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Abstract 

Structure factor of two-dimensional quasicrystals obtained for decorated Penrose tilings was 

derived in statistical approach. Each atom can decorate the two rhombuses in an arbitrary 

fashion with also arbitrary occupation probability. The derived analytical formula was 

numerically checked for refined model structure. 

 

Introduction 

 

For more than 20 years after the discovery of quasicrystals, the scientists are still facing 

problems concerning the determination of the structure of quasicrystals from the diffraction 

pattern. There are many different solutions and among them: the higher-dimensional analysis 

using “cut and project” method [1-5], clusters [6-8], approximants [9] and statistical approach 

[10-12]. In this paper we concentrate on the first and the last solutions. The higher-

dimensional analysis, although quite simple and clear, has some essential limitations, e.g.: 

1) one has to know the atomic surface which can have very complicated and different shapes 

for every configuration of atoms, 

2) similarly to above, one has to determine positions of atoms decorating 5D elementary unit 

cell, which after projection onto real space would give us the coordinates of atoms 

belonging to rhombuses or clusters. It is a very time-consuming process to decorate a 5D 

unit cell.  

3) it is very hard to describe the dynamical properties of quasicrystals. Even thermal 

vibrations cause some trouble. For example, if atoms vibrate along y direction, along 

which direction do they vibrate in 5D space? 

4) an attempt to deal with defective structures brings us to very serious and unsolved 

problems. 

 

The higher-dimensional analysis gave us though one fundamental result: a structure factor 

which perfectly describes ideal (and only ideal) quasicrystals. For the Penrose lattice the 

structure factor is: 

( ) ( ) ( )( ) ⊥⊥⊥⊥⊥⊥
=

∫∑ +−= yxykxkizkkkF
AS

yx

z

zyx ddexpi-exp,
4

1

||||    (1) 

where AS stands for the atomic surface in perp-space. 

Our goal is to derive a structure factor which should be equal to (1) for ideal 

quasicrystal and which would not have the limitations enumerated above. It would be possible 

for a method working in the physical space only and which would use a statistical distribution 

of atomic positions. 

 

Indexing  
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For 5D representation of Penrose tiling one can write a scattering vector using 5 

indices (h1, h2, h3, h4, h5) as following: 

 

[ ] [ ]1,0,0,0,0ˆ;;...0,0,0,0,1ˆ;ˆˆˆˆˆ
515544332211 ==++++= xxxxxxxK hhhhh  (2) 

 

In our work we choose another basis vectors, i.e. K1=[0,0,-1,-1,0], K2=[-1,-1,0,0,0] and τ-
times (τ ≈ 1.618) shorter modulation vectors  Q1=[1,0,0,0,0], Q2=[0,0,0,1,0] and 

Z=[1,1,1,1,1]. Then K=n1K1+n2K2+m1Q1+m2Q2+zZ. Having projected vector K on physical 

space we get: 

 

2212211 qqkkk 1 mmnn +++=     (3) 

 

where k1, k2, q1, q2 are the real space components of K1, K2, Q1, Q2.  

As we can see (3) doesn’t depend on Z vector. That means, in order to index whole set of  

peaks we need only four vectors and four indices.  

Vectors k1 and q1 are directed at the angle of  72° and  k2 and q2  at the angle of -72° to the x 

axis and |k1(2)|  ≈ 4.067 and  |q1(2)|  = |k1(2)| / τ ≈ 1.553 

 

An arbitrary diffraction peak for scattering vector k can be then expressed as a linear 

combination of k1(2) and q1(2) and its components (kx, ky) are equal to:  

 

( )τxxx mnckk += 10 ;     ( )τyyy mnskk += 10 ; ( ) ;067.454 0 ≈≡== kτπ21 kk  (4) 

 

where: cp = cos(2πp/5),  sp = sin(2πp/5),  nx ≡ n1+n2,    ny ≡ n1-n2,    mx ≡ m1+m2,    my ≡ m1-m2.  

More information concerning the indexing can be found in [11] 

 

Statistical approach   

 

In higher dimensional representation diffraction peaks are given by the relation: 

exp(iK⋅⋅⋅⋅R)=1, what leads to: 

 

πα2|||| =++++=⋅+⋅=⋅ ⊥⊥⊥⊥⊥⊥ zkykxkukuk zyxyyxxrkrkRK    (5) 

 

where (ux, uy) are reduced (x, y) components, such that (k⋅⋅⋅⋅r  mod 2π) = k⋅⋅⋅⋅u. As an integer 

multiple of 2π doesn’t affect the structure factor calculations, one can choose the α parameter 

equal to zero. For main reflections only, i.e for m1(2)=0, we can rewrite (5) as:  

⊥
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Then the structure factor (1) reads: 
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=
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It looks very similar to (1) but this time the Fourier integral is over S, i.e. the area in physical 

space obtained after projection of atomic surface AS according to (6). Very similar 

calculations performed for a satellite reflection indexed by m1(2) gives: 
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and  ( )( )∑∫
=

++=
4

1 '

1010 'd'd''iexp
z

yx

S

zxyyxxm uuqmzusqmucqmF    (9) 

 

Equation (7) works only for k = n1k1+n2k2 and (9) only for k = m1q1+m2q2. It is so 

because we integrate over different areas (S and S’). If we need to describe every diffraction 

peak (3), we should transform S’ into S. Once we have one common area S we can calculate 

Fourier transform for any k (3). Luckily there is a very simple relation between these areas. 

Almost all we need to do is to divide (8) by (6) and we get ux’= −τ 2
ux, uy’= −τ 2

uy, what leads 

us to a general expression for the structure factor 

( )( )∑∫
=

++=
4

1

, ddiexp
z

yx

S

zyyxxmn uuuwuwF ϕ      (10) 

where  ( )xzxzz mqnkz +−=ϕ   and  ( ) ( )
yyyxxx mnkswmnkcw ττ −=−= 0101 ;  

Because now we are using only physical coordinates (ux, uy), the S area can be 

considered as probability distribution of atoms’ positions belonging to the Penrose lattice. 

Doing some statistical research we already showed that [13]  that S consists of four pentagons. 

Now we are showing that these pentagons are just a projection (6) of the AS onto the real 

space. It means that the eg. (10) is, for the ideal Penrose lattice, equivalent to (1). Equation 

(10) has but one strong advantage over (1): quasicrystal doesn’t have to be ideal any more. 

We can add thermal vibration, same defects and (10) will be fine, because all those things we 

can take into account by changing or smoothing (additional probability function is then 

needed P(ux, uy) – for further details see [11]) the S area. Notice also we haven’t made any 

assumption of projecting area. It can be the whole AS but it can also be only a part of it – for 

instance, an area corresponding to a local configuration of atoms, which after projection 

would build thick or thin rhombus (figures 1 and 2 explain the way of doing this) 

 

Decorated structures 

 

Eg. (10) is derived for a particular set of atoms. What would happen, if we had N such 

identical sets and they would be shifted by rj vector? We would take this shift into account by 

multiplying (10) by exp(k||⋅rj). Of course, we don’t want to move the whole Penrose lattice. 

We need to divide the Penrose lattice into sets of thick and thin rhombuses and then to find 

the parts of atomic surface belonging to both of these sets. Finally we project these sets onto 

real space, and for one of these sets (for instance for thick rhombuses) we get: 

 

( ) ( )( ) ( )( )∑∑ ∫
= =

++⋅=
4

1 1

ddiexpiexp
z

N

j

yx

S

zyyxxj uuuwuwF

L

ϕrkk ||||   (11) 

The most important point of presented analysis is the determination of the probability 

distributions for particular point belonging to the L and S rhombuses (i.e. SL and SS). Two 

rhombuses were presented in figure 1. For our convenience we placed both the A points of 

thick and thin rhombuses in the origin of the coordinate system. In figure 2 the appropriate 

distributions were shown for the A point belonging to the thick rhombus in orientation as 

shown in figure 1. The positions of vertices A, B, C and D on the atomic surface were shown 

in figure 2(a). The real space vector AB was also shown in perp-space in figure 2(c). One has 

to find a distribution of positions of A atoms on small pentagon at z=1, for which atom B lies 

on the pentagon at z=2. Simply construction shows that required distribution is bounded by 

trapezoid (greyed area in figure 2(b)). The next construction for vectors AC was shown in 

figures 2(c) and that leads to triangular distribution marked in the figure (dark grey). One can 

also notice that the last vector AD doesn’t change the obtained previously triangular 
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distribution. Similar constructions for thin rhombus also gives a triangular distribution. 

Having calculated structure factor for thick (FL) and thin (FS) rhombuses as a Fourier 

transform of the appropriate triangular distributions one can write the structure factor for 

decorated Penrose tiling as 

 



















⋅+⋅⋅= ∑ ∑∑

= ==

5

1 11

)iexp()iexp(re
α

SL n

s

sS

n

l

llL pFpFCF s|||| rkrk   (12) 

 

( ) ( )( )∑ ∫
=

++=
)(

)(
1

1)( ddiexp
SL

SL

N

j

yx

S

yyxxSL uuuwuwF ϕ||k  

where sum over α is for five different directions, pl(s) are the occupation probabilities and C is 

a normalizing constant value such that F(0,0)=1. In principle there are ten orientations, but 

due to the inversion one can use only five of them and the real part of the Fourier transform. 

Parameters pL(S) are very important for disordered structures and also for decorating atoms 

placed at the edges of rhombuses (see the example below). We also neglected the sum over z 

because both SL and SS are projected from the same pentagon which lays in the hyperspace at 

z=1. More details of the calculations including rotations of triangular distributions for 

particular decorating atoms are given in [11].  

 

Example 

 

As an example, the structure factor (12) was used for refining a model structure, which 

was the perfect Penrose tiling. For refining process we took about 2000 numerically 

calculated (from a set of about 150 000 points belonging to Penrose lattice) diffraction peaks 

and Imin/Imax=0.001. We wanted to get probability values of rhombuses’ vertices occupation.  

Using the least square method six parameters were refined. The refining was started from the 

uniform distribution and the procedure (based on gradient method) converged very rapidly to 

the theoretical values. After several steps (about ten) the results of fitting were quite 

acceptable, with the R-factor reaching a few percents. And it was only about 50 iterations 

when the theoretical values were recovered This example shows two important things: first: it 

supports the correctness of the obtained formula for the structure factor (12) and second: it 

indicates that very conventional refining methods, well elaborated in classical 

crystallography, can be directly adapted to refining process of quasicrystals.  

 

Conclusions 

 

In this paper we have thoroughly discussed the structural properties of two-

dimensional quasicrystals. Using the projection method we were able to derive a probability 

distribution of chosen atom (in our case placed at the origin in figure 1) belonging to thick or  

thin rhombuses of the Penrose tiling. A physical space calculations allowed us to write an 

analytical formula for any decorated structure with arbitrary probabilities of atomic sites’ 

occupation. In the discussed example it was shown that all the well-known methods of 

structure refinement can be also adapted for quasicrystals. The discussed method of structure 

factor calculation was also successfully applied to the cluster approach [12].  

 

The authors would like to acknowledge the State Committee of Scientific Research for 

financial support.  
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