Distribution of electric field gradients in decagonal quasicrystals

Peter Jeglic, Janez Dolinsek

To cite this version:

Peter Jeglic, Janez Dolinsek. Distribution of electric field gradients in decagonal quasicrystals. Philosophical Magazine, 2005, 86 (03-05), pp.601-606. 10.1080/14786430500254842 . hal-00513573

HAL Id: hal-00513573

https://hal.science/hal-00513573

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distribution of electric field gradients in decagonal quasicrystals

Journal:	Philosophical Magazine \& Philosophical Magazine Letters
Manuscript ID:	TPHM-05-May-0168
Journal Selection:	Philosophical Magazine
Date Submitted by the Author:	12-May-2005
Complete List of Authors:	Jeglic, Peter; Jozef Stefan Institute, Solid State Physics Dolinsek, Janez; Jozef Stefan Institute, Solid State Physics
Keywords:	quasicrystals, NMR
Keywords (user supplied):	spectrum, electric field gradient

Distribution of electric field gradients in decagonal quasicrystals

P. JEGLIČ and J. DOLINŠEK
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Abstract

We measured the orientation dependent ${ }^{27} \mathrm{Al}$ NMR spectra of a decagonal Al-Ni-Co quasicrystal. In order to explain the experimental results, we had to introduce a model of EFGs in decagonal quasicrystals. The EFGs reflect the structure of quasicrystals. Therefore, from the comparison between the NMR results and the models of EFGs, we can test the atomic structure models of quasicrystals.

Keywords: Electric field gradient; Nuclear magnetic resonance; Spectrum; Quasicrystals;

1 Introduction

Whereas in the last twenty years nuclear magnetic resonance (NMR) was successfully used in the field of quasicrystals on getting insight into the electronic structure and magnetism [1,2] and, on the other hand, into excitations, fluctuations and diffusion [3,4], no breakthrough has been achieved by NMR in determining the atomic structure of the quasicrystals. NMR spectroscopy is a very useful experimental tool for getting information about the local chemical environments. The dominant nuclear spin interaction that determines the ${ }^{27} \mathrm{Al}$ NMR lineshape of Al-based quasicrystals is the electric quadrupolar interaction, which reflects the structure of the quasicrystals through the distribution of the electric field gradients (EFGs). From pioneering work on icosahedral quasicrystals [5], we know that the NMR spectrum is determined by a wide distribution of EFG tensors reflecting a high number of inequivalent lattice sites, in agreement with quasiperiodic structure. This is the case also for 2D quasicrystals, which consist of periodic stacks of quasiperiodic layers of atoms along the twelve-, tenor eightfold rotational symmetry axis. In the following section, the NMR measurements on decagonal Al-Ni-Co quasicrystal are briefly presented [6], whereas the last section is devoted to a simple model of EFG distribution in 2D quasicrystals. In this work we further evolve a "stacked planar" model firstly introduced in Ref. [6].

2 Orientation dependent ${ }^{27} \mathrm{Al}$ NMR spectra of decagonal Al-Ni-Co quasicrystal

The NMR resonance frequency corresponding to the $m \leftrightarrow m-1$ spin transition of the i th ${ }^{27} \mathrm{Al}$ nucleus with spin $I=5 / 2$ can be written as a sum [5,7]

$$
\begin{equation*}
v_{i}(m \leftrightarrow m-1)-v_{0}=v_{\text {quad }, i}^{(1)}(m \leftrightarrow m-1)+v_{\text {quad }, i}^{(2)}\left(\frac{1}{2} \leftrightarrow-\frac{1}{2}\right)+v_{\text {mag }, i}, \tag{1}
\end{equation*}
$$

where $\nu_{0}=\gamma_{n} B_{0} / 2 \pi$ is the Zeeman frequency in the external magnetic field B_{0} and γ_{n} is the nuclear gyromagnetic ratio. The first term $v_{\text {quad }, i}^{(1)}$ on the right of equation (1) is the first-order quadrupole shift
that affects any spin transition $m \leftrightarrow m-1$ except the central one (these transitions are also called satellite transitions) and is independent of the external magnetic field B_{0}. It can be written in the following form [8]

$$
\begin{equation*}
v_{\text {quad }, i}^{(1)}(m \leftrightarrow m-1)=-\frac{v_{Q, i}}{2}\left(m-\frac{1}{2}\right)\left(3 \cos ^{2} \theta_{i}-1+\eta_{i} \sin ^{2} \theta_{i} \cos 2 \phi_{i}\right) \tag{2}
\end{equation*}
$$

Here the angles θ_{i} and ϕ_{i} define the orientation of the external field B_{0} with respect to the EFG tensor principal-axes system. The quadrupole coupling constant of the i th spin $I=5 / 2$ nucleus $v_{Q, i}=3 e V_{Z Z, i} Q / 20 h$ is determined by the largest eigenvalue of the EFG tensor $V_{Z Z, i}$, whereas $\eta_{i}=\left(V_{X X, i}-V_{Y Y, i}\right) / V_{Z Z, i}$ is the quadrupole asymmetry parameter. The second term $v_{q u a d, i}^{(2)}$ represents the quadrupolar shift in the second-order of perturbation that is dominant only on the central transition $\frac{1}{2} \leftrightarrow-\frac{1}{2}$, which is not affected by the first-order quadrupolar interaction. Finally, the last term $v_{m a g, i}$ corresponds to the frequency shift due to magnetic hyperfine coupling between the nuclear spins and the s, p and d conduction electrons. The experiment has shown that we actually need to include only isotropic part of the magnetic interaction that can be simplified into a uniform site-independent Knight shift [5,6]. In summary, we see that the NMR spectrum of the quasicrystals is predominantly determined by the distribution of the EFG parameters $g\left(v_{Q}, \eta, \theta, \phi\right)$ that reflect the atomic structure. The angular dependence of the NMR spectrum is introduced through the anisotropic distribution of the parameters θ in ϕ.
[Insert Figure 1 about here.]

The NMR measurements were performed on a decagonal $\mathrm{Al}_{72.6} \mathrm{Ni}_{10.5} \mathrm{Co}_{16.9}$ single-grain quasicrystal grown by the flux technique. The sample was rotated about the twofold and tenfold axes. For the tenfold rotation, a weak angular dependence of the NMR spectrum was expected with the $2 \pi / 10$ period, since in this case the magnetic field rotates within the quasiperiodic plane with the tenfold symmetry. On the other hand, for rotation about the twofold axis, a strong angular dependence was expected, while here the tenfold axis changes its orientation relative to the field. The experiment confirmed our predictions, as for twofold rotation a strong angular dependence was observed for satellite part of the ${ }^{27} \mathrm{Al}$ NMR spectrum (Figure 1 a)) as well as for the central line (Figure 1 b)). This is also evident from the strong angular dependence of the center of gravity of the ${ }^{27} \mathrm{Al}$ central line, the so-called first moment M_{1}, as shown in Figure 1 c). Besides, a tiny angular dependence of the first moment M_{1} was also detected for rotation about the tenfold axis as displayed in Figure 1 d). Nevertheless, the quasiperiodic symmetry $2 \pi / 10$ is clearly visible. For more details on the NMR techniques employed, see Refs. [6,9].

3 Simple model of EFG distribution in 2D quasicrystals

In our search for a model of EFG distribution in the decagonal Al-Ni-Co quasicrystals, we first revisited the icosahedral Al-Pd-Mn quasicrystals. The EFG distribution, which can satisfactorily reproduce the observed NMR spectrum of icosahedral quasicrystals [9], can be numerically simulated by a dense random packing of hard spheres (Figure 2 a)) using the point-charge model [10], known as
the spherically isotropic Czjzek model [11]. Here one has to keep in mind that the adequacy of this model has its limitation because even in icosahedral quasicrystals, a tiny angular dependence was observed [12]. Actually, this weak anisotropy can be explained in the frame of the Czjzek model with equal $P\left(v_{Q}, \eta\right)$ distribution but slightly modified anisotropic angular distribution $S(\theta, \phi)$ obeying the icosahedral symmetry [13].
[Insert Figure 2 about here.]

In analogy to the icosahedral case, a simple model of EFG distribution in 2D quasicrystals was introduced by the so-called "stacked-planar" model [6,10], where we assumed that the atoms are randomly packed in a layer, which is then equidistantly stacked along the orthogonal direction (Figure $2 \mathrm{~b})$). The obtained arrangement of atoms thus presents a layered structure, which is amorphous in a plane, and periodic in the third direction in accordance with the basic structural properties of the 2D quasicrystals. The basic difference between the spherically isotropic Czjzek model and the "stackedplanar" model is in the distribution of the parameters θ in ϕ, where in the last model the anisotropy is clearly introduced. Besides, the difference between the two models appears also for distribution of the parameters v_{Q} and η. In the spherically isotropic Czjzek model, the probability of finding an EFG with $\eta=0$ is zero, whereas it is nonzero in the "stacked-planar" model as seen from Figure 3 a). The distributions $Q\left(v_{Q}\right)$ of the two models are qualitatively similar (Figure 3 b)). The peaks of the "stacked-planar" model are somewhat narrower and a more pronounced gap around the zero value is seen compared to the spherically isotropic Czjzek model.

We were surprised that a model distribution of EFGs, which basically holds for 3D or 2D amorphous solids, explained so well also the NMR spectra of the long-range ordered icosahedral and decagonal quasicrystals, respectively. For comparison between the experiment and theory in the case of the rotation about the twofold rotation of the decagonal Al-Ni-Co quasicrystal see Ref. [6]. One possible explanation for such agreement may be the following. Namely, real quasicrystals exhibit a large amount of chemical and sometimes also structural disorder, which is supported by X-ray measurements [10]. On the other hand, a further insight can be obtained by replacing 2 D amorphous layer in the "stacked-planar" model with the 2D Penrose tiling. It turns out that it is crucial what type of charges are placed at the centers of hard spheres or at vertexes of 2D Penrose tiling, respectively, when calculating the distribution of EFGs.
[Insert Figure 3 about here.]

If random charges $\pm q$ are used, corresponding to the complete chemical disorder, than no anisotropy can be observed within the layer perpendicular to the periodic (tenfold) axis even when replacing 2D amorphous layer with the 2D Penrose tiling. This is best seen by calculating a histogram (see Figure 3 c)) displaying the distribution of a polar angle φ, which defines the orientation of the largest eigenvalue of the EFG tensor with respect to the crystal coordinate system where the z-axis coincides with the tenfold axis. Consequently, by applying such model it is not possible to account for the weak angular dependence in the NMR spectrum for rotation about the tenfold axis (Figure 1 d)). On the other hand, if only positive charges $+q$ are used, which mimics a perfect chemical order, only
some orientations of the EFG tensors are pronounced (see Figure 3 d), obeying the tenfold symmetry and explaining the observed angular dependence of the NMR spectrum about the tenfold axis.

4 Acknowledgements

We thank Walter Steurer from ETH, Zürich, for valuable discussions and substantially improving understanding of our results in combination with X-ray measurements done by his collaborator Thomas Weber. We also thank Michael Feuerbacher from Jülich for provision of the decagonal $\mathrm{Al}_{72.6} \mathrm{Ni}_{10.5} \mathrm{Co}_{16.9}$ quasicrystal.

Figure 1

Figure 2

Figure 3

Figure captions

Figure 1. a) Orientation-dependent ${ }^{27} \mathrm{Al} \mathrm{NMR}$ spectra at 80 K of the decagonal $\mathrm{Al}_{72.6} \mathrm{Ni}_{10.5} \mathrm{Co}_{16.9}$ quasicrystal for rotation about the twofold axis on an expanded vertical scale, so that the satellite intensity is clearly visible, whereas the central line is clipped on this scale. In b) the central lines are separately displayed. Angular dependence of the center of gravity (the first moment M_{1}) relative to AlCl_{3} of the ${ }^{27} \mathrm{Al}$ central lines for c) rotation about the twofold axis and d) rotation about the tenfold axis. Here β is the angle between the tenfold axis and the direction of the external magnetic field B_{0}, except in the last figure, where it is simply an angle describing the rotation about the tenfold axis.

Figure 2. a) Atomic structure used to simulate the amorphous solid in the spirit of the work presented by Czjzek et al. Ions with random charge $\pm q$ are represented as hard spheres with radius $R_{i o n}$. For each randomly obtained configuration of atoms, the EFG is calculated in the center of a sphere including only the charges within the radius $6 R_{i o n}$. b) Analogous atomic structure used in the simple model for the calculation of the NMR spectrum of 2D QCs. The layers are periodically stacked along one direction, whereas the atomic order within the layers is amorphous.

Figure 3. Marginal distributions a) $R(\eta)$ and b) $Q\left(v_{Q}\right)$ (solid lines) obtained from the "stacked-planar" model and used to calculate the theoretical NMR spectra shown in Ref. [6]. The corresponding theoretical distributions of the spherically isotropic Czjzek model are shown for comparison as dashed lines. In c) and d) the distribution of the polar angle φ (for definition see text) in the "stacked-planar" model with 2D Penrose tiling is shown. In c) random $\pm q$ charges are used for calculation of EFGs while in d) all charges have the same value $+q$. Note that at -180° and $+180^{\circ}$ only half of the joint intensity is visible.

References

[1] W. W. Warren, H.-S. Chen, and G. P. Espinosa, Physical Review B 34, 4902 (1986).
[2] J. Dolinšek, M. Klanjšek, T. Apih, J. L. Gavilano, K. Giannò, H. R. Ott, J.-M. Dubois and K. Urban, Physical Review B 64, 024203 (2001).
[3] F. Hippert, L. Kandel, Y. Calvayrac, and B. Dubost, Physical Review Letters 69, 2086 (1992).
[4] J. Dolinšek, T. Apih, P. Jeglič, and M. Klanjšek, Journal of Non-Crystalline Solids 334\&335, 280 (2004).
[5] A. Shastri, F. Borsa, D. R. Torgeson, J. E. Shield, and A. I. Goldman, Physical Review B 50, 15651 (1994).
[6] P. Jeglič and J. Dolinšek, Physical Review B 71, 014204 (2005).
[7] J. Winter, Magnetic Resonance in Metals (Oxford University Press, 1971).
[8] G. M. Volkoff, Canadian Journal of Physics 31, 820 (1953).
[9] P. Jeglič, M. Klanjšek, T. Apih and J. Dolinšek, Applied Magnetic Resonance 27, 329 (2004).
[10] P. Jeglič, Physical properties of decagonal quasicrystals and quasicrystalline approximants. PhD thesis, University of Ljubljana (2004).
[11] G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. M. D. Coey, J.-P. Rebouillat, and A. Liénard, Physical Review B 23, 2513 (1981).
[12] T. Apih, M. Klanjšek, D. Rau, and J. Dolinšek, Physical Review B 61, 11213 (2000).
[13] M. Klanjšek, Physical properties of icosahedral aluminum-based quasicrystalline alloys. PhD thesis, University of Ljubljana (2004).

