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I. INTRODUCTION AND OVERVIEW

The achievement of Bose-Einstein condensation (BEC) 10 years ago (Anderson et al. 1995, BEC 2002, Davis et al. 1995) has pioneered the new field of interacting quantum gases in the dilute limit. It has become possible for the first time to observe quantum phenomena like Bose statistics on a mesoscopic scale, involving a large number of atoms. More recently, also fermionic gases have been cooled to the quantum degenerate regime, using sympathetic cooling of two spin states or boson-fermion mixtures (DeMarco and Jin 1999, Hadzibabic et al. 2002, Schreck et al. 2001, Truscott et al. 2001). Although the resulting temperatures T /T F ≈ 0.1 are, relative to the Fermi temperature T F , much higher than in solids, the Pauli principle has been clearly observed. In addition to quantum statistics, tunable interactions are another important ingredient in the cold atom "toolbox". The interactions between atoms can be changed by an external magnetic field as a result of Feshbach resonances (Inouye et al. 1998, Timmermans et al. 2001). In particular, their scattering length can be tuned to positive or negative values, corresponding to repulsive or attractive interactions. This has opened the way to studies of solid-state related phenomena like Cooper pairing and BCS superfluidity of fermions (Holland et al. 2001, Ohashi andGriffin 2003). The resulting BEC-BCS crossover has recently been the subject of intense experimental and theoretical studies (Bartenstein et al. 2004, Regal et al. 2004, Zwierlein et al. 2004a) In an independent development, degenerate atomic clouds have been combined with optical lattices, created by standing light waves which generate an effective periodic potential for the atoms (Greiner et al. 2002, Jaksch et al. 1998, Orzel et al. 2001). This way interactions can be tuned without changing the atomic scattering length. This has been demonstrated in a pathbreaking experiment (Greiner et al. 2002) where interacting bosons were tuned through a quantum phase transition from a superfluid (SF) to a Mott insulating state. Very recently, fermionic K 40 atoms have been loaded into 3d optical lattices as well (Köhl et al. 2004). In these new experiments the lowest Bloch band was filled up succesively, and the shape of the Fermi surface monitored by time-of-flight measurements. Eventually a completely filled Brillouin zone corresponding to a band insulator was observed.

More generally, fermionic atoms in optical lattices allow for the realization of solid-state type quantum phases like antiferromagnetism or high-temperature superconductivity (Hofstetter et al. 2002). Even the spatial dimensionality of the lattice can be tuned. As an example, one-dimensional optical lattices have been realized where the hardcore or Tonks-gas limit of interacting bosons has been observed (Paredes et al. 2004, Stöferle et al. 2004). Recent progress in numerical methods for simulating 1d quantum systems has lead to interesting predictions about the dynamics of such systems (Kollath et al. 2004a,b).

In the following we will first give an overview of the basic models describing cold atoms in optical lattices, together with a discussion of solid-state related phenomena which can be observed. We will then address systems with multiple flavors, i.e. hyperfine states, which allow realization of new exotic quantum states not accessible in solids. Finally, we will discuss the role of disorder in current and future experiments involving cold atoms. 1: Cold atoms in an optical lattice of strength V0, shown here with hopping t and negative onsite interaction U . This situation corresponds to an attractive Hubbard model where multiple occupancy of lattice sites is energetically favourable.
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II. OPTICAL LATTICES AND STRONG CORRELATIONS

A. Model and Parameters

Atoms can be trapped in standing light waves created by interfering laser beams detuned far from resonance (Greiner et al. 2002, Jaksch et al. 1998, Orzel et al. 2001). Due to the AC Stark shift the atoms experience a periodic potential of the form

V (x) = V 0 i=1,2,3 cos 2 (kx i ) (1)
where k is the wave vector of the laser. The natural energy scale for the potential depth V 0 is the recoil energy E R = h2 k 2 /2m. A schematic picture of such an optical lattice is shown in Fig. 1. The translational eigenstates in the periodic lattice potential are given by Bloch bands. An equivalent representation in terms of Wannier orbitals leads to a tight-binding Hamiltonian. Let us assume for the moment that two different (hyperfine-) spin states are present, which in the following are denoted as σ =↑, ↓. If temperature and filling are sufficiently low, the atoms will be confined exclusively to the lowest Bloch band. In this case the system can be described by a Hubbard Hamiltonian (Gutzwiller 1963, Hubbard 1963, Kanamori 1963)

H = -t <ij>,σ c † iσ c jσ + c † jσ c iσ + U i n i↑ n i↓ (2)
where c iσ is the fermionic annihilation operator for the Wannier state of spin σ on site i and n iσ = c † iσ c iσ is the corresponding number density. Let Ψ(xx i ) be a single Wannier function localized at the i-th lattice site. The parameters for hopping t and onsite interaction U can then be expressed in terms of overlap integrals as

t = -d 3 x Ψ(x -x i ) - h2 ∇ 2 2m + V lattice (x) Ψ(x -x j ) U = 4πh 2 a s m d 3 x |Ψ(x)| 4 (3)
with the final result

t = E R (2/ √ π)ξ 3 exp(-2ξ 2 ) U = E R a s k 8/π ξ 3 (4)
where a s is the atomic scattering length and ξ = (V 0 /E R ) 1/4 is a parameter characterizing the strength of the lattice (Hofstetter et al. 2002, Jaksch et al. 1998). From Eq. ( 4) it is obvious that by tuning the optical lattice potential V 0 one can achieve arbitrary ratios |U |/t without changing a s . Optical lattices thus give access to the strongly correlated regime without using Feshbach resonances, which can entail problems of their own like enhanced losses or instabilities.

B. Superfluid-Insulator Transition

These highly controllable interactions have been employed to study the transition from a Bose condensate of Rb 87 atoms with weak repulsive interactions to a Mott insulator (Greiner et al. 2002). In this experiment only a single 2: Left: Fermions with attractive interaction forming Cooper pairs in an optical lattice. Right: Critical temperature for the SF transition of Li 6 atoms as a function of the optical lattice depth in a 3d CO2 lattice. Inset: analogous plot for K 40 atoms in a Nd:YAG lattice. The dashed curves show the effect of adiabatic cooling if the atoms are loaded into a weak lattice at point C which is then decoupled from the reservoir. Figures taken from (Hofstetter et al. 2002). hyperfine state was used, i.e. the appropriate theoretical description of the results involves a spinless bosonic Hubbard model. For weak interactions, where the kinetic energy dominates, the atoms are delocalized across the entire lattice and the superfluid many-body ground state can be written approximately as

|Ψ SF ∼ N i=1 b † i N |0 ( 5 
)
where |0 is the empty lattice and N the number of lattice sites. Here all bosons have condensed into the same Bloch state with lattice momentum k = 0. Note that in this state the probability distribution for the local occupation n i is poissonian. If, on the other hand the onsite repulsion U dominates, fluctuations in the local occupation number become energetically unfavorable. At commensurate filling of n atoms per site the ground state can be written as a product of local Fock states:

|Ψ Mott ∼ N i=1 (b † i ) n |0 . (6) 
This Mott state is incompressible and unlike the superfluid cannot be described by a macroscopic wave function. In the experiment by Greiner et al. (2002) the system was reversibly tuned between these two ground states by changing the strength V 0 of the optical lattice via the laser intensity. The momentum distribution of the atoms was measured by a time-of-flight technique and clearly showed the loss of coherent tunneling in the Mott insulator. In this experiment it has thus been demonstrated that optical lattices are an ideal tool for analyzing quantum phase transitions.

C. High-Temperature Fermionic Superfluidity

In this section we discuss a proposal for achieving superfluidity of fermionic spin 1/2 atoms in an optical lattice. Let us first focus on the situation with attractive interactions U < 0, where we expect s-wave pairing and condensation of Cooper pairs below a critical temperature T c . According to BCS theory, for weakly confining atom traps the transition temperature scales exponentially with interaction strength k B T free

c ≈ 0.3E free F exp[-π/(2k F |a s |)]
where E free F is the Fermi energy in the harmonic trap. This critical temperature is exceedingly low, unless the characteristic parameter k F |a s | is increased to values of order unity by a Feshbach resonance. This has indeed been achieve in a remarkable series of recent experiments (Bartenstein et al. 2004, Regal et al. 2004, Zwierlein et al. 2004a). However, interpretation of the resulting BEC-BCS crossover is somewhat complicated due to mixing of multiple scattering channels at resonance.

In (Hofstetter et al. 2002) we have suggested an alternative approach which makes use of the tunable atomic interactions in an optical lattice, as sketched in Fig. 2. In the weak-tunneling limit t |U | of the negative U Hubbard model (2) one recovers the standard BCS picture with an exponentially small gap. However, increasing the optical lattice depth leads to both reduced tunneling t and enhanced interaction |U |. The result is a dramatically increased transition temperature T c which can be pushed to a value of the order t 2 /U , see Fig. 2. It is maximal in the crossover regime where interaction and kinetic energy are comparable (Micnas et al. 1990).

We have additionally taken into account an adiabatic cooling effect for fermions in an optical lattice: if the atoms are filled into a weak lattice which is then adiabaticly switched on, the Bloch momentum will be approximately conserved, Right: onset frequency of the quasiparticle continuum in the dynamical structure factor S(q, ω), plotted as a function of momentum q. At the special wave vectors connnecting the nodal points in the left figure, the density response is gapless. Figures taken from (Hofstetter et al. 2002).

while the dispersion changes. As a result, the effective temperature of the fermions is lowered (see Fig. 2). Taking the cooling into account leads to a universal transition temperature T free c ≈ 0.1E free F which has to be achieved before the gas is loaded into the lattice. Note that T free c is independent of the atom type and well within reach of today's experiments.

An even more intriguing possibility opens up for repulsive interactions U > 0 resulting from a positive scattering length a s > 0. At half filling n i = 1 this gives rise to staggered antiferromagnetic order. At lower filling fractions, on the other hand, cold fermions in a lattice could be used to experimentally probe d-wave pairing in the 2d Hubbard model, which is currently beyond the limits of classical computing. The resulting superfluid order could can be detected via Bragg scattering which is by now a well-established technique to measure the dynamical density response S(q, ω) in interacting quantum gases (Stamper-Kurn andKetterle 1999, Steinhauer et al. 2002).

Such quantum simulations along the lines of Feynman (1982) could provide a powerful tool to gain insight into the many-body Hamiltonians relevant for solid-state physics.

III. MULTI-COMPONENT SYSTEMS A. Two-component Bosons with spin order

All of the alkali atoms available for trapping and cooling have 2 * (2I + 1) low-lying hyperfine states, where I is the nuclear spin. The three common bosonic isotopes Li 7 , Na 23 and Rb 87 all have the same value I = 3/2. Several of these states can be trapped at the same time: in magnetic traps one is limited by the condition that the states have to be low-field seekers, but optical dipole traps, created with a focussed red-detuned laser beam, allow confinement of basically any combination of spin states (Stamper-Kurn et al. 1998), as long as no instability due to three-body collision occurs. This is also true for optical lattices which, like optical traps, are based on the AC Stark effect. Loading a lattice with two hyperfine states of Rb 87 has been demonstrated experimentally in (Mandel et al. 2003) where also a spindependent periodic potential has been implemented. In the following we discuss a proposal, first published in (Altman et al. 2003), how these techniques can be used to engineer quantum spin Hamiltonians which in turn could be relevant for quantum information processing.

Let us consider a system of two bosonic hyperfine states in a lattice, described by the following Bose-Hubbard Hamiltonian:

H = -t a ij a † i a j + H.c -t b ij b † i b j + H.c + U i (n ai - 1 2 )(n bi - 1 2 ) + 1 2 i,α=a,b V α n αi (n αi -1) - i,α µ α n αi . (7) 
Here a i , b i denote the annhilation operators for two different bosonic pseudospin states, and the number operators are defined as (Altman et al. 2003).

n ai = a † i a i , n bi = b † i b i ,
one between different spins by U . We also assume a spin dependent tunable hopping t a(b) which has already been experimentally realized (Mandel et al. 2003).

We now focus on the case of integer filling n a + n b = 1, following (Altman et al. 2003). We are mainly interested in the nature of the Mott-superfluid transition in this system, and the possibility of spin order in the insulating phase. To address the second issue, it is instructive to consider parameters t a,b U, V a,b deep inside the Mott phase. States with double occupancy per site are then very unfavourable and can be projected out by a Schrieffer-Wolff transformation. This leads to an effective spin Hamiltonian in the subspace of single occupation (Duan et al. 2003)

H eff = J z ij S z i S z j -J ⊥ ij (S x i S x j + S y i S y j ) -h i S z i (8)
where spin labels ↑ (↓) denote sites occupied by a(b) atoms. The effective parameters are given by

J z = 2 t 2 b + t 2 a U - 4t 2 a V a - 4t 2 b V b J ⊥ = 4t a t b U h = 2t 2 a V a - 2t 2 b V b + h ext . (9) 
We assume that the induced ordering field h can be cancelled by an external field h ext . The physics of this XXZ model is well understood and includes an x-y ferromagnetic phase for J ⊥ > J z > 0 as well as an antiferromagnetic z-Neel ordered state for J z > J ⊥ > 0.

The disadvantage of this deep Mott regime is that the critical temperature for magnetic ordering is very low

T c ∼ max(t 2 a(b) /U, t 2 a(b) /V a(b)
) and therefore experimentally hardly accessible. In order to enhance T c and study the region close to the Mott-SF transition is necessary to make at least one of the interaction parameters comparable to the hopping. Here we choose t a(b) ≈ U V a(b) , which means that double occupancy with two different spins is now possible. The main question is whether the spin order discussed above is still visible close to the superfluid. In order to map out the Mott-SF phase boundary, we have used a mean-field approach first proposed by Sheshadri et al. (1993) where the kinetic energy is decoupled:

H MF = U i n ai - 1 2 n bi - 1 2 + 1 2 i;α=a,b V α n αi (n αi -1) - ij t a a † i a j + H.c -t b ij b † i b j + H.c + const. (10) 
In the paramagnetic phase this decoupling leads to a sum of identical single-site Hamiltonians. We have solved the resulting self-consistency problem numerically, allowing for up to M = 9 bosons per spin and site. The phase diagram obtained in this way is shown in Fig. 4 (left). Note that as V a(b) decreases, the Mott domain shrinks. Within the mean-field approach, different spin ordered states in the insulator cannot be resolved. In order to remove this degeneracy, it is necessary to take into account quantum fluctuations on top of the variational mean-field state and compare the resulting ground state energies. Details of this calculation can be found in (Altman et al. 2003). The resulting phase diagram including fluctuations is given in Fig. 4 (right). Spin ordering persists right up to the SF phase boundary and and can furthermore be tuned from xy-ferromagnetic to z-Neel antiferromagnetic by the ratio t a /t b . We find hysteresis between the z-Neel state and the superfluid, while the transition between the xy-state and the SF is continuous. These should be clear signatures for an experimental detection of spin ordered states, using for example Rb 87 atoms. The spin order can be directly observed using spin-dependent Bragg scattering or via density fluctuations in time-of-flight measurements (Altman et al. 2004).

B. Beyond solid-state: SU(N) fermions

As we have discussed in section II C, fermionic atoms in optical lattices can be used to perform quantum simulations of complex solid-state systems like the cuprate superconductors. We will now show that with the degrees of freedom offered by ultracold atoms it is also possible to create new states of matter that have no equivalent in condensed matter at all. The obvious constraint in solid-state physics is that electrons have only two spin states. Atoms, on the other hand, have large hyperfine multiplets out of which several states can be trapped simultaneously. For fermionic atoms this has been demonstrated with the three states |F = 9/2, m F = -5/2, -7/2, -9/2 of K 40 in an optical trap (Regal and Jin 2003). Alternatively, one could use the three spin polarized m s = 1/2 states of Li 6 which, in a sufficiently large field, have a pairwise equal and anomalously large triplet scattering length a s = -2160a 0 (Abraham et al. 1997).

These systems can be used to realize fermionic Hubbard models with N > 2 flavors and approximate SU(N) flavor symmetry. In the following we will discuss the rich physics of these models for finite N , following the work by Honerkamp and Hofstetter (2004a,b). The Hamiltonian is given by

H = -t m, ij c † i,m c j,m + c † j,m c i,m + U 2 i n 2 i ( 11 
)
where c † im creates a fermion of flavor m = 1, . . . N on site i and n i = m n i,m is the total number of atoms on site i. Note that the interaction term has local SU(N) invariance while the hopping reduces this to a global one. The values of t and U can be derived from atomic parameters along the lines of section II A.

While the large-N limit of this model has been well studied in the context of high-T c superconductivity (Marston and Affleck 1989), few results have been previously obtained for finite N . Consider first the case of repulsive interactions U > 0. We have performed a systematic analysis of weak-coupling instabilities using a perturbative functional renormalization group (RG) approach (Honerkamp and Salmhofer 2001). In this technique, the 2-body interaction is parametrized by a coupling function V (k 1 , k 2 , k 3 ), the flow of which is monitored as a function of some cutoff parameter like the temperature T . In this way one can identify singular response e.g. in the charge channel or in the SU(N) channel. Although the RG eventually breaks down at strong coupling, it allows to identify the leading instability towards an ordered phase. The analysis performed by Honerkamp and Hofstetter (2004a) In Fig. 5 the three relevant types of order at half filling n i = N/2 are shown. In the spin 1/2 case the system displays staggered antiferromagnetic order, as is well known. For intermediate N < 6 the RG yields an instability towards flavor density wave states with ordering wavevector Q = (π, π) like in the antiferromagnetic case. This corresponds to a breaking of the SU(N) symmetry, leading to a degenerate ground state manifold. As N increases, breaking of SU(N) becomes less favorable because the number of Goldstone modes increases. For N > 6 the RG indicates a dominant instability of the staggered flux type with alternating particle currents around the plaquettes of the 2d lattice (see Fig. 5c). This state breaks only translational and time-reversal invariance and has a finite expectation value of the d-wave

density component Φ SF = k,m (cos k x -cos k y ) c † k,m c k+ Q,m , again with ordering wavevector Q = (π, π).
Let us briefly discuss briefly the temperature scales T c below which the respective long range orders set in. The critical temperature for flavor density wave order at strong coupling scales like t 2 /U and can thus be tuned to relatively large values: for N = 3 the RG predicts a maximum T c of ≈ 0.1t. On the other hand, staggered flux order, like d-wave superconductivity away from half filling, requires significantly lower temperatures, with a typical RG estimate given by T c ≈ 0.01t for N = 7. This is about an order of magnitude below the current experimental limit and will require improved cooling techniques.

Next, we focus on the situation with attractive interactions U < 0 and N = 3 flavors which is relevant for Li 6 . A large recent experimental effort has been devoted to the BEC-BCS crossover in spin-1/2 superfluid fermions (Bartenstein et al. 2004, Regal et al. 2004, Zwierlein et al. 2004a,b). A common feature of these experiments with K 40 and Li 6 is the use of a Feshbach resonance to generate large attractive interaction and thus achieve Cooper pairing. These resonances generally occur only between two hyperfine spin states and thus cannot be used to realize an SU(3) symmetric model. However, as pointed out above, Li 6 has a remarkably large and negative background scattering length which in a finite magnetic field is approximately equal for the three spin states with m s = 1/2. In combination with an optical lattice one can therefore realize the SU(N) Hubbard model ( 11) with U < 0 and N = 3. The possibility of a three-flavor paired state in Li 6 , without consideration of the SU(3) symmetry, had already been pointed out by Modawi and Leggett (1997).

Following the analysis in (Honerkamp and Hofstetter 2004b) we now discuss how the spin-1/2 BCS state is generalized to three flavors. We assume weak to intermediate interactions so that a treatment within BCS theory is qualitatively valid. We introduce a pairing mean-field and Hamiltonian 3), and a Cooper pair ∆ αβ therefore transforms under 3 ⊗ 3 = 3 ⊕ 6. Here 3, which describes the even-parity sector, denotes the complex conjugate representation of 3. The representation 6 is relevant for odd parity pairing (e.g. p-wave) which we do not consider here. The order parameter can therefore been written as a triplet

∆ αβ = - U N k c kα c -kβ H MF = - 1 2 k,α,β c † kα c † -kβ ∆ βα + h.c. ( 12 
∆ α = 1 2 αβγ c β c γ =   ∆ 23 -∆ 13 ∆ 12   . (13) 
From mean-field theory we obtain that all ground states consistent with α |∆ α | 2 = ∆ 2 0 are degenerate. This fivedimensional ground-state manifold is consistent with the number of collective modes obtained via Goldstones theorem, which is obvious in the gauge ∆ 12 = ∆ 0 and ∆ 13 = ∆ 23 = 0. The original symmetry group of the problem is SU(3) ⊗ U(1) -with the extra U(1) from total particle number conservation -and has nine generators. This gets broken down to an SU(2) symmetry in flavor 1 and 2, leaving ∆ 12 invariant, and an additional U(1) that acts on the phase of the unpaired flavor 3. This leaves 5 generators broken, yielding the correct number of Goldstone modes.

The remarkable feature of this triplet s-wave state is that superfluid Cooper pairs coexist with a normal Fermi surface (see Fig. 6), i.e. the single-particle spectrum is only partially gapped. This has consequences for the collective mode spectrum which we have analyzed within a generalized RPA scheme (Honerkamp and Hofstetter 2004b). They are partially visible in the dynamical structure factor S(q, ω), which is accessible via Bragg scattering (Stamper-Kurn and Ketterle 1999). An example of the calculated density reponse spectrum Imχ ρ (q, ω), which is equivalent to S(q, ω) via the fluctuation-dissipation theorem, is shown in Fig. 7. The Anderson-Bogoliubov mode, the signature of superfluidity, is clearly visible, as well as an additional flavor mode indicating the 3-flavor degeneracy.

From BCS mean-field theory in two dimensions we find a transition temperature of T c = 0.17t for typical parameters n = 3/8 and U = -4t. This amounts to roughly 0.05T F and is within reach of present cooling techniques. Multicomponent Fermi systems like Li 6 can thus provide exotic new many-body physics and may even allow quantum simulations of simplified QCD models where only the color degree of freedom is taken into account.

IV. DISORDER AND INTERACTION

So far in this review we have focussed on pure, translationally invariant quantum lattice models. It is indeed one of the main advantages of optical lattices that perfectly disorder-free systems can be realized. On the other hand, effects of impurities and defects are of central importance in solids, where they often compete with the electron-electron interaction (Belitz andKirkpatrick 1994, Lee andRamakrishnan 1985). It is therefore of great interest to realize in a controlled way disordered cold atom systems where localization effects can be studied.

Experimentally, disordered potentials can be created either by using speckle lasers (Horak et al. 1998) or via quasiperiodic optical lattices (Guidoni et al. 1997). Either way, due to the AC stark effect the atoms experience a spatially fluctuating random potential which is stationary in time. Recently, localization effects have been observed in a BEC subject to a speckle laser field (Lye et al. 2004).

Here we focus on fermionic atoms with two spin states in a three-dimensional optical lattice with an additional random potential. A complete presentation of the results discussed here can be found in (Byczuk et al. 2005a). The system is modelled by the Anderson-Hubbard Hamiltonian

H AH = -t ij σ c † iσ c jσ + iσ i n iσ + U i n i↑ n i↓ -µ iσ n iσ , ( 14 
)
where i is a random onsite potential which we assume to be uniformly distributed in the interval [-∆/2, ∆/2]. The parameter ∆ is a measure of the disorder strength. We focus on the case of half filling n = 1 where on average there is one particle per site. The Hamiltonian ( 14) describes both an interaction-induced Mott transition into a correlated insulator (Mott 1949) as well as the Anderson localization transition due to coherent backscattering from random impurities (Anderson 1958).

Analyzing the model ( 14) is a challenging problem. Note that even the pure fermionic Hubbard model with ∆ = 0 has only been exactly solved in 1d, while there are many open questions about the physics in two and three dimensions.

Here we present results obtained within the Dynamical Mean-Field Theory (DMFT), a nonperturbative technique where local quantum fluctuations are treated exactly (Georges et al. 1996, Metzner andVollhardt 1989). The DMFT has been applied with great success in d = 3 spatial dimensions to explain magnetic ordering phenomena and the Mott transition. In the calculation presented here (Byczuk et al. 2005a) we use a recently developed variant, the stochastic DMFT, which is able to describe Anderson localization as well (Dobrosavljevic andKotliar 1997, Dobrosavljevic et al. 2003).

Within DMFT, the correlated lattice model is mapped onto a self-consistent Anderson impurity Hamiltonian

H SIAM = σ ( -µ)c † σ c σ + U n ↑ n ↓ (15) + kσ V k c † σ a kσ + V * k a † kσ c σ + kσ k a † kσ a kσ
where a single correlated lattice site now constitutes the impurity with a random onsite energy , and the fermions a kσ represent a fictitious conduction band with parameters V k and k which have to be determined self-consistently.

The chemical potential µ = -U/2 ensures half filling. This effective single-impurity model is solved using Wilson's numerical renormalization group (Bulla et al. 1998, Costi et al. 1994, Hofstetter 2000, Wilson 1975). Within the stochastic DMFT (Dobrosavljevic et al. 2003) the self-consistency loop involves a geometric disorder average of the local density of states

ρ geom (ω) = exp [ ln ρ i (ω) ] ( 16 
)
which then determines the hybridization function η(ω) = k |V k | 2 / (ωk ) for the next iteration. For more details see (Byczuk et al. 2005a). The resulting zero temperature phase diagram as a function of disorder ∆ and interaction U is shown in Fig. 7. For weak interaction and disorder the atoms are in a Fermi liquid state ("metal"). There are two different metalinsulator transitions: a Mott-Hubbard transition takes place for increasing interation U , and an Anderson localization transition occurs as a function of ∆. Our results indicate that the two insulating phases are adiabaticly connected. Note, however, that in our DMFT calculation we have so far considered only the paramagnetic insulating phase. For non-frustrated lattices (e.g. simple cubic) it is known that an antiferromagnetic instability occurs in the pure Mott state. We are currently analyzing how far this antiferromagnetic phase extends into the disordered Mott-Anderson insulator (Byczuk et al. 2005b). Let us briefly comment on the detection of these different phases. Itinerant versus insulating behavior can be identified by a time-flight measurement as in (Köhl et al. 2004). In the Fermi liquid state, delocalization of fermions across the lattice leads to an interference pattern which vanishes once the atoms become localized. In order to distinguish the antiferromagnetic Mott insulator from the paramagnetic Anderson insulator one could apply spin-resolved Bragg scattering.

Optical lattices are a promising tool to simulate the above phase diagram experimentally since, in contrast to solids, both parameters U and ∆ can be tuned arbitrarily. In particular, measurements could be done both in two and three spatial dimensions, thus possibly detecting qualitatively new physics in d = 2 where DMFT is no longer expected to be a good approximation.

V. SUMMARY AND OUTLOOK

In this review we have presented some theoretical aspects of strongly correlated atoms in optical lattices. We have shown that these systems can be used to create analogues of well established solid-state quantum phases, like a BCS superconductor, but with much higher tunability of the model parameters. More generally, ultracold atoms can be used to perform quantum simulations of model Hamiltonians, like the 2d Hubbard model, which have not been fully understood theoretically, but may be relevant for fundamental phenomena like high-temperature superconductivity. As another example for such a simulation we have discussed interacting fermions with disorder. Within a DMFT calculation we observe remarkable re-entrance into the itinerant phase due to competing Mott-and Anderson-localization. We expect our results to be qualitatively accurate in 3d, but to which degree the physics carries over to 2d has to be checked experimentally. Finally, we have demonstrated that it is possible to use the highly degenerate internal states of cold atoms to create new exotic quantum states which have no analogue in condensed matter physics. Bosons with multiple spin states can be used to create tunable spin hamiltonians. Most prominently, we have discussed a new fermionic SU(3) triplet superfluid state which could be relevant for QCD toy models at weak to intermediate interactions. Experimental realization of these quantum phases is within reach and could significantly increase our understanding of the many-body model systems involved. 

  FIG.2: Left: Fermions with attractive interaction forming Cooper pairs in an optical lattice. Right: Critical temperature for the SF transition of Li 6 atoms as a function of the optical lattice depth in a 3d CO2 lattice. Inset: analogous plot for K 40 atoms in a Nd:YAG lattice. The dashed curves show the effect of adiabatic cooling if the atoms are loaded into a weak lattice at point C which is then decoupled from the reservoir. Figures taken from(Hofstetter et al. 2002).

  FIG.3: Probing d-wave pairing in the repulsive 2d Hubbard model via Bragg scattering. Left: schematic diagram of the Fermi surface in 2d (solid line) and the momentum dependence of the gap (dashed line). Right: onset frequency of the quasiparticle continuum in the dynamical structure factor S(q, ω), plotted as a function of momentum q. At the special wave vectors connnecting the nodal points in the left figure, the density response is gapless. Figures taken from(Hofstetter et al. 2002).

  FIG. 4: Left: Phase diagram of the 2-component bosonic Hubbard model obtained via decoupling mean-field theory. Note that as V a(b) decreases, the Mott domain shrinks. Right: Phase diagram including quantum fluctuations. Figures taken from (Altman et al. 2003).

FIG. 5 :

 5 FIG. 5: Types of order in the U > 0 fermionic SU(3) Hubbard model. a) AF spin-density wave for N = 2. b) Flavor-density wave state for N=3. Flavor 1 and 2 prefer one sublattice, flavor 3 the other. c) Staggered flux state for N > 6: particle currents are indicated by arrows. Figures taken from (Honerkamp and Hofstetter 2004a).

  FIG.6: BCS pairing of 3-flavor fermions with SU(3) symmetry. Note that one flavor remains unpaired, with a normal Fermi surface. Figures taken from(Honerkamp and Hofstetter 2004b).

  FIG. 7: Density response spectrum χ ρ (q, ω) of the 2d fermionic SU(3) Hubbard model at T = 0.01t, U = -4t and filling n ≈ 0.55. Figure taken from (Honerkamp and Hofstetter 2004b).

  FIG. 8: DMFT ground state phase diagram of the disordered Hubbard model in the nonmagnetic phase at half filling. Figure taken from (Byczuk et al. 2005a).
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