binary AIPd and AlMn
quasicrystals and approximants are related structurally.

2 Tiling models

A hyperspace model for i-AlIPdMn has been proposed by Katz and Gratias (1993). It uses
a six dimensional face-centred hyperlattice P with lattice constant 2/°” = 1.29 nm and
serves as a starting point since to our knowledge all newer, more complicated hyperspace
models are refinements. It has been shown, that the approximants £ and &' (Beraha et al.
1997) of the 1.6 nm d-phase and the approximants R and T (Beraha et al. 1998) of the
1.2 nm d-phase are described on an atomistic level by a shear in this model. However the
authors had to introduce an additional mirror symmetry to assure full tenfold symmetry.
The main building units are Mackay-type clusters, whose centres are projected from the
hyperspace by using one atomic surface per hyperlattice unit cell. It is a subset of a
triacontahedron, deflated by 7 = %(\/5 + 1) with respect to the canonical triacontahedron,
which is the projection of the hypercube with edge length 5P on the orthogonal complement
of Eproj. The distance of the cluster centres is the shortest projection of neighboring F6D_
sites e; + e; multiplied by the deflation factor: ¢ = %\/m\/T + 2050 ~ (.78 nm.

The relation of the approximants to the i-phase is given by two consecutive shears of
Ecyt in the hyperspace: The first shear changes the cluster arrangement in direction of a
fivefold axis e;. Together with the introduction of a mirror plane this results in a decagonal
quasicrystal. The clusters are then aligned in columns parallel to the tenfold axis, so that
the structures can be described by two-dimensional tilings, which are the projections in
the column direction. The second shear rearranges the columns perpendicular to e;. We
will now consider the tilings for the 1.6 nm and the 1.2 nm phases separately.

Neighboring clusters in the 1.6 nm d-phase and its approximants lie on planes per-

http://mc.manuscriptcentral.com/pm-pml
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pendicular to e;. Thus the tile length is 5P as defined above. The &- and the &'-phase
are built from flattened hexagons (H) arranged in parallel and in alternated orientation
respectively. By introducing additional rows of pentagons (P) and nonagons (N) between
each n — 1 rows of alternated Hs in the ’-phase we obtain the &) -phases. Such a PN-row
is called a phason plane, which is justified since it is elongated in the e; direction. As
we will see, phason planes play an important role for the cluster reshuffling resulting from
an excitation of the phasonic degree of freedom. Further tiles, the decagon (D) and an
U-shaped tile (U) are observed in the 1.6 nm d-phase (Fig. 1 (a)).

Neighboring clusters in the 1.2 nm d-phase and its approximants lie on two planes
staggered perpendicular to e; with distance £v/10/5” ~ 0.41 nm. The resulting tile length
is 60 = %\/ETlﬁD ~ 0.66 nm. The R- and the T-phase are built from elongated hexagons
(H’) arranged in parallel and in alternated orientation respectively. The T, -phases are
created by introducing into the T-phase additional rows of boat-shaped tiles (B’) between
each n rows of alternated H’s. A B’-row is again called a phason-plane. For the 1.2 nm
d-phase additionally a decagon (D’) and a star-shaped tile (S’) are needed (Fig. 1 (b)).

By substituting the H, P, N, H’, and B’ tiles with acute rhombs (AR), (AR’) and obtuse
rhombs (OR), (OR’) as shown in Fig. 1 (c) we obtain new tilings for the approximants,
which can be interpreted as approximants of the Penrose-tiling. An H is substituted by
an OR, while a phason plane corresponds to a combination of an AR-row and an OR-
row. So the & -phase has n OR-rows inbetween neighboring AR-rows. Similarly the 7,,-
phase has n AR-rows inbetween neighboring phason planes, represented by OR-rows. The
rhombs occuring in the new tilings for the Z-approximants (&, £, &), as well as for the 7-
approximants (R, T, T,,) both only need three of the five basis vectors of the Penrose-tiling
to be constructed. Therefore the tilings can be modelled in a simple three-dimensional
hyperspace with the Z3-lattice and lattice constant I3 = 74/7 + 2/ ~ 1.99 nm. The
projection matrices are (s; = sin(2r1), ¢; = cos(27L)):

ﬂ_gzlm<80 S1 84>, 7T|1L:1\/E<80 S92 83)’ (1)
=5 Co Ci Ca4 ) Co C2 C3

leading to an edge length of the tiles: 3 = 14/10/3” ~ 1.26 nm. There is one atomic
hypervolume per unit cell, which is just the unit cell, and one phasonic degree of freedom.
This three-dimensional hyperspace is the simplest model for a phasonic degree freedom
besides the Fibonacci-chain.

3 Metadislocations

In the formalism of atomic hypervolumes a dislocation can be introduced into a tiling by
a generalised Voltera process (Engel and Trebin 2005). It is uniquely characterised by a
translation vector of the hyperlattice, the Burgers vector b (here: b3 = (by, by, bs), b; € Z),
that splits up into a phononic component bl = 7llp (deforming the tiles) and a phasonic
component b* (rearranging the tiles). The latter can only be calculated from the full six-
dimensional Katz-Gratias model. If it is not zero, such a dislocation is a partial dislocation.

3
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Figure 2: [Insert about here]

By (i) extending the linear theory of elasticity to the hyperspace, (ii) approximating the
phasonic degree as continuous, and (iii) assuming isotropy in the strain fields, the line
energy E of a dislocation is expressed as:

E = onon |0 1” + Conaslb™ I + cooup [61][[67 . (2)

Besides a phononic contribution with material constant cphon and a phasonic contri-
bution with cphas, @ coupling term is present with ceoupi. According to experiment we
assuUmMe Cphon > Cphas ~ Ceoupl- oince stable dislocations are those with the lowest energy,
we have to minimise ||bll||. We will discuss this in parallel for dislocations in the Z- and
the T-approximants. The minimization yields by = b3 in both cases. Furthermore we have
by = —7 by for b and by = 7b, for b3P. Here we approximate 7! by the fractions
Fo_1/F,, and 7 by the fractions F,.1/F,, respectively. (Fy,)men are the Fibonacci num-
bers with start values Fy = F» = 1. Finally the Burgers vectors of stable dislocations are:
b2P = (F,,_1,—F,,, —Fy) and b3” = (F,, 11, F,n, F},). Interestingly they correspond to the
same six-dimensional Burgers vectors:

b6ED = bgD = (Oa 0, —Fin 2, Fi 1, Fr o, mel)' (3)

Hence it suffices to consider both cases together for the rest of our calculations. The
phononic component bl = bg = bg is perpendicular to the phason-planes (pointing in the
vertical direction in Fig. 1). We get ||b!|| = 7743 and ||b"*|| = 7™ 3#3P. Substituting this
into (2), we have E = [cphon™ 2™ + CohasT>™ > + Ceoupt] 72 (£3P)2. There is a minimum
for cphon/Cphas = 74m=6_ This determines the Burgers vector with lowest energy for given
values for the material constants cpnon and cpnas. However it has to be noted that these are
not necessarily identical for the =- and the T-approximants.

Tilings of the &;- and the T3-phase with m = 4 dislocations have been calculated
(Fig. 2). They show large rearrangements of the tiles due to the phasonic component, b*
and negligible deformations of the tiles due to the smaller phononic component b/. The
dislocations are also dislocations in the metastructure of the phason planes. Therefore
Klein et al. (1999), who discovered these dislocations in HRTEM images of the & -phase,
named them metadislocations. The fact, that the experimentally most often observed
metadislocations are those with m = 4 suggests cphon/Cphas = 710 ~ 123. We do not know of
Burgers vector determinations or observations of metadislocations in the T-approximants,
but dislocations with the Burgers vectors (3) are also the ones most often observed in the
i-phase (Rosenfeld et al. 1995).

4 Discussion and conclusion

In the &- and the T,,-phases the phasonic degree of freedom is related to the movement
of the phason planes. Since there are no phason planes in the &-, £'-, R-, and T-phase,

4
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the phasonic degree of freedom cannot be excited locally. However metadislocations can
exist in the £'- and the T-phase, but not in the &- and the R-phase. It can be shown, that
there is no consistent way to introduce dislocations with phasonic components in the latter
phases.

A motion of the metadislocation (like the motion of any dislocation in a quasicrystal
or large unit cell approximant) is necessarily accompanied by diffusion in the form of tile
rearrangements. The motion is possible by climb in direction of the phason planes or by
glide perpendicular to them. During the climb motion new phason planes are created (or
dissolved) behind the dislocation core. A large number of metadislocations moving through
the £’- or T-phase could even lead to a phase transformation to the & - or T,,-phases making
the phasonic degree of freedom continously excitable. This is affirmed by HRTEM images
of phase boundaries between the &'- and the &)-phase formed by metadislcations (Heggen
and Feuerbacher 2005).

On the other side, glide motion does not change the number of phason planes. At least
in the £'- and the T-phase glide motion seems unprobable, since the phason planes running
out of the dislocation core would have to be dragged along, while climb motion only needs
a reconstruction of the tiling near the dislocation core. (Similar arguments leading to the
same conclusion, as well as newer experimental work are presented in Feuerbacher and
Heggen (2005).) We have to note, that there are no direct observations of metadislocation
motion in approximants yet, although in the i-phase dislocations with identical Burgers
vectors have been shown by in-situ observations to move by climb (Mompiou et al. 2004).

http://mc.manuscriptcentral.com/pm-pml
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Figure captions
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1. Calculated tilings for various approximants of the AIPdMn i-phase. (a) 1.6 nm
10 phases: The tiling of the d-phase is the Tiibingen Triangle Tiling (TTT). (b) 1.2 nm
phases: The D’ centres lie on a 72 inflated TTT. (c) The tiles can be substituted
13 with Penrose rhomb tiles. The substitution is different for the 1.6 nm phases and the
14 1.2 nm phases.

16 2. Tilings of the &~ (left) and the T3-phase (right) with m = 4 metadislocations. 2F,
new phason planes are inserted from the left, ending at the triangular shaped dislo-
19 cation core.
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\begin{abstract}

The A1PdMn quasicrystal approximants $\xi$, $\xi'$, and $\xi'_{n}$ of the
1.6~nm decagonal phase and S$RS$, S$TS$, and S$ST_{n}$ of the 1.2~nm decagonal phase
can be viewed as arrangements of cluster columns on two-dimensional

tilings. We substitute the tiles by Penrose rhombs and show, that alternative
tilings can be constructed by a simple cut and projection formalism in three
dimensional hyperspace. It follows that in the approximants there is a
phasonic degree of freedom, whose excitation results in the reshuffling of the
clusters. We apply the tiling model for metadislocations, which are special
textures of partial dislocations.

\end{abstract}

\section{Introduction}

A gquasiperiodic structure can be described as a cut through a hyperlattice
decorated with atomic surfaces. As a consequence the atoms are arranged in a
finite number of different local environments frequently leading to a
substructure of highly symmetric clusters. The cluster positions can again be
modelled by a simpler decoration consisting in the simplest case of exactly
one atomic surface (for the cluster centre) per hyperlattice unit cell. The
displacement of the cut space (phasonic displacement) is a discrete degree of
freedom, called phasonic degree of freedom. It can be excited locally, leading
to a rearrangement of the clusters by correlated atomic jumps. This view is
supported by recent diffraction data of coherent phason modes in
i(cosahedral)-Al1PdMn \cite[]{itapdb:Coddens1999, itapdb:Francoual2003} and by
in situ observations of phason jumps via high-resolution transmission electron
microscopy (HRTEM) in d(ecagonal)-AlCuCo \cite[]{itapdb:Edagawa2002}.

The cut formalism cannot be applied directly if there is a gradient in

the phasonic displacement. This is examplified by the extreme case of a cut
space running inbetween all atomic surfaces and not touching any of

them. Hence we resort to another method: We substitute the atomic surfaces by
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atomic hypervolumes \cite[]{itapdb:Engel2005} of the same dimension as the
hyperspace. For the construction two different spaces are needed: Those atomic
hypervolumes that are cut by the (possibly deformed) cut space
SE_{\text{Cut}}$ are selected. The centre of each selected atomic hypervolume
is projected onto the projection space S$E_{\text{Proj}}$. By shearing the cut
space, i.e. by introducing a linear phasonic displacement, periodic
approximants are created. Phasonic degrees of freedom also can exist in these
and play a fundamental role for phase transitions

\cite[]{itapdb:Edagawa2004}.

Here we discuss linear defects, metadislocations, in the phasonic degree of
freedom for approximants of the AlPdMn system. This system is especially
adequate for the examination of phasonic degrees of freedom since a stable
i-phase, a stable 1.2~nm d-phase, a metastable 1.6~nm d-phase (which is
assumed to be a solid solution of Mn in d-AlPd \cite[]{itapdb:steurer2004}),
and a large variety of approximants have been observed in the phase diagramm
\cite[]{itapdb:Klein2000a}. All of them, as well as several binary AlPd and
AlMn quasicrystals and approximants are related structurally.

\section{Tiling models}

A hyperspace model for i-AlPdMn has been proposed by

\cite{itapdb:Katz1993}. It uses a six dimensional face-centred hyperlattice
SF~{6D}$ with lattice constant $217{6D}=1.29$~nm and serves as a starting point
since to our knowledge all newer, more complicated hyperspace models are
refinements. It has been shown, that the approximants $\xi$ and $\xi'$
\cite[]{itapdb:Berahal997} of the 1.6~nm d-phase and the approximants $R$ and
$TS$ \cite[]{itapdb:Berahal998} of the 1.2~nm d-phase are described on an
atomistic level by a shear in this model. However the authors had to introduce
an additional mirror symmetry to assure full tenfold symmetry. The main
building units are Mackay-type clusters, whose centres are projected from the
hyperspace by using one atomic surface per hyperlattice unit cell. It is a
subset of a triacontahedron, deflated by $\tau=\frac{l}{2} (\sgrt{5}+1)$ with
respect to the canonical triacontahedron, which is the projection of the
hypercube with edge length $17{6D}$ on the orthogonal complement of
SE_{\text{Proj}}$. The distance of the cluster centres is the shortest
projection of neighboring $F"{6D}S$-sites S$\ve{e}_{i}\pm\ve{e}_{3j}$ multiplied
by the deflation factor: S$t~{6D}=\frac{l}{5}\sqrt{l10}\sqgrt{\tau+2}1°{6D}\simeq
0.78S$~nm.

The relation of the approximants to the i-phase is given by two consecutive
shears of S$E_{\text{Cut}}$ in the hyperspace: The first shear changes the
cluster arrangement in direction of a fivefold axis $\ve{e}_{1}$. Together

with the introduction of a mirror plane this results in a decagonal
quasicrystal. The clusters are then aligned in columns parallel to the tenfold
axis, so that the structures can be described by two-dimensional tilings, which
are the projections in the column direction. The second shear rearranges the
columns perpendicular to $\ve{e}_{1}$. We will now consider the tilings for

the 1.6~nm and the 1.2~nm phases separately.

\begin{figure}
\caption{\bf[Insert about here] \label{fig:tilings}}
\end{figure}

Neighboring clusters in the 1.6~nm d-phase and its approximants lie on planes
perpendicular to $\ve{e}_{1}$. Thus the tile length is $t~{6D}$ as defined
above. The $\xi$- and the $\xi'$-phase are built from flattened hexagons (H)
arranged in parallel and in alternated orientation respectively. By
introducing additional rows of pentagons (P) and nonagons (N) between each
$n-1$ rows of alternated Hs in the $\xi'S$-phase we obtain the
$\xi'_{n}$-phases. Such a PN-row is called a phason plane, which is justified

http://mc.manuscriptcentral.com/pm-pml



©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

Philosophical Magazine & Philosophical Magazine Letters Page 12 of 15

since it is elongated in the $\ve{e}_{1}$ direction. As we will see, phason
planes play an important role for the cluster reshuffling resulting from an
excitation of the phasonic degree of freedom. Further tiles, the decagon (D)
and an U-shaped tile (U) are observed in the 1.6~nm d-phase
(Fig.~\ref{fig:tilings} (a)).

Neighboring clusters in the 1.2~nm d-phase and its approximants lie on two
planes staggered perpendicular to $\ve{e}_{1}$ with distance
S\frac{1}{5}\sqrt{10}1~{6D}\simeq 0.41$~nm. The resulting tile length is

St' {6D}=\frac{1}{5}\sqrt{10}\tau 1"{6D}\simeq 0.66S~nm. The S$RS$- and the
$T$S—-phase are built from elongated hexagons (H') arranged in parallel and in
alternated orientation respectively. The $T_{n}S$-phases are created by
introducing into the $T$-phase additional rows of boat-shaped tiles (B')
between each $n$ rows of alternated H's. A B'-row is again called a
phason-plane. For the 1.2~nm d-phase additionally a decagon (D') and a
star-shaped tile (S') are needed (Fig.~\ref{fig:tilings} (b)).

By substituting the H, P, N, H', and B' tiles with acute rhombs (AR), (AR'")
and obtuse rhombs (OR), (OR') as shown in Fig.~\ref{fig:tilings} (c) we obtain
new tilings for the approximants, which can be interpreted as approximants of
the Penrose-tiling. An H is substituted by an OR, while a phason plane
corresponds to a combination of an AR-row and an OR-row. So the
$\xi'_{n}S$-phase has $n$ OR-rows inbetween neighboring AR-rows. Similarly the
ST _{n}$-phase has $n$ AR-rows inbetween neighboring phason planes, represented
by OR-rows. The rhombs occuring in the new tilings for the $\Xi$-approximants
($\x1i$, S$\xi'$, S$\xi'_{n}$), as well as for the S$TS-approximants (SRS, S$TS,
$ST_{n}$) both only need three of the five basis vectors of the Penrose-tiling
to be constructed. Therefore the tilings can be modelled in a simple
three-dimensional hyperspace with the $\mathbbm{Z}"{3}$-lattice and lattice
constant $17{3D}=\taul\sgrt{\tau+2}1°{6D}\simeq 1.995~nm. The projection
matrices are (S$s_{i}=\sin(2\pi\frac{i}{5})S$, Sc_{i}=\cos(2\pi\frac{i}{5})$):
\begin{equation}

\pi~{\parallel}_{\Xi}=\frac{l}{5}\sqrt{l0}\left (\begin{array}{ccc}

s_{0} & s_{1} & s_{4}\\

c_{0} & c_{1} & c_{4}\\

\end{array}\right), \qquad

\pi*{\parallel}_{T}=\frac{l}{5}\sgrt{l0}\left (\begin{array}{ccc}

s_{0} & s_{2} & s_{31\\

c_{0} & c_{2} & c_{3}\\

\end{array}\right),

\end{equation}

leading to an edge length of the tiles:

St~ {3D}=\frac{1}{5}\sqrt{10}1°{3D}\simeq 1.26$~nm. There is one atomic
hypervolume per unit cell, which is just the unit cell, and one phasonic
degree of freedom. This three-dimensional hyperspace is the simplest model for
a phasonic degree freedom besides the Fibonacci-chain.

\section{Metadislocations}

In the formalism of atomic hypervolumes a dislocation can be introduced into
a tiling by a generalised Voltera process \cite[]{itapdb:Engel2005}. It is
uniquely characterised by a translation vector of the hyperlattice, the
Burgers vector $\ve{b}$ (here: $\ve{b} " {3D}=(b_{1},b_{2},b_{3})S,
Sb_{i}\in\mathbbm{z}$), that splits up into a phononic component
S\ve{b}"{\parallel}=\pi~{\parallel}\ve{b}$ (deforming the tiles) and a
phasonic component $\ve{b}"{\perp}$ (rearranging the tiles). The latter can
only be calculated from the full six-dimensional Katz-Gratias model. If it is
not zero, such a dislocation is a partial dislocation. By (i) extending the
linear theory of elasticity to the hyperspace, (ii) approximating the phasonic
degree as continuous, and (iii) assuming isotropy in the strain fields, the
line energy $ES$ of a dislocation is expressed as:

http://mc.manuscriptcentral.com/pm-pml



Page 13 of 15 Philosophical Magazine & Philosophical Magazine Letters

©CoO~NOUTA,WNPE

e
[Ny

U OO A DMBEBRAMDIMBAEDIAMDIMNDMOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOUPRRWNRPOOO~NOURARWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOOMWN

\begin{equation}\label{eq:energy}
E=c_{\text{phon}}\|\ve{b}"{\parallel}\|"2+c_{\text{phas}}\|\ve{b}"{\perp}\|"2+
c_{\text{coupl}}\|\ve{b}"{\parallel}\|\|\ve{b}*{\perp}\|.

\end{equation}

Besides a phononic contribution with material constant $c_{\text{phon}}$ and a
phasonic contribution with $c_{\text{phas}}$, a coupling term is present with
Sc_{\text{coupl}}$. According to experiment we assume S$c_{\text{phon}}\gg
c_{\text{phas}}\approx c_{\text{coupl}}$. Since stable dislocations are those
with the lowest energy, we have to minimise $\|\ve{b}"{\parallel}\|S$. We will
discuss this in parallel for dislocations in the $\Xi$- and the
$TS—approximants. The minimization yields $b_{2}=b_{3}$ in both

cases. Furthermore we have S$b_{l}=-\tau”{-1}b_{2}$ for $\ve{b}"{3D}_{\Xi}$ and
Sb_{1l}=\tau b_{2}$ for $\ve{b}"{3D}_{T}$. Here we approximate $\tau”{-1}$ by
the fractions S$F_{m-1}/F_{m}$ and $\tau$ by the fractions S$F_{m+1}/F_{m}$
respectively. $(F_{m})_{m\in\mathbbm{N}}$ are the Fibonacci numbers with start
values SF_{1}=F_{2}=1$. Finally the Burgers vectors of stable dislocations
are: S\ve{b}"{3D}_{\Xi}=(F_{m-1},-F_{m},-F_{m})$ and
$S\ve{b}"{3D}_{T}=(F_{m+1},F_{m},F_{m})$. Interestingly they correspond to the
same six—-dimensional Burgers vectors:

\begin{equation}\label{eqg:burgers}
\ve{b}"{6D}_{\Xi}=\ve{b}"{6D}_{T}=(0,0,-F_{m-2},F_{m-1},F_{m-2},F_{m-1}).
\end{equation}

Hence it suffices to consider both cases together for the rest of our
calculations. The phononic component
S\ve{b}"{\parallel}=\ve{b}"{\parallel}_{\Xi}=\ve{b}"{\parallel}_ {T}S$

is perpendicular to the phason-planes (pointing in the vertical direction in
Fig.~\ref{fig:tilings}). We get $\|\ve{b}"{\parallel}\|=\tau™{-m}t~{3D}$ and
S\ |\ve{b}*{\perp}\|=\tau*{m-3}t~{3D}$. Substituting this into
(\ref{eg:energy}), we have S$E=\left[c_{\text{phon}}\tau™{-2m+3}+
c_{\text{phas}}\tau™{2m-3}+ c_{\text{coupl}}\right]\tau~{-3} (t~{3D})"2$. There
is a minimum for $c_{\text{phon}}/c_{\text{phas}}=\tau”{4m-6}$. This
determines the Burgers vector with lowest energy for given values for the
material constants $c_{\text{phon}}$ and $c_{\text{phas}}$. However it has to
be noted that these are not necessarily identical for the $\Xi$- and the
$TS—approximants.

\begin{figure}
\caption{\bf[Insert about here] \label{fig:meta}}
\end{figure}

Tilings of the $\xi'_{3}$- and the $T_{3}$-phase with $m=4$ dislocations
have been calculated (Fig.~\ref{fig:meta}). They show large rearrangements
of the tiles due to the phasonic component $\ve{b}"{\perp}$ and negligible
deformations of the tiles due to the smaller phononic component
S\ve{b}*{\parallel}$. The dislocations are also dislocations in the
metastructure of the phason planes. Therefore \cite{itapdb:K1leinl1999}, who
discovered these dislocations in HRTEM images of the $\xi'_{2}$-phase, named
them metadislocations. The fact, that the experimentally most often observed
metadislocations are those with $m=4$ suggests
Sc_{\text{phon}}/c_{\text{phas}}=\tau~{10}\simeq 123$. We do not know

of Burgers vector determinations or observations of metadislocations in the
$T$—-approximants, but dislocations with the Burgers vectors (\ref{eq:burgers})
are also the ones most often observed in the i-phase
\cite[]{itapdb:Rosenfeldl1995a}.

\section{Discussion and conclusion}
In the $\xi'_{n}$- and the $T_{n}S$-phases the phasonic degree of freedom is

related to the movement of the phason planes. Since there are no phason planes
in the $\xi$—-, $\xi'$—-, $R$—-, and $TS-phase, the phasonic degree of freedom
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cannot be excited locally. However metadislocations can exist in the $\xi'$-
and the $TS$-phase, but not in the $\xi$- and the $RS$-phase. It can be shown,
that there is no consistent way to introduce dislocations with phasonic
components in the latter phases.

A motion of the metadislocation (like the motion of any dislocation in a
quasicrystal or large unit cell approximant) is necessarily accompanied by
diffusion in the form of tile rearrangements. The motion is possible by climb
in direction of the phason planes or by glide perpendicular to them. During
the climb motion new phason planes are created (or dissolved) behind the
dislocation core. A large number of metadislocations moving through the
$S\xi'$— or $TS$S-phase could even lead to a phase transformation to the
$S\xi'_{n}$- or S$ST_{n}S$S-phases making the phasonic degree of freedom
continously excitable. This is affirmed by HRTEM images of phase boundaries
between the $\xi'S$- and the $\xi'_{2}$-phase formed by metadislcations
\cite[]{itapdb:Heggen2005}.

On the other side, glide motion does not change the number of phason

planes. At least in the $\xi'$- and the $T$-phase glide motion seems
unprobable, since the phason planes running out of the dislocation core would
have to be dragged along, while climb motion only needs a reconstruction of
the tiling near the dislocation core. (Similar arguments leading to the same
conclusion, as well as newer experimental work are presented in
\cite{itapdb:Feuerbacher2005}.) We have to note, that there are no direct
observations of metadislocation motion in approximants yet, although in the
i-phase dislocations with identical Burgers vectors have been shown by in-situ
observations to move by climb \cite[]{itapdb:Mompiou2004}.

\newpage
\begin{thebibliography} {20}

\bibitem[{Beraha} et~al.(1997)]{itapdb:Berahalf997}
{\sc {Beraha},~L., {Duneau},~M., {Klein},~H.,} and {\sc {Audier},~M.},
\newblock 1997, {\it Phil.\ Mag.}~A, {\bf 76}, 587.

\bibitem[{Beraha} et~al. (1998)]{itapdb:Berahalf998}
{\sc {Beraha},~L., {Duneau},~M., {Klein},~H.,} and {\sc {Audier},~M.},
\newblock 1998, {\it Phil.\ Mag.}~A, {\bf 78}, 345.

\bibitem[{Coddens} et~al. (1999)]{itapdb:Coddens1999}
{\sc {Coddens},~G., {Lyonnard},~S., {Hennion},~B.,} and {\sc {Calvayrac},~Y.},
\newblock 1999, {\it Phys.\ Rev.\ Lett.}, {\bf 83}, 3226.

\bibitem[{Edagawa} et~al. (2004)]{itapdb:Edagawa2004}

{\sc {Edagawa},~K., {Mandal},~P., {Hosono},~K., {Suzuki},~K.,} and {\sc
{Takeuchi}, ~S.},

\newblock 2004, {\it Phys.\ Rev.}~B, {\bf 70}, 184202.

\bibitem[{Edagawa} et~al. (2002)]{itapdb:Edagawa2002}
{\sc {Edagawa},~K., {Suzuki},~K.,} and {\sc {Takeuchi},~S.},
\newblock 2002, {\it J.~All.\ Comp.}, {\bf 342}, 271.

\bibitem[{Engel} and {Trebin} (2005)]{itapdb:Engel2005}

{\sc {Engel},~M.,} and {\sc {Trebin},~H.-R.},

\newblock 2005, {\it Phil.\ Mag.}, in press.
\bibitem[{Feuerbacher} and {Heggen} (2005)]{itapdb:Feuerbacher2005}
{\sc {Feuerbacher},~M.,} and {\sc {Heggen},~M.},

\newblock 2005, {\it Phil.\ Mag.}, this volume.

\bibitem[{Francoual} et~al. (2003)]{itapdb:Francoual2003}

http://mc.manuscriptcentral.com/pm-pml



Page 15 of 15 Philosophical Magazine & Philosophical Magazine Letters

1

2

3 {\sc {Francoual},~S., {Livet},~F., de~{Boissieu},~M., {Yakhou},~F.,

4 {Bley},~F., {Letoublon},~A., {Caudron},~R.,} and {\sc {Gastaldi},~J.},

2 \newblock 2003, {\it Phys.\ Rev.\ Lett.}, {\bf 91}, 225501.

7 \bibitem[{Katz} and {Gratias} (1993)]{itapdb:Katz1993}

8 {\sc {Katz},~A.,} and {\sc {Gratias},~G.},

9 \newblock 1993, {\it Journ.\ Non-Cryst.\ Solids}, {\bf 153-154}, 187.

10

11 \bibitem[{Klein} et~al. (2000)]{itapdb:Klein2000a}

12 {\sc {Klein},~H., {Durand-Charre},~M.,} and {\sc {Audier},~M.},

13 \newblock 2000, {\it J.~All.\ Comp.}, {\bf 296}, 128.

14

15 \bibitem[{Klein} et~al. (1999)]{itapdb:Kleinl999}

16 {\sc {Klein},~H., {Feuerbacher},~M., {Schall},~P.,} and {\sc {Urban},~K.},
17 \newblock 1999, {\it Phys.\ Rev.\ Lett.}, {\bf 82}, 3468.

18

19 \bibitem[{Heggen} and {Feuerbacher} (2005)]{itapdb:Heggen2005}

20 {\sc {Heggen},~M.,} and {\sc {Feuerbacher},~M.},

21 \newblock 2005, {\it Phil.\ Mag.}, this volume.

;é \bibitem[{Mompiou} et~al. (2004)]{itapdb:Mompiou2004}

24 {\sc {Mompiou},~F., {Caillard},~D.,} and {\sc {Feuerbacher},~M.},

25 \newblock 2004, {\it Phil.\ Mag.}, {\bf 84}, 2777.

g? \bibitem[{Rosenfeld} et~al.(1995)]{itapdb:Rosenfeldl1995a}

28 {\sc {Rosenfeld},~R., {Feuerbacher},~M., {Baufeld},~B., {Bartsch},~M.,

29 {Wollgarten},~M., {Hanke},~G., {Beyss},~M., {Messerschmidt},~U.,} and {\sc
30 {Urban}, ~K.},

31 \newblock 1995, {\it Phil.\ Mag.\ Lett.}, {\bf 72}, 375.

32 \bibitem[{Steurer} (2004)]{itapdb:steurer2004}

33 {\sc {Steurer,~W.}},

gg \newblock 2004, {\it Z.~Kristallogr.}, {\bf 219}, 391.

g? \end{thebibliography}

38

39 \newpage

22 {\large{Figure captions}}

42 \begin{enumerate}

43 \item Calculated tilings for various approximants of the AlPdMn i-phase. (a)
44 1.6~nm phases: The tiling of the d-phase is the T\"ubingen Triangle Tiling
45 (TTT). (b) 1.2~nm phases: The D' centres lie on a $\tau”{2}$ inflated
46 TTT. (c) The tiles can be substituted with Penrose rhomb tiles. The

47 substitution is different for the 1.6~nm phases and the 1.2~nm phases.
48 \item Tilings of the $\xi'_{3}$- (left) and the $T_{3}$-phase (right) with
49 Sm=4$ metadislocations. $2F_{m}$ new phason planes are inserted from the
50 left, ending at the triangular shaped dislocation core.
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